
Application Patterns of Projection/Forgetting

Christoph Wernhard

Technische Universität Dresden

Interpolation: From Proofs to Applications (iPRA 2014)

Vienna, 17 July 2014

1

Introduction

We assume a classical logic setting where projection and forgetting are
available as second-order operators that can be nested

It allows to define concepts such as:

• Literal projection, literal forgetting
• Globally strongest necessary and weakest sufficient condition
• Definability and definientia

A variety of applications can be rendered with these:

• View-based query processing
• Query rewriting
• Characterizing definientia in formula classes

• Knowledge base modularization
• Conservative theory extension

• “Non-standard inferences”
• “Formula matching”

• Non-monotonic reasoning and logic programming
• Stable and partial stable model semantics
• Abduction w.r.t. these semantics

2

Classical Logic + Second-Order Operators

• We start with an underlying classical logic, e.g., first-order or propositional

• It is extended by second-order operators, e.g., predicate quantification or
Boolean quantification

∃q (p→ q) ∧ (q → r)

• The associated computation is second-order operator elimination:
computing an equivalent formula without second-order operators

∃q (p→ q) ∧ (q → r) ≡ p→ r.

3

Forgetting, Projection, Uniform Interpolants

• Further second-order operators can be defined in terms of predicate
quantification

• An operator for forgetting can be seen as syntax for iterated existential
predicate quantification:

forgetAboutPredicates{p,q}(F) ≡ ∃p ∃q F

• Elimination of forgetAboutPredicates is often called computation of
forgetting

• Forgetting about all predicates except those explicitly specified is often
called projection [Darwiche 01]

projectOntoPredicates{p,q}(F) ≡ forgetAboutPredicatesALLPREDICATES\{p,q}(F)

• Elimination of projectOntoPredicates is often called computation of a
uniform interpolant

• Here we handle projection and forgetting symmetrically as second-order
operators

4

Scopes as Parameters of Second-Order Operators

• The introduced second-order operators have a set of predicates as parameter

We generalize this to a set of ground literals, called scope

• A scope can express different effects on positive and negative predicate
occurrences

Our basic second-order operators are now literal projection and literal
forgetting:

Let F = (p→ q) ∧ (q → r)

forget{¬q}(F) ≡ project{p,q,r,¬p,¬r}(F) ≡ (p→ q) ∧ (p→ r)

[Lang* 03, W 08]

5

An interpretation is a set of ground literals, containing each ground atom
either positively or negatively.

I |= projectS(F) iffdef There exists a J s.t. J |= F and J ∩ S ⊆ I.

forgetS(F) def= projectALLGROUNDLITERALS\S(F).
5

Notation for “in Scope”

• That F is “in scope” S is written as

F b S

Let F = p ∨ ¬q ∨ (r ∧ ¬r)

F b {p,¬q}
F b {p, q, r, s,¬p,¬q,¬r,¬s}
F 6b {p}

6
F b S iffdef F ≡ projectS(F).

6

Globally Strongest Necessary and Weakest Sufficient Condition

• The globally strongest necessary condition of G on S within F is

the strongest X b S s.th. (F ∧G) |= X

It can be expressed by a second-order operator

gsnc{p}((q → p), q) ≡ p

• The globally weakest sufficient condition of G on S within F is

the weakest X b S s.th. (F ∧X) |= G

It can be expressed by a second-order operator

gwsc{p}((p→ q), q) ≡ p

• The analog concepts in [Lin 01] are not unique modulo equivalence. See
also [Doherty* 01, W 12]

7

Let S denote the set of the complements of the members of scope S.

gsncS(F,G) def= projectS(F ∧G).

gwscS(F,G) def= ¬projectS(F ∧ ¬G).
7

Definition, Definability

• A definition of G in terms of S within F is a formula (G↔ X) such that

1. X b S, and

2. F |= G↔ X

G is the definiendum, X is the definiens

Note: If F is a sentence, then F |= G(x)↔X(x) iff F |= ∀x(G(x)↔X(x))

Let F = (p↔ q ∧ r) ∧ (q → r)

(p↔ q ∧ r) is a definition of p in terms of {q, r} within F

(p↔ q) is a definition of p in terms of {q, r} within F

• Existence of a definition is called definability

p is definable in terms of {q, r} within F
p is definable in terms of {q} within F
p is not definable in terms of {r} within F

• This is a semantic characterization, aka implicit definability

8

Definition, Definability in Terms of Second-Order Operators

• Definientia are exactly those formulas in the scope that are
between the GSNC and the GWSC

Let F = (p↔ q ∧ r) ∧ (q → r)

gsnc{q,r}(F, p) ≡ project{q,r}(F ∧ p) ≡ q ∧ r

gwsc{q,r}(F, p) ≡ ¬project{¬q,¬r}(F ∧ ¬p) ≡ q

• Definability holds iff the GSNC entails the GWSC

gsnc{q,r}(F, p) ≡ q ∧ r |= q ≡ gwsc{q,r}(F, p)
gsnc{q}(F, p) ≡ q |= q ≡ gwsc{q}(F, p)
gsnc{r}(F, p) ≡ r 6|= ⊥ ≡ gwsc{r}(F, p)

• In case of definability, the GSNC and GWSC provide the strongest and
weakest definientia

9

ISDEFINITION(X,G, S, F) iffdef XbS and gsncS(F,G) |= X |= gwscS(F,G).

ISDEFINABLE(G,S, F) iffdef gsncS(F,G) |= gwscS(F,G).
9

View-Based Query Rewriting – Exact Views

[Halevy 01, Calvanese* 07, Marx 07, Nash* 10, Bárány* 13, W 14a]

• Given: D “database scope” {a,¬a}
U “view scope” {p,¬p, q,¬q}
V b D ∪ U “view specification” (p↔ a) ∧ (q ↔ a)
Q b D “query” a

• The “view extension” of V wrt. “database” DBbD is projectU (DB∧V)

projectU (a ∧ V) ≡ p ∧ q projectU (¬a ∧ V) ≡ ¬p ∧ ¬q

• “Queries to view extensions can be evaluated particularly well”

The objective is to find an “exact rewriting” R b U s.t. for all DB b D:

projectU (DB ∧ V) |= R iff DB |= Q

• Assume that all R b U are uniquely definable in terms of D within V

gsncD(V , p) ≡ a ≡ gwscD(V , p)

• Then R is an exact rewriting iff R is a definiens of Q i.t.o. U within V

gsncU (V ,Q) ≡ (p ∧ q)
|= p |=
|= q |= (p ∨ q) ≡ gwscU (V ,Q)

10

View-Based Query Rewriting – “Split Rewriting”

[W 14a], related to [Borgida* 10, Franconi* 13]

• Given: D “database scope”
U “view scope”
V b D ∪ U “view specification”
Q b D ∪ U “query”

• The idea is to rewrite a Q b D ∪ U to a R b D that can be evaluated by
the “database system”

• The objective is to find a “split rewriting” R b D s.t. for all DB b D:

DB |= R iff DB ∧ V |= Q

• R is a split rewriting iff R ≡ gwscD(V ,Q)

11

View-Based Query Rewriting – Further Issues

• Investigation of “determinacy” w.r.t. formula classes
[Segoufin and Vianu 05, Marx 07, Nash* 10, Bárány* 13]

For Q, V in particular formula classes:

• is the existence of an exact rewriting (definability) decidable?
• what formula class contains all exact rewritings?

12

Definientia in Formula Classes

[W 14b]

• So far, we considered definientia in terms of a vocabulary

Question: Can we apply second-order operators also to characterize
definientia in efficiently processable formula classes?

• Yes, for the class of formulas that are equivalent to a conjunction of atoms

• This class excludes disjunction and negation and can thus be used to
encode other syntactic conditions on the meta level

e.g., a Krom formula as a conjunction of atoms like clause(p,¬q)

13

I |= projectS(F) iffdef There exists a J s.t. J |= F and J ∩ S ⊆ I.

I |= diffS(F) iffdef There exists a J s.t. J |= F and J ∩ S 6⊆ I.

glb(F) def= circNEG(¬diffNEG(F)).

fhub(F) def= projectPOS(glb(F)) ∧ projectNEG(F).

ISCA-DEFINABLE(G,S, F) iff glb(gsncS∩POS(F,G)) |= gwscS∩POS(F,G).

If ISCA-DEFINABLE(G,S, F), then
ISCA-DEFINIENS(fhub(gsncS∩POS(F,G)), G, S, F).

13

Conservative Extensions Underlying Knowledge Base Modularization

[Ghilardi* 06, Cuenca Grau* 08]

Adding G does not “damage my ontology” F

iff “All knowledge about the vocabulary of F that is
expressed by (F ∧G) is expressed by F alone”

iff (F ∧G) is a conservative extension of F

iff G is conservative within F [W 14a]

iff G imports F in a safe way [Cuenca Grau* 08]

iff F |= projectvocab(F)(F ∧G)

iff F ≡ projectvocab(F)(F ∧G)

14

“Formula Matching”

• Concept matching modulo equivalence is a non-standard inference in
description logics [Borgida and McGuinness 96, Baader* 99],

• Here for arbitrary formulas but with single-variable patterns

Given: F Background formula >
G Formula p↔ q
H Pattern: formula with special atom x (p ∧ q) ∨ x

• Objective: Find a “matching formula” X such that

F |= G↔ H[x 7→ X]

> |= (p↔ q)↔ ((p ∧ q) ∨ x)

> |= (p↔ q)↔ ((p ∧ q) ∨ (¬p ∧ ¬q))

• There are two second-order formulas M1 and M2 such that solutions
are exactly the X s.th. M1 |= X |= M2

15

Basic characterization of X: |= ∀xF ∧ (x↔ X)→ (G↔ H)

This is equivalent to: ∃xF ∧ ¬x ∧ ¬(G↔ H) |= X
and X |= ∀xF ∧ x→ (G↔ H) 15

Stable Model Semantics for Logic Programming

Let F = p ∧ (q ← p ∧ ¬r)
It has three models: {p, q, r}, {p, q,¬r}, {p,¬q, r}
Considered as logic program it has a single stable model: {p, q}

• Logic programs can be represented by classical formulas, where
second-order operators associate logic programming semantics [W 10]

stable(p ∧ (q ← p ∧ ¬r1)) ≡ (p ∧ q ∧ ¬r)
A “replica” of the vocabulary, identified by the 1 superscript, is used for
predicate occurrences under negation as failure

• stable(F) def= rename17→0(circ(0∩POS)∪1(F))

1. minimize undecorated predicates, while keeping 1 predicates fixed
2. rename the 1 predicates to their undecorated correspondents

• The stable operator renders the characterization of the stable model
semantics in terms of circumscription from [Lin 91]

• By combination with an encoding from [Janhunen* 06], a similar operator
can render the 3-valued partial stable model semantics

16

Abduction with the Stable Model Semantics

[Kakas* 98, Lin and You 02, W 13a]

• Given: F background (wet ← shower) ∧
(wet ← rain ∧ ¬umbrella1) ∧
(umbrella ← forecastRain)

G observation wet

S abducibles {shower , rain, forecastRain,
¬shower ,¬rain,¬forecastRain}

• In classical logic, an explanation is an X b S s.th. (F ∧X) |= G

The weakest explanation is gwscS(F,G) gwscS(F,G) ≡ shower

• For the stable model semantics, a “factual” explanation is a conjunction
of literals X b S s.th. stableS(F ∧X) |= G

stableS effects that atoms occurring in S are subjected to the open-world
assumption (passed as “fixed” to the circumscription)

The minimal factual explanations for the example are
shower and (rains ∧ ¬forecastRain)

17

Abduction with the Stable Model Semantics (2)

[W 13a]

For the stable model semantics, a “factual” explanation is a conjunction of
literals X b S s.th. stableS(F ∧X) |= G

• The minimal factual explanations are the prime implicants of

gwscS∩0(stableS(F), G)

• S ∩ 0 specifies the undecorated literals in S

• The underlying justification is that for H b S ∪ S it holds that

stableS(F ∧H) ≡ stableS(F) ∧H

18

gwscS∩0(stableS(F), G) ≡ ¬projectS∩0(stableS(F) ∧ ¬G)
18

Abduction with 3-Valued Logic Programming Semantics

[W 13a]

• Abduction can be analogously characterized with the GWSC for

• the well founded semantics
• the partial stable model semantics

• For the partial stable model semantics, this seems so far the only thorough
formalization of abduction

• Unlike the well-founded semantics, the partial stable model semantics allows
to obtain explanations for the undefinedness of observations

Background: The barber shaves all
males who do not shave themselves

The barber shaves the barber
if the barber has been sentenced to shave himself

Observation: “The barber shaves the barber” is undefined

Explanation: The barber is male and
has not been sentenced to shave himself

19

Conclusion – Towards Practice

• ToyElim [W 13b] is a Prolog-based prototype system which supports to
define second-order operators as outlined and is useful for small experiments

• Relevant general processing techniques include:

• second-order quantifier elimination methods based on first-order logic
[Gabbay and Ohlbach 92, Doherty* 97]

• recent advances in uniform interpolation for description logics
[Ghilardi* 06, Konev* 09, Koopmann and Schmidt 13]

• progress in SAT pre- and inprocessing
[Eén and Biere 05, Heule* 10, Manthey* 13]

• General agenda: Investigate processing of the particular formula patterns
in which combinations of second-order operators are used in applications

Consider these patterns also for restricted argument formulas

20

Conclusion – Classical Logic + Second-Order Operators

• Provides an integrating view on a variety of applications in areas such as

• view-based query processing
• knowledge base modularization
• many “non-standard” inferences
• non-monotonic reasoning and logic programming
• abductive reasoning

• Operators can be nested and combined

• New operators can be defined in terms of other ones

• Operators let instructive relationships become evident

• Operators seems useful for mechanization

• Second-order operators shift techniques from a theoretical
background to a mechanizable and user accessible formalization

21

References

22

[Baader and Küsters 98] Baader, F. and Küsters, R. (1998).

Computing the least common subsumer and the most specific concept in the
presence of cyclic ALN -concept descriptions.

In KI-98, volume 1504 of LNCS, pages 129–140. Springer.

[Baader* 99] Baader, F., Küsters, R., Borgida, A., and McGuinness, D. (1999).

Matching in description logics.

JLC, 9(3):411–447.

[Bárány* 13] Bárány, V., Benedikt, M., and ten Cate, B. (2013).

Rewriting guarded negation queries.

In Mathematical Foundations of Computer Science 2013, volume 8087 of LNCS,
pages 98–110. Springer.

[Borgida* 10] Borgida, A., de Bruijn, J., Franconi, E., Seylan, I., Straccia, U.,
Toman, D., and Weddell, G. (2010).

On finding query rewritings under expressive constraints.

In Proc. 18th Italian Symp. on Advanced Database Systems, SEBD 2010.

23

[Borgida and McGuinness 96] Borgida, A. and McGuinness, D. L. (1996).

Asking queries about frames.

In Proc. 5th Int. Conf. on Knowledge Rep. and Reasoning, KR’96, pages 340–349.
Morgan Kaufmann.

[Calvanese* 07] Calvanese, D., Giacomo, G. D., Lenzerini, M., and Vardi, M. Y.
(2007).

View-based query processing: On the relationship between rewriting, answering
and losslessness.

TCS, 371(3):169–182.

[Cuenca Grau* 08] Cuenca Grau, B., Horrocks, I., Kazakov, Y., and Sattler, U.
(2008).

Modular reuse of ontologies: Theory and practice.

JAIR, 31:273–318.

[Darwiche 01] Darwiche, A. (2001).

Decomposable negation normal form.

JACM, 48(4):608–647.

24

[Dechter and Pearl, 1992] Dechter, R. and Pearl, J. (1992).

Structure identification in relational data.

AI, 58:237–270.

[Doherty* 97] Doherty, P., Lukaszewicz, W., and Sza las, A. (1997).

Computing circumscription revisited: A reduction algorithm.

JAR, 18(3):297–338.

[Doherty* 01] Doherty, P., Lukaszewicz, W., and Sza las, A. (2001).

Computing strongest necessary and weakest sufficient conditions of first-order
formulas.

In IJCAI-01, pages 145–151. Morgan Kaufmann.

[Eén and Biere 05] Eén, N. and Biere, A. (2005).

Effective preprocessing in SAT through variable and clause elimination.

In SAT 2005, volume 3569 of LNCS, pages 61–75.

[Ferraris* 11] Ferraris, P., Lee, J., and Lifschitz, V. (2011).

Stable models and circumscription.

AI, 175(1):236–263.

25

[Franconi* 13] Franconi, E., Kerhet, V., and Ngo, N. (2013).

Exact query reformulation over databases with first-order and description logics
ontologies.

JAIR, 48:885–922.

[Gabbay and Ohlbach 92] Gabbay, D. and Ohlbach, H. J. (1992).

Quantifier elimination in second-order predicate logic.

In KR’92, pages 425–435. Morgan Kaufmann.

[Gabbay* 08] Gabbay, D. M., A., R., Schmidt, and Sza las, A. (2008).

Second-Order Quantifier Elimination: Foundations, Computational Aspects and
Applications.

College Publications, London.

[Ghilardi* 06] Ghilardi, S., Lutz, C., and Wolter, F. (2006).

Did I damage my ontology? A case for conservative extensions in description
logics.

In KR 2006, pages 187–197. AAAI Press.

[Halevy 01] Halevy, A. Y. (2001).

Answering queries using views: a survey.

The VLDB Journal, 10(4):270–294.
26

[Heule* 10] Heule, M., Järvisalo, M., and Biere, A. (2010).

Clause elimination procedures for CNF formulas.

In LPAR-17, volume 6397 of LNCS, pages 357–371. Springer.

[Janhunen* 06] Janhunen, T., Niemelä, I., Seipel, D., Simons, P., and You, J.-H.
(2006).

Unfolding partiality and disjunctions in stable model semantics.

ACM Trans. Comput. Log., 7(1):1–37.

[Kakas* 98] Kakas, A. C., Kowalski, R. A., and Toni, F. (1998).

The role of abduction in logic programming.

In D. M. Gabbay et al., editor, Handbook of Logic in Artif. Int., volume 5, pages
235–324. Oxford University Press.

[Konev* 09] Konev, B., Walther, D., and Wolter, F. (2009).

Forgetting and uniform interpolation in large-scale description logic terminologies.

In IJCAI-09, pages 830–835. AAAI Press.

[Koopmann and Schmidt 13] Koopmann, P. and Schmidt, R. A. (2013).

Uniform interpolation of ALC-ontologies using fixpoints.

In FroCoS 2013, volume 8152 of LNCS (LNAI), pages 87–102. Springer.

27

[Lang* 03] Lang, J., Liberatore, P., and Marquis, P. (2003).

Propositional independence – formula-variable independence and forgetting.

JAIR, 18:391–443.

[Lifschitz 94] Lifschitz, V. (1994).

Circumscription.

In Gabbay, D. M., Hogger, C. J., and Robinson, J. A., editors, Handbook of Logic
in Artif. Int. and Logic Prog., volume 3, pages 298–352. Oxford University Press.

[Lin 91] Lin, F. (1991).

A Study of Nonmonotonic Reasoning.

PhD thesis, Stanford Univ.

[Lin 01] Lin, F. (2001).

On strongest necessary and weakest sufficient conditions.

AI, 128(1–2):143–159.

[Lin and You 02] Lin, F. and You, J.-H. (2002).

Abduction in logic programming: A new definition and an abductive procedure
based on rewriting.

AI, 140(1/2):175–205.

28

[Manthey* 13] Manthey, N., Philipp, T., and Wernhard, C. (2013).

Soundness of inprocessing in clause sharing SAT solvers.

In SAT 2013, volume 7962 of LNCS, pages 22–39. Springer.

[Marx 07] Marx, M. (2007).

Queries determined by views: pack your views.

In PODS ’07, pages 23–30. ACM.

[McCarthy 80] McCarthy, J. (1980).

Circumscription – a form of non-monotonic reasoning.

AI, 13:27–39.

[Nash* 10] Nash, A., Segoufin, L., and Vianu, V. (2010).

Views and queries: Determinacy and rewriting.

TODS, 35(3).

[Przymusinski 90] Przymusinski, T. (1990).

Well-founded semantics coincides with three-valued stable semantics.

Fundamenta Informaticae, 13(4):445–464.

29

[Segoufin and Vianu 05] Segoufin, L. and Vianu, V. (2005).

Views and queries: Determinacy and rewriting.

In PODS 2005, pages 49–60.

[Selman and Kautz, 1991] Selman, B. and Kautz, H. A. (1991).

Knowledge compilation using Horn approximations.

In AAAI-91, pages 904–909. AAAI Press.

[Tarski 35] Tarski, A. (1935).

Einige methologische Untersuchungen zur Definierbarkeit der Begriffe.

Erkenntnis, 5:80–100.

[W 08] Wernhard, C. (2008).

Literal projection for first-order logic.

In JELIA 08, volume 5293 of LNCS (LNAI), pages 389–402. Springer.

[W 10] Wernhard, C. (2010).

Circumscription and projection as primitives of logic programming.

In Tech. Comm. ICLP’10, volume 7 of LIPIcs, pages 202–211.

30

[W 12] Wernhard, C. (2012).

Projection and scope-determined circumscription.

JSC, 47(9):1089–1108.

[W 13a] Wernhard, C. (2013a).

Abduction in logic programming as second-order quantifier elimination.

In FroCoS 2013, volume 8152 of LNCS (LNAI), pages 103–119. Springer.

[W 13b] Wernhard, C. (2013b).

Computing with logic as operator elimination: The ToyElim system.

In INAP 2011/WLP 2011, volume 7773 of LNCS (LNAI). Springer.

[W 14a] Wernhard, C. (2014a).

Expressing view-based query processing and related approaches with second-order
operators.

Technical Report KRR 14–02, TU Dresden.

http:

//www.wv.inf.tu-dresden.de/Publications/2014/report-2014-02.pdf.

31

http://www.wv.inf.tu-dresden.de/Publications/2014/report-2014-02.pdf
http://www.wv.inf.tu-dresden.de/Publications/2014/report-2014-02.pdf

[W 14b] Wernhard, C. (2014b).

Second-order characterizations of definientia in formula classes.

Technical Report KRR 14–03, TU Dresden.

http:

//www.wv.inf.tu-dresden.de/Publications/2014/report-2014-03.pdf.

32

http://www.wv.inf.tu-dresden.de/Publications/2014/report-2014-03.pdf
http://www.wv.inf.tu-dresden.de/Publications/2014/report-2014-03.pdf

Appendix

33

Notes on the Relationship to Craig Interpolation (Addendtum to Slide 9)

• [Tarski 35]: Definability w.r.t. first-order formulas can be reduced to
first-order validity

gsncS(F,G) |= gwscS(F,G) iff F ∧G |= F ′ → G′

• The interpolants X in S such that

F ∧G |= X |= F ′ → G′

are definitions

• The extreme definitions GSNC and GWSC are obtained as uniform
interpolants – if the predicate elimination succeeds

34

More precisely: Let S specify a set of predicates. Let F,G be first-order. Let
F ′, G′ be F,G after systematically replacing all predicates not in S with new
symbols. Then

gsncS(F,G) |= gwscS(F,G) iff F ∧G |= F ′ → G′.

If X b S, then F ∧G |= X iff gsncS(F,G) |= X.

If X b S, then X |= F ′ → G′ iff X |= gwscS(F,G).
34

Notes About Unique Definability (Mentioned on Slides 10 and 14)

• If S ≡ S, then a formula that is definable in terms of S within F is
uniquely definable iff

|= projectS(F)

• Conservativeness with respect to all formulas in a scope and definability
in terms of that scope together imply unique definability

See [W 14a]

35

Proof Sketch for Slide 10

Assumptions: R b U , Q b D

R is an exact rewriting of Q w.r.t. V
iff ∀DB b D : projectU (V ∧DB) |= R iff DB |= Q
iff ∀DB b D : V ∧DB |= R iff DB |= Q since R b U
iff ∀DB b D : DB |= ¬V ∨R iff DB |= Q
iff projectD(V ∧ ¬R) ≡ projectD(¬Q)
iff gwscD(V,R) ≡ Q. since Q b D

Assume A1: Unique definability of all R b U i.t.o. D within V , i.e.
∀R b U : gsncD(V,R) ≡ gwscD(V,R).

gwscD(V,R) |= Q
iff gsncD(V,R) |= Q by assumption A1
iff V ∧R |= Q since Q b D
iff V ∧ ¬Q |= ¬R
iff projectU (V ∧ ¬Q) |= ¬R since R b D
iff R |= gwscU (V,Q). Note: for “sound views” just this direction is relevant

Q |= gwscD(V,R)
iff projectD(V ∧ ¬R) |= ¬Q
iff V ∧ ¬R |= ¬Q since Q b D
iff V ∧Q |= R
iff gsncU (V,Q) |= R. since R b U

See [W 14a] 36

Proof Sketch for Slide 11

Assumption: R b D

R is a split rewriting of Q w.r.t. V and D
iff ∀DB b D : DB |= R iff DB ∧ V |= Q
iff ∀DB b D : DB |= R iff DB |= ¬V ∨Q
iff projectD(¬R) ≡ projectD(V ∧ ¬Q)
iff ¬R ≡ projectD(V ∧ ¬Q) since R b D
iff R ≡ gwscD(V,Q).

• Note: The GWSC is the only solution!

• This seems to supersede material in [W 14a]

37

Proof Sketch for Slide 15

|= ∀xF ∧ (x↔ X)→ (G↔ H)

iff |= (∀xF ∧ x ∧X → (G↔ H)) ∧ (∀xF ∧ ¬x ∧ ¬X → (G↔ H))

iff |= (X → (∀xF ∧ x→ (G↔ H))) ∧ ((∃xF ∧ ¬x ∧ ¬(G↔ H))→ X)

iff X |= ∀xF ∧ x→ (G↔ H) and ∃xF ∧ ¬x ∧ ¬(G↔ H) |= X.

38

	References
	Appendix

