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1 Introduction 

Bioinformatics [1] is the source of tools like databases and algorithms that solve many real-life 

problems. It is an interdisciplinary study that also uses computers to store and illustrate the 

biological data. The main purpose is to develop useful & efficient tools that work on biological 

data. It’s all about engineering. 

Computational biology [2] is the knowledge or study of biological, behavioural, and social 

systems via the use of data analysis and theoretical methodologies, mathematical modelling, and 

computational simulation tools. Molecular biology, genetics, genomics, evolutionary ecology, 

human anatomy, neurology, and computer science are all included in the broad definition of the 

topic. It also has roots in mathematics and computer science. In computational biology, 

biomarkers are important for disease detection. Genetical disorders play a vital role in the 

progression of various cancers and diseases. Hence, prediction of critical genes is important. The 

sequencing of the human genome, the creation of precise brain models, and the modelling of 

biological systems have all been made possible because of computational biology. 

The term "biomarkers" [3] refers to the characteristics that can be objectively measured through 

biological methods. Genes can function as biomarkers. Mutation of critical genes is the cause of 

many diseases, like cancer. One challenging application for machine learning researchers is the 

identification of biomarkers or critical genes with high accuracy in large genomics data sets. The 

gene selection technique [4] plays a significant role in the identification of attractive biomarkers, 

i.e., critical genes. It is necessary to identify critical genes for the disease. It’s very useful in 

precision medicine. 

Discovering the optimal therapy for any disease by deciphering our genetic code is a key 

component of precision medicine. Precision medicine integrates genetics, biology, and medicine 

to provide personalised treatment strategies for each patient. 

Here, a new population-based metaheuristic algorithm has been applied called the Gorilla Troops 

Optimizer [6]. It will be used to detect biomarkers, i.e., critical genes for a particular disease, 

with high classification accuracy. All the non-traditional methods of optimization [7] are called 

"meta-heuristics" [7]. Optimization means finding the best possible solutions. The Gorilla 

Troops Optimizer is a meta-heuristic approach based on a nature-inspired population-based 

algorithm. It is inspired by the social intelligence and behaviour of gorillas. In GTO, each 

individual is called a " Candidate Gorilla Position Vector" (solution). In Artificial Gorilla 

Troops, the optimizer search space comprises mainly three types of candidate solutions that are 

X, GX, and Silverback Gorilla candidate position vectors are generated by each phase that is 

exploration and exploitation of GTO. X is called the gorilla position vector. GX is called the 

candidate gorilla position vector. The difference is that GX belongs to another memory of GTO 

[6]. Silverback is the best solution. This algorithm is stochastic in nature. 

In this work, the performance of GTO and MGTO [8] is tested on five selected benchmark 

functions. The GTO and MGTO are compared by their best objective value. Also, the running 
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time of the GTO algorithm on MATLAB and PYTHON code is compared on 25 selected 

benchmark functions. After comparison, the results prove that GTO is superior than other 

metaheuristics algorithms, but MGTO gives better results than GTO. Furthermore, PYTHON 3 

is faster than MATLAB. And all benchmark test functions give the optimal or near optimal 

result. 

The remaining section of the work is arranged as follows. Section 2 contains a literature survey 

of meta-heuristic algorithms. A problem definition has been presented in section 3. The proposed 

work of AGTO and MGTO have been discussed in section 4. The Basic AGTO and MGTO with 

proposed methodologies have been explained in section 5. Section 6 contains experimental 

results, and Section 7 contains the conclusion and future scope. The work has been concluded by 

section 8.  

 

2. Literature Survey 

 In the machine learning research area, various categories of metaheuristic algorithms have been 

proposed in optimization technique. Most of these meta-heuristic algorithms are inspired by 

collective behaviours and hunting mechanisms and food searching behaviours of animals. The 

aim of this section is to explore research areas where different types of metaheuristic algorithms 

and GTO have been used and study this basic algorithm for solving optimization problems. The 

animal-based algorithms that use different meta-heuristic approaches have been illustrated 

below. 

Some old (Holland et al. 1960s & 1970s) meta heuristic algorithms like GA (genetic Algorithm) 

[9] are evolutionary population-based algorithms. According to this, a population is a collection 

of individuals or chromosomes. Each of the chromosomes is called a candidate solution or an 

individual. The basic operators of GA are selection, crossover, and mutation. The best solution is 

considered as that solution (chromosome) which has the lowest fitness value for the 

minimization problem. 

PSO (Particle swarm optimization 90s algorithm, Kennedy et al.1995) [9], which is inspired by 

the grouping behaviours of birds and fish (particles). PSO is a global optimization population-

based algorithm. The best solution is being considered. Particles can move in a D-dimensional 

search space. And each particle depends on velocity and position. The position of each particle in 

search space is said to be the solution. The best solution, i.e., best position, is categorised into 

two parts, such as global best and personal best. "Personal best" is the best position of a particle 

considering its neighbours. whereas Global Best is the best position considering all particles.  

Ants were the inspiration for ACO (Ant Colony Optimization [10], Macro Dorigo, 1992] [9]. 

The goal of this algorithm is to be useful for finding the shortest path. ACO simulates this 

behaviour of ants because in real life, ants communicate with each other to search for the best 

way to reach a destination by spreading pheromones. Each ant actually stores its own position in 

memory such that other ants can locate the best solution in future iterations. And this exploration 

will continue until the best root is found.  



3 

 

The WSA (Water Strider Algorithm, Kaveh and Dadras Eslamlou) [9] is a population-based 

meta heuristic algorithm inspired by the life cycle of water striders. 

Another meta-heuristic approach algorithm named "Political Optimizer" [11] is a novel approach 

to human behaviour based on Askari et al. It is inspired by the poly-stages of politics. In this 

algorithm, each political party and each constituency are called a solution. It's a 

multipopulational-based algorithm. It consists of five phases, such as inter-party elections, 

election campaigns, party switching, election phases, and parliamentary affairs. 

In this new era, except for these oldest techniques, a lot of optimization meta-heuristic 

algorithms with their enhancement have been developed in recent years. Anuj Kumar et al. 

(2016) proposed System Reliability Optimization [12] using the Gray Wolf Optimizer [12] 

Algorithm. This GWO algorithm can help to solve any problems that are non-linear and NP-hard 

in nature. This algorithm is based on grey wolves. It’s inspired by the hunting procedure of 

wolves. 

Artificial Bee Colony (ABC) [7] [11], a population-based metaheuristic algorithm, is a 

population-based metaheuristic algorithm. This algorithm is inspired by honey bees. Honey bees: 

ABC imitates the intelligent behaviour of honey bees. ABC consists of three phases, such as 

employed, onlooker, and scout bee phases. ABC uses this phase to find the best solution. In the 

first two phases, local search is used. In this phase, ABC selects their food sources by experience 

and modifies their positions. ABC also takes help from nest mates. But ABC uses randomised 

nature for finding food sources in the scouts’ phase without any experience and changes their 

position. ABC has sufficient capacity to balance exploration or diversification and exploitation 

or intensification operators by local search and global search methods in these three phases and 

obtain the best solution. One criterion in ABC is that it will forget the t-the position if the t+1th 

is better. 

Simulated annealing [9] [13] is proposed by Kirkpatrick et al. as a local search algorithm. 

Annealing means cooling material in a heat bath. It follows the way of thermodynamic systems. 

Temperature is the control parameter here. The initial temperature will always be high. And the 

final temperature will always be 0. It is based on the state and physical system of that state. SA is 

a probability-based algorithm. The state will change whether or not it is deepened in profanities. 

Another new swarm-based metaheuristic algorithm is called Whale Optimization [14]. WOA 

mimics the hunting mechanism of humpback whales. This prey behaviour of humpback whales 

is called the "bubble-net feeding method." 

Various journals and conferences like International Journal of Intelligent Systems, Willey, July 

2021, IEEE, have provided some well-known algorithms like the Artificial Gorilla Troops 

Optimizer. And the work has been proposed by Benyamin Abdollahzadeh, Farhad Soleimanian 

Gharehchopogh, and Seyedali Mirjalili [15]. They provided a GTO algorithm inspired by the 

social behaviours of gorillas. Through their work, it’s proved that GTO is a new comer algorithm 

which can skip local optima in an easy way. A GTO has recently been proposed for holding 

global optimization problems. In their proposed algorithm, a total of 52 benchmark functions 

have been tested and seven engineering problems have been provided. In their proposed work, 

the performance analysis has been compared with another nine-metaheuristic optimization 
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algorithm. They conclude that the AGTO algorithm outperforms its competitors MFO (moth-

flame optimization), PSO (particle swarm optimization), GWO (gray wolf optimizer), TSA 

(Tree-Seed Algorithm), PFA (Pathfinder algorithm), and EO (Equilibrium optimizer) in terms of 

results and convergence criteria. Among them, GTO is the best metaheuristic algorithm. It is also 

proved by Friedman’s test [15] and the Wilcoxon rank-sum test [15]. 

A. Ginidi et al. [16] used GTO to extract parameters from several PV (Power-Voltage) systems. 

According to PK Krishna et al. [17], clustering has been implemented by the concept of the 

Gorilla Troops Optimizer. According to their paper, clustering has been implemented through the 

concept of Gorilla Troops behaviours. As different types of troops are implanted by gorillas, like 

adult males, they leave their group for adult females and make a separate group or their own 

cluster. Actually, in this paper, this unique behaviour has been picked up for the formation of 

clusters. Among various nodes in the Wireless Sensor Network, the one with the highest energy 

has been chosen as the cluster head. And then, based on which node has the third highest energy, 

they break away from the cluster and form their own. In this way, they show in their research 

work how a cluster has been formed by the concept of Gorilla troops' behaviours. Another 

sensitive point from GTO is that communication between gorillas from one group to another 

group, whether they move or not, food source, direction, everything takes place through the 

Silverback Gorilla. Likewise, communication between two nodes is done by the cluster head. M. 

Abdel et al. [18] applied GTO to PEMFC (efficient parameter estimation algorithm for proton 

exchange membrane fuel cells). According to their article, according to their article, as PEMFC 

is non-linear and deterministic in nature, it is not suitable for another optimization algorithm. The 

proposed algorithm GTO is sufficiently suitable for it. According to their literature, GTO is 

affected by local optima as well as slow convergence speeds. They used MGTO (Modified 

Gorilla Troops Optimizer). The exploitation operator has been replaced here only to avoid local 

optima. They used MGTO for estimating the three PEMFCs, or Parameter Estimation Algorithm 

for Proton Exchange Membrane Fuel Cells, which are: 250 W, SR-12 stack, and BCS-500W 

stack. They used this estimated parameter to minimise the error between estimated data points 

and measured data points as the objective function. They compared the PEMFC results to GTO, 

MGTO, and another eight optimization algorithms: Slime Mold Algorithm (SMA), Modified 

Farmaland Fertility Optimization Algorithm (MFFA), Moth-flame Optimization (MFO), Coyote 

Optimization Algorithm (COA), and Modified Monarh Butterfly Optimization (MMBO). They 

analyse their performance based on standard deviation or SD, best, average, worst, mean 

absolute percentage error (MAPE), and mean absolute error (MAE). After comparative analysis, 

they observed that MGTO is the best compared to other performance metrics. Muhammad 

Kamal Amjad et al. [19] applied genetic algorithms to FJSSB (Flexible Job Shop Scheduling 

Problem). This paper is a comprehensive review of the Genetic Algorithm solution to the 

Flexible Job Shop Scheduling Problem (FJSSP).is difficult to find a reasonable solution to 

FJSSP as it is a NP-hard problem. Only GA is suitable for it. In another research work, Jatin 

Garg et al. [20] applied genetic algorithms to their proposed work. According to their work, GA 

is suitable for ELD problems with non-convex as well as continuous cost functions including 

various constraints. K. Beulah Suganthy used a genetic algorithm to detect disease in plant 

leaves. They proposed a software solution for detecting disease in plats by GA. Swati Sharma et 

al. [21] used genetic algorithms and particle swarm optimization for heart disease prediction. 

With the help of these two algorithms, they got high predictive accuracy. They also observed GA 

and PSO have high-level prediction and detection rules for detecting heart disease. The Ant 
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Colony Optimization algorithm is used by other researchers, Esra Sarac et al. [32] In their work, 

they developed feature selection system which is an ant colony-based. For web page 

classification, they used ACO. For this purpose, four types of feature extraction methods have 

been used, namely, URL, title 

JP Sarkar et al. [27] proposed a machine learning integrated ensemble technique for the purpose 

of feature selection and predicting the most influential biomarkers. And they used NGS (Next 

Generation Sequencing) data for biomarker identification. They divided their work into two 

parts, i.e., machine learning integrated ensemble technique for classification accuracy measure of 

the entire dataset, and they used eight different selection techniques for giving the rank of each 

feature. As a result, they observed 27 miRNAs (micro–Ribonucleic Acid) biomarkers that are 

highly accompanied with breast cancer. Also, they used different methods for survival analysis 

purposes. P. Patowary et al. [28] used a bi-clustering gene selection technique for the 

biomarker’s identification on a microarray dataset. And they found twelve secondary genes that 

are highly associated with primary genes. P. Giannos et al. [29] proposed a bioinformatics model 

for identifying the most influenced gene biomarkers for lung cancers. In another research work, 

PP Debata et al. [30] used a multi-objective metaheuristic algorithm for identifying the most 

influenced biomarkers or genes in a high throughput cancerous dataset. They used multi-

objective particle swarm optimization, i.e., MOPSO, multi-objective genetic algorithms, multi-

objective jaya algorithms, i.e., MOCJaya, and multi-objective chaotic jaya, as well as genetic 

algorithms. After a comparative study, they got high accuracy on the MOCJaya meta-heuristic 

algorithm. In another research by D. Popovic et al. [31], they used genetic algorithm for 

biomarker identification for colon cancer. A genetic algorithm helped to select the optimal subset 

of genes for biomarker identification. They got significant results on it. 

3. Problem Definition- 

The problem definition in this work is to find critical genes from high dimensional genomic 

dataset. The brief introduction of gene selection technique and proposed work has explained in 

section 3.1 and 4. 

3.1 Gene selection 

The main objective of the gene selection technique is to identify critical genes for future 

treatment. In computational biology, a lot of critical genes are there. Like tumour suppressor 

genes, cystic fibrosis genes, down syndrome genes, thalassemia genes for thalassemia disease, 

HTT genes for huntingtin disease, P53 genes, proto-oncogenes, RB are cancer-causing genes. 

HER2 genes cause breast cancer disease. Not only this, there are many critical genes which are 

highly associated with our lives. 

Various technologies have failed to detect disease. They do not always measure the individual's 

risk properly and accurately. Hence, to handle this disease, it needs to concentrate on advanced 

technologies. In this work, an advanced methodology for identifying interesting biomarkers or 

genes from high-dimensional genomic datasets will be proposed. The main purpose of biomarker 

detection and prediction is to aid in the finding of genes, proteins, or other biological indicators 

that may be related to a specific clinical condition. By automating a portion of this process, wet-

lab analysis and clinical trial expenses can be decreased sustainably, motivating a slew of current 

research initiatives in this regard. 
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Changes in genetic material can be identified in several states by biomarkers. They can find how 

the body is measurable. A wide range of biomarkers are in computational biology. Biomarkers 

help to determine the effect of an investigational drug on people. For cancer cells, cells undergo 

changes. A cancer biomarker measures the chance of cancer developing, cancer prognosis, or 

responding to a specific therapy. It can be a decision-maker in oncology, which is the study of 

cancer. This biomarker is linked with specific cancer pathogenesis. Cancer biomarkers can help 

to screen for any cancer, help to predict risk, help to develop targeted therapies, and can monitor 

patient responses to that particular cancer treatment. Novel cancer biomarkers are continuously 

being researched and identified. Biomarker detection helps with feature selection purposes. It can 

be used to distinguish between normal cells and cancerous cells. For various purposes, miRNA 

[22] as a biomarker is impressive in today’s research field. Biomarkers can be classified into four 

types: molecular, psychological, histologic, and radiographic. Biomarkers can be found using the 

gene selection method, bi-clustering [23] [25], gene regulatory networks (GRNs) [23] [24], etc. 

The gene selection method is a traditional method for biomarker identification. This technique 

can be divided into four categories based on how the selection process of genes is associated 

with the classification process. These types are basically hybrids, wrappers, filters, and 

embedded approaches. The interesting thing is that biologists concentrate on the identification of 

biomarkers of disease and also the development of accurate predictive tools. With the help of this 

gene selection data, one can rank genes based on their classification suitability. According to this 

technique, genes are classified into classes based on their ability. Biomarkers can be easily found 

by using a gene selection technique using a feature selection method. Also, which biomarkers are 

highly associated with any disease that can be found? This can give a lot of information about 

any disease. Disease detection, as well as various cancerous cells, can be easily found using gene 

selection techniques and biomarker detection. Selection methods can be defined in two ways, 

i.e., feature extraction and method. The figure is given below. The Wrapper method of feature 

selection uses metaheuristic algorithms for the purpose of optimal feature selection. A feature 

selection technique is applied to the search for the most significant genes to find the optimum 

subset of genes. 
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                                                Figure 1- Gene selection technique 

DNA (deoxyribonucleic acid) collection [24] The DNA segment is called GRN. These DNA 

segments interact with each other via RNA (ribonucleic acid) [24] or protein expression data. 

DNA segments of GRN interact with other substances in the cell as well. With the help of GRNs, 

biomarkers can be easily found using the feature selection technique. 

Bi-clustering [25] is a technique that helps to find similar expressions among genes. In a 

nutshell, it is useful to distinguish genes that are co-related in a subset of conditions that will 

have similar responses. It is a method that simultaneously groups genes and conditions. If they 

stay, bi-clustering helps to find distinguishable outline patterns in the matrices of the gene 

expression data. This technique is an effective technique for identifying interesting biomarkers 

for high-dimensional genomic datasets. Using this analysis, biomarkers can be found. Except for 

this technique, a lot of techniques have been proposed in bioinformatics for biomarker or critical 

genes prediction and detection. 

4. Proposed Work 

The main goal is to identify critical genes from gene expression profiles for different types of 

diseases. In bioinformatics many sources are here for collecting genomic datasets. Like, National 

Centre for Biotechnology Information (NCBI) the national library repository, Gene Expression 

Omnibus (GEO). The cancer genomes atlas (TCGA) etc. In future dataset will be collected from 

NCBI if possible. But genomic datasets are backdated. NGS or Next Generation Sequencing 

marks and determines the DNA or RNA sequencing technology at lower cost. And it has 

revolutioniz4d the research field of genes. It sequencing billions and millions of small fragments 

of RNA or DNA nucleotides. So, NGS data of diseases will be collected for future work after 

experiment with micro-array genomic dataset.  

Generally, candidate solutions are generated by meta-heuristic algorithms. An Artificial Gorilla 

Troops Optimizer has already been developed based on a mathematical example of it, which 

gives the best candidate solution. Selected genes will be treated as candidate solutions. This 

algorithm will be applied in bioinformatics for gene selection purposes to make this algorithm 

stronger. And this is the future work proposed. There are a lot of gene selection methods, but 

they suffer from low classification accuracy. Hence, a universal feature selection method called 

the "wrapper approach" will be introduced based on the Gorilla Troops Optimizer. The core of 

future proposed work is the Gorilla Troops Optimizer, where the most significant and influential 

biomarkers or genes will be identified from any genomic data with high classification accuracy. 

For this purpose, the ensemble technique (Support vector machine (SVM), Random Forest (RF), 

Decision Tree (DT), K Nearest Neighbour (KNN), Nave Bayes (NB)) of machine learning will 

be applied to the entire set of datasets and classification accuracy will be measured. Also, a 

feature selection method will be applied to rank the features of entire datasets. The most 

significant and influenced genes in genomic datasets will be searched by the filter of the feature 

classification technique, which is followed by the wrapper approach for searching the optimum 

subset of genes. In bioinformatics, various feature selection techniques are here, like MIM 

(Mutual Information Maximization), CMIM (Conditional Mutual Information Maximization), 

CONDRED, etc. Based on this future work, an integrated method will be developed for selecting 
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genes in any genomic dataset. For this purpose, this meta-heuristic algorithm AGTO has been 

tested on benchmark function for measuring its superiority and competitiveness by its 

performance (convergence speed, execution speed). And it gives excellent result on benchmark 

function. Based on it’s performance ability a subset of features will be optimised from the high-

throughput genomics datasets. After features are optimised, the performance, i.e., classification 

accuracy, will also be measured. The optimization process will repeat iteratively for feature 

optimization. In gene selection, each gene index is a candidate solution. An artificial gorilla 

troop optimizer will be used for gene selection purposes to generate a gene index. According to 

their rank or index number, the best solution will be selected accordingly. The future propose 

work that has been represented below by the flow diagram. How the propose work will be 

evaluated has been figured below. And how the entire work will be designed that has described 

in section 3 and 3.1.  

             

 

                 Figure 2- Flowchart of critical gene prediction from any genomic dataset 
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                                                   Figure 2.1- Future propose model 

4.1 Genomic dataset 

For gene prediction purposes, a series matrix file using the.txt format is needed. For txt format to 

excel, it’s necessary to paste into Excel for the purpose of pre-processing data. In the series 

matrix file, the genes' names are here only. The complete gene information is presented in a GPL 

(GNU Public Licence Text File) file. Gene selection is very outdated. Researchers are 

researching some new data. NGS (Next Gene Sequencing) is a popular method now for gene 

selection purposes. 
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                                                  Figure 3- mXn matrix 

Assume a matrix of size m x n. In this case, genes = m. Each row is referred to as a gene (G1, 

G2, G3, G4, G5, G6). Suppose there are 20,000 to 30,000 genes present here. Each gene is called 

a "feature." And each gene index is considered a candidate solution in the meta-heuristic 

algorithm. A subset of data called samples Here, mixed samples are present. Mixed samples 

mean samples of patients and samples of normal people. For their own advantages, researchers 

separate these two samples of datasets. We have the same names for genes, but the difference is 

in the gene expression value or protein production rate. Those who will have disease expression 

values that are different from normal people. From the above dataset, it can be observed that 

gene expression values or protein point values of genes are different. This type of dataset has 

been created by DNA micro-array technology. The structural units of genes are called proteins. 

Due to the abnormality of protein production rate, diseases are formed. 

                         

                                Figure 3.1- Sample population of AGTO 
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How sample population will be on AGTO has figured in figure 3.1. Here  𝑋𝑖 represent a 

Candidate Gorilla position vector. And F (𝑥𝑖) represent the fitness value of each gorilla. Each 

candidate gorillas carries D number of genes. It may be critical or normal. 

The future proposed model that has been illustrated in Figure 2 and Figure 2.1 that will be 

applied to a high-dimensional genomic dataset. This dataset contains some meaningful biological 

information, like the genome and DNA of an organism, which is presented in the form of micro-

arrays. Each micro-array has many features and gene-ids also. An example of a dataset has been 

given below. 

                     
 

                         Table 1 Screenshot of Genomic dataset (Series- GSE2023 Normal) 

 

                      
 

                        Table 1.1 Screenshot of Genomic dataset (Series- GSE2023 Tumor) 

In this genomic dataset, each row describes a gene. The first column represents a gene-id. Every 

numeric value present in a dataset is called a gene expression value or protein value. This gene 

expression value, or protein value, is different for everyone. Hence, the characteristics of humans 

differ from each other. This dataset has been taken from the NCBI (National Centre for 

Biotechnology Information). The GENE expression profile of the dataset consists of a total of 

12,634 genes and 286 breast cancer samples. Out of 286 breast cancer samples, 107 contained 
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tumour samples and 179 contained non-tumour samples. The advantage is that this type of 

dataset contains a huge amount of information, but there are many difficulties in working with 

such types of datasets. As datasets are large in size, they may contain irrelevant data or outliers. 

Due to high dimensionality, there can be missing values or noisy data. So, it needs to be pre-

processed and normalised before applying the gene selection method to it. After pre-processing 

and normalising the dataset, the meta-heuristic algorithm called the Artificial Gorilla Troops 

Optimizer will be used for critical gene prediction. After prediction, it’s important to use a 

validation procedure on the resulting data. How the dataset will be pre-processed and normalised 

has been figured out in figures 2 and 2.1. 

5. Methodologies  

The methodology of the Artificial Gorilla Troops Optimizer (AGTO) and Modified Gorilla 

Troops Optimizer (MGTO) is explained below.  

5.1 Metaheuristic algorithm   

Nowadays, various algorithms concentrate on meta-heuristic techniques [9] [26], as it’s not 

possible to get an exact or proper solution through optimization techniques. This general-purpose 

optimization technique is not limited to a specific problem. It helps to improve candidate 

solutions iteratively till an acceptable solution is obtained. The main advantage is that it can find 

a global optimal solution. We can get a solution closer to the best solution, but not exact one. 

Like greedy, Divide and Conquer, Dynamic Programming [9] [26] generates a lot of 

assumptions. The cons are that search space can exponentially grow. Hence, meta-heuristic 

algorithms are important for solving many complex real-life problems. For solving different 

types of optimization problems, meta heuristic techniques play a significant role. For optimising 

problems, optimization algorithms show two types of behaviours, such as deterministic and 

stochastic [9] [26]. A deterministic optimization algorithm is less practical and less applicable 

and requires complex calculations. Stochastic algorithms are stochastic in nature. It is more 

practical and more applicable compared to a deterministic algorithm. It is random in nature. The 

meta heuristic technique helps to find a near-optimal solution instead of an optimal one. It is 

computationally faster than the exhaustive search technique. This technique is iterative in nature 

and involves stochastic operations [26]. It is iterative in nature as it follows different types of 

iteration for modifying candidate solutions in search space [9] [26]. Usually, our daily life 

problems aren't solved by optimization techniques. The Meta heuristic technique is one of the 

techniques that can solve real-life problems. Advanced machine learning techniques employ a 

meta-heuristic [9] [26] approach that can produce an appropriate result without relying on a 

variety of assumptions. It has a wide range of applications in various fields like business sectors, 

research section, intelligent traffic systems, bioinformatics field, marketing sector, engineering, 

and the medical field, i.e., health care and medicine. A common theme for all meta-heuristic 

techniques is the exploration or diversification phase [26] as well as the exploitation or 

intensification phase and providing a superior balance between them [26]. There are some unique 

characteristics present in meta-heuristic algorithms, such as: this algorithm is simple and very 

easy to implement [26], the set of rules is straightforward and really smooth to put into effect 

they outsail local search algorithms [26], in a broad range of applications they can easily be used, 

there is no need to include any derivative function here [26], and they can avoid local optima by 
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accepting some bad solutions. Meta-heuristic techniques can be distinguished into two types. It 

can be global or local-based [26], i.e., a single solution, which contains a single candidate 

solution, or population-based, which contains multiple candidate solutions. 

5.2 List of notations 

A list of notations and symbols has been presented below in table 2. 

                                Symbol              Notation 

                                      D Dimension of problem 

                                       t Current iteration number  

                                    Maxt Maximum no of iterations 

                                     N Total number of gorillas (Population size) 

      𝑋𝑖 Position of i-th gorilla (Vector of dimension D) 

                                    𝐺𝑋𝑟    Randomly selected r-th gorillas from the entire 

population 

     𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 

 

Silverback position vector (The best gorilla’s 

position vector, best solution) 

       UB, LB Lower and upper bound of each element present in 

D dimensional vector. 

               rand, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, W, a, b Random numbers between 0 and 1 

                                   p p is a predefined probability between 0 and 1.  

                                   F Cosine function 

                                   l random number between -1 and 1 

                                   g Variables, scalar value 

                                       𝛽 Constant value 

 𝑁1 

 

random values in the normal distribution and the 

problem dimension  

𝑁2 

 

random value in normal distribution  

                                  E The value of E will equal to 𝑁1If rand ≥0.5 

Otherwise, the value of E will equal to 

𝑁2 𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5 

                                            Table 2 List of Symbol and notation  

 

5.3 The Artificial gorilla troops optimization algorithm (AGTO) 

A new population-based meta-heuristic optimization algorithm called the "Artificial Gorilla 

Troops Optimizer" which mimics the gorilla group's life behaviour. And this social behaviour 

has been mathematically formulated. Here, "troops" means groups of gorillas. An adult male 

gorilla in troops called the Silverback gorilla. Troops consist multiple adult female gorillas also, 

and their progeny also. A silverback gorilla is normally over 12 years old and is known for the 

distinctive (silver colour hair) hair on its back during adolescence. Additionally, the silverback 

serves as the troop's leader, making all decisions, managing conflicts, directing others to food 

searches, determining group movement, and ensuring group security. Male gorillas between the 

ages of eight (8) and twelve (12) years are referred to as "blackbacks" gorilla due to their lack of 
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silver-coloured back hair. They are associated with the silverback and serve as the group's 

backup defenders. Male and female gorillas, in general, move from their birth group to a second 

new group. Alternatively, older male gorillas may break away from their original group and form 

their own battalions through the recruitment of migrating females. However, some male gorillas 

prefer to remain with the founding troop and follow the silverback. If the silverback perishes, 

these males may engage in a bloody struggle for group supremacy and mating with adult 

females. The GTO algorithm's special mathematical model is constructed using the 

aforementioned concept of gorilla group behaviour in nature. 

In AGTO, each candidate gorilla position vector is called a "solution." The sum of these 

solutions is known as "population”. This GTO has many unique features that can be widely used 

in the future. It uses various mechanisms for optimization purposes. As is the case with other 

intelligent algorithms, GTO is composed of three major components: initialization, global 

exploration, and local exploitation, each of which is discussed in detail below. 

The algorithm search space comprises mainly three types of candidate solutions. X, GX, and 

Silverback Gorilla candidate position vectors are generated by each phase that exploration and 

exploitation of GTO. X is called the gorilla position vector. GX is called the candidate gorilla 

position vector. The difference is that GX belongs to another memory of GTO. Silverback is the 

best solution that can be found in each iteration. And only one silverback gorilla will be 

considered in the whole population when the number of solutions is selected for the optimization 

process. A total of five strategies are found here, such as migration to an unknown place, 

migration to a known place, moving towards other gorillas, following the silverback gorilla, and 

competition for adult females. These five strategies are mimicked and revealed to elucidate the 

diversification and intensification or the exploration and exploitation of the optimization 

technique. The first three strategies, i.e., migration to an unknown place, migration to a known 

place, and moving towards other gorillas, are used in the exploration phase, and the last two 

strategies, following the silverback gorilla, and competition for adult females, are used in the 

exploitation phase. 

                                          

                                 Figure 4- Exploration and Exploitation phase of GTO 
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5.3.1 Initialization phase  

Assume that there are N gorillas in the D-dimensional space. The position of the i-th gorilla the 

D-dimensional space is represented as 𝑋𝑖 = [𝑥𝑖,1, 𝑥𝑖,2,….,𝑥𝑖,𝐷
], i = 1, 2, 3…, N. In this way the 

initialization mechanism of gorilla population can be represented as given equation. 𝑋𝑁,𝐷 =
𝑟𝑎𝑛𝑑(𝑁, 𝐷) ∗ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵. Where UB, LB are upper and lower limits of problem space. 

rand (N, D) is a representation of matrix with N rows and D columns. 

 

  5.3.2 Exploration phase-  

 

In exploration phase, GTO will find the most promising regions by exploring the search space of 

the optimization technique. This phase includes near-optimal solution.  

First, Migration to an unknown place. This mechanism is selected when rand<p where rand is 

any randomly generated number between 0 & 1, p is user defined parameter. And this 

mechanism monitors the entire search space well. The mathematical equation is given bellow. 

 

GX(t+1) = (UB – LB) * 𝑟1 + LB   when rand < p                                                         Equation (1) 

 

Here, p is a predefined probability between 0 and 1. It decides the probability of choosing the 

movement strategy to an unknown location.  GX (t+1) represents the Gorilla’s candidate position 

vector in the next iteration. UB and LB are upper and lower limits of search space 𝑟1  is a random 

number between 0 and 1.  

 

Second, Migration towards other candidate gorillas. This mechanism is selected when rand≥0.5, 

where rand is any randomly generated number between 0 and 1. It helps to improve exploration. 

The mathematical model is, 

 

GX(t+1) = (𝑟2 – C) * (𝐺𝑋𝑟1(𝑡)+L*H when rand ≥ 0.5                                                  Equation (2)  

 

C, L, H are calculated by given equations 

C = F * (1 – t/Maxt)                                                                                                       Equation (3) 

F = cos (2 * (𝑟4) + 1                                                                                                       Equation (4) 

H = Z * X(t)                                                                                                                   Equation (5) 

Z = [-C, C]                                                                                                                     Equation (6) 

Here, rand is random number between 0 and 1. 𝑟2, 𝑟4 is also a random number between 0 and 1. 

𝐺𝑋𝑟1(𝑡) is randomly selected gorillas position vector at current population. Z is a row vector in 

D including random numbers generated between -C and C. cos (.) defines the cosine function. C 

is calculated by above equations (3). t is current iterations and Maxt represents the maximum 

number of iterations. 

Third, Migration to a known location. This mechanism is selected when rand<0.5 where rand is 

any randomly generated number between 0 and 1. It helps to escape local optima point. This 

strategy follows the given equation, 
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GX(t+1) = X(t) – L* (L*(X(t) -  𝐺𝑋𝑟2(𝑡))+ 𝑟3 *(X(t) −𝐺𝑋𝑟2(𝑡)))                         when rand < 0.5                                                                              

                                                                                                                                       Equation (7)                                                                                          

L is calculated by given equation,  

 

L = C * l                                                                                                                         Equation (8) 

Here, X (t) Current gorilla’s position vector of at t iteration. l is random generated number 

between -1 and 1. And, 𝐺𝑋𝑟2(𝑡) is randomly selected gorillas position vector at current 

population.  

rand>0.5 means there have 50% chance to movement other gorillas. rand<0.5 means there have 

50% chance to movement to a known location. At the end of the exploration phase the cost 

values of all newly generated candidate gorillas i.e., GX (t+1)-th solutions are calculated. And if 

cost of F(GX) < F(X) means current gorilla position vector will update in to GX position vector. 

Else, X position vector will still in to memory. Here F is actually a fitness function. In this phase 

𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 is the optimal solution.  
 

5.3.3 Exploitation phase  

After exploring Search space, solutions will go in exploitation phase to get best solution. In this 

phase, better solution (gorilla candidate position vector) can be found. Based on the updated 

candidate gorilla position vector in exploration phase, a new population will be made & from 

that a best solution will be picked up which is called the best solution (Silverback gorilla). This 

silverback gorilla takes all decision as he is the leader. Two behaviors have been followed here. 

The behaviors are given below.  

 

First, Follow the Silverback. This mechanism is followed when C≥W. This mechanism is used to 

simulate the gorilla behavior. The mathematical equation is given below.  

 

GX(t+1) = L * M * (X(t) - 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘) +X(t) when C≥W                                            Equation (9)                         

 

M and g are calculated by given equation,  

M = (|
1

𝑁
∑ 𝑋𝑖(𝑡)|𝑔|

1

𝑔𝑁
𝑖=1 |)                                                                                               Equation (10)                                             

 

g = 2𝐿                                                                                                                           Equation (11) 

 

Here, W a parameter which needs to be set before optimization operation ranging from [0,1]. 

𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 represents the best candidate gorillas position vector. C is calculated by above 

equation (3) and L is calculated by above equation (8).  M is the average value of Candidate 

Gorilla’s position vector. Whatever may be the value of M whether +M or -M, only the +M is 

taken into account (i.e., absolute value of M will be considered). M can be calculated by above 

equation (10). Where,  

𝑋𝑖 is the Position of i-th gorilla (Vector of dimension D). g is calculated by equation (11). N is 

population size i.e., total number of gorillas.  

 

Second, Competition for the adult females. This mechanism is followed when C<W.  Here W is 

user defined parameter and that will be set before Optimization technique.  
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GX(t+1) = 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 − (𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 ∗ 𝑄 − 𝑋(𝑡) ∗ 𝑄) * A when C < W                   Equation (12) 

 

Mathematical equation of Q and A are given bellow 

 

Q = 2*𝑟5 − 1                                                                                                                Equation (13) 

 

 

A = β * E                                                                                                                      Equation (14) 

E = 𝑁1 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 0.5 

     𝑁2  𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5                                                                                                  Equation (15) 

 

X (t) is current position vector of gorillas. Q is a scalar value which simulate the impact force of 

gorillas that is calculated by above equation (13). 𝑟5 is a random number in between 0 and 1. β is 

constant value. 𝑁1is a vector which contains random values in the normal distribution and the 

problem dimensions. 𝑁2 is a scaler which is random value in normal distribution. E could be 

calculated by above equation (15). A represents a coefficient vector to indicate the degree of 

violence in case of conflicts. It can be calculated by equation (14). At the end of exploitation 

phase, the cost values of all newly generated candidate gorillas i.e., GX (t+1)-th solutions are 

calculated. And if the cost if F(GX)<F(X) means current gorilla position vector will update in to 

GX position vector. Else, X position vector will still in to memory. Here F is actually a fitness 

function. In this phase 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 is the optimal solution within the all-candidate solutions. The 

steps of the entire algorithm of AGTO are presented below. 

 

5.3.4 The Algorithm of AGTO  

Set AGTO parameters Maxt, N, β, p, w 

Initialize 𝑋𝑖 (𝑖 = 1 𝑡𝑜 𝑁) 

Calculate the fitness value for each X 

While t = 1 to Maxt do 

         C = F * (1 – t/Maxt)   

         F = cos (2 * (𝑟4) + 1     

         L = C * l 

         for i = 1: N do  

               if rand < p do 

                  GX(t+1) = (UB – LB) * 𝑟1 + LB  

               else  

                     if rand >= 0.5 do 

                           GX(t+1) = (𝑟2 – C) * (𝐺𝑋𝑟1(𝑡)+L*H 

                     else 

                          GX(t+1) = X(t) – L* (L*(X(t) -  𝐺𝑋𝑟2(𝑡))+ 𝑟3 *(X(t) −𝐺𝑋𝑟2(𝑡))) 

                     end 

                end 

           end 

           for i = 1: N do  

                 if 𝐹(𝐺𝑋𝑖)  < 𝐹(𝑋𝑖 ) do  

                      𝑋𝑖 = 𝐺𝑋𝑖  
                      𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 = 𝐺𝑋𝑖  
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                 else 

                      𝐺𝑋𝑖 = 𝑋𝑖  
                      𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 = 𝑋𝑖  
                 end 

           end 

           for i = 1: N do  

                if rand C >= W do 

                        M = (|
1

𝑁
∑ 𝑋𝑖(𝑡)|𝑔|

1

𝑔𝑁
𝑖=1 |)   

                        g = 2𝐿                     

                        GX(t+1) = L * M * (X(t) - 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘) +X(t) 

                else 

                      if rand >= 0.5  

                             E = 𝑁1 

                       else  

                             E = 𝑁2 

                       end  

                       Q = 2*𝑟5 − 1    

                       A = β * E   

                        GX(t+1) = 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 − (𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 ∗ 𝑄 − 𝑋(𝑡) ∗ 𝑄) * A 

                    end  

               end   

               for i = 1: N do  

                     if 𝐹(𝐺𝑋𝑖)  < 𝐹(𝑋𝑖)  do  

                           𝑋𝑖 = 𝐺𝑋𝑖  
                           𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 = 𝐺𝑋𝑖  
                     else 

                           𝐺𝑋𝑖 = 𝑋𝑖  
                           𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 = 𝑋𝑖  
                     end 

               end 

               t=t+1 

end while 

return 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 , 𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 𝑠𝑐𝑜𝑟𝑒       

 

5.3.5 AGTO Flow diagram 

The flow diagram of the Artificial Gorilla Troops Optimizer with various strategies (Exploration 

and Exploitation phase) has been figured below. 
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                                       Figure 5- AGTO flow diagram 

 

5.4 Modified Gorilla Troops Optimizer (MGTO) 

In GTO, the exploitation phase is still suffering from slow convergence speed. As in GTO, a 

random number is used significantly, which can increase the step size of the optimization 

process. And that’s why the new solution might be far from the best solution. It might involve 

the desired near-optimal solution but not be involved in the optimum solution. The equality 

between intensification and diversification might reduce the performance of the entire GTO 

algorithm, and hence, in some cases, higher exploration and/or exploitation operators are needed. 

But this gap can also be handled by MGTO, or modified Gorilla Troops Optimizer, which can 

give the desired optimum solution. In MGTO, the exploitation operator is replaced by another 

one. MGTO aids in exploring more promising search regions around the best solution. And one 

amazing thing is that other places in the promising search regions might be able to give the 
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desired optimal solution as well as an optimal solution. In MGTO, they will choose randomly the 

Gorilla position vector instead of random numbers in between 0 and 1. A GTO can fall into 

premature convergence. The changes are for the exploitation phase only. So, the new 

exploitation strategies are based on two new mechanisms, where the first one is mathematically 

explained below.  

GX(𝑡 + 1) = 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 + 𝛽 × (𝑋𝑟(𝑡) − X(t)) + (1 − 𝛽) × (𝑋𝑟1(𝑡) − 𝑋𝑟2(𝑡))  when C ≤ 0.5                                  Equation (16) 

The new second mechanism is also mathematically described. 

GX(𝑡 + 1) = 𝑋𝑟(𝑡) + 𝑎 × (𝑋𝑟1(𝑡) − 𝑋(𝑡)) + 𝑏 × (𝑋𝑟2(𝑡) − 𝑋𝑟3(𝑡))        when C > 0.5                         Equation (17)  
 

Here, 𝑋𝑟(𝑡), 𝑋𝑟1(𝑡), 𝑋𝑟2(𝑡), 𝑋𝑟3(𝑡)are randomly selected candidate gorilla position vector from 

current population. a, b are random numbers between 0 and 1. GX (t+1), 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘, 𝛽, 𝐶 are 

already defined in AGTO portion. The steps of the algorithm of MGTO are presented below. 

 

5.4.1 The Algorithm of AGTO  

Set MGTO parameters Maxt, N, β, p, w 

Initialize 𝑋𝑖 (𝑖 = 1 𝑡𝑜 𝑁) 

Calculate the fitness value for each X 

While t = 1 to Maxt do 

         C = F * (1 – t/Maxt)   

         F = cos (2 * (𝑟4) + 1     

         L = C * l 

         for i = 1: N do  

               if rand < p do 

                  GX(t+1) = (UB – LB) * 𝑟1 + LB  

               else  

                     if rand >= 0.5 do 

                           GX(t+1) = (𝑟2 – C) * (𝐺𝑋𝑟1(𝑡)+L*H 

                     else 

                          GX(t+1) = X(t) – L* (L*(X(t) -  𝐺𝑋𝑟2(𝑡))+ 𝑟3 *(X(t) −𝐺𝑋𝑟2(𝑡))) 

                     end 

                end 

           end 

           for i = 1: N do  

                 if 𝐹(𝐺𝑋𝑖)  < 𝐹(𝑋𝑖)  do  

                      𝑋𝑖 = 𝐺𝑋𝑖  
                      𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 = 𝐺𝑋𝑖  
                 else 

                      𝐺𝑋𝑖 = 𝑋𝑖  
                      𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 = 𝑋𝑖  
                 end 

           end 

           for i = 1: N do  

                if C =<0.5 do 
                        G(𝑡 + 1) = 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 + 𝛽 × (𝑋𝑟(𝑡) − X(t)) + (1 − 𝛽) × (𝑋𝑟1(𝑡) − 𝑋𝑟2(𝑡)) 
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                  else  

                          G(𝑡 + 1) = 𝑋𝑟(𝑡) + 𝑎 × (𝑋𝑟1(𝑡) − X(t)) + 𝑏 × (𝑋𝑟2(𝑡) − 𝑋𝑟3(𝑡))   

                 end  

            end  

           for i = 1: N do  

                 if 𝐹(𝐺𝑋𝑖)  < 𝐹(𝑋𝑖)  do  

                      𝑋𝑖 = 𝐺𝑋𝑖  
                      𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 = 𝐺𝑋𝑖  
                 else 

                      𝐺𝑋𝑖 = 𝑋𝑖  
                      𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 = 𝑋𝑖  
                end 

          end 

            t=t+1 

   end while 

   return 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘, 𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 𝑠𝑐𝑜𝑟𝑒 

 

5.4.2 MGTO Flow diagram 

The flow diagram of the MGTO algorithms is given below.  

 

                   

                                               Figure 6- MGTO Flow diagram 
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6 Experimental Result  

The machine is used HP-Pavilion RTL8723DE, having Intel(R) Core (TM) i5-10210U processor 

with base clock frequency 1.60GHz, 8GB RAM. Programs are written Matlab programming 

language (version- MATLAB R2021b) and Python programming language (python3 version 

3.9.7, Anaconda3) in Windows 11 environment.  

 

6.1 Benchmark Test Functions 

In this work the performance of AGTO algorithm is tested on 25 benchmark function that are 

listed in table 3. Fixed parameter values are used, such as the number of iterations is set to 100, 

population set as 30, dimension set as 3 and 10 independent runs are taken. The benchmark test 

functions are listed below.  

 

Function Formulation D Range 𝒇𝒐𝒑𝒕 

Sphere 𝑓 = ∑𝑖=1
𝐷  𝑥𝑖 

2 30 [-100,100] 0 

Ackley f(X)

= −20exp (−0.2√(1/𝑛)∑𝑖=1
𝑛  𝑥𝑖

2)

− exp ((1/𝑛)∑𝑖=1
𝑛  cos (2𝜋𝑥𝑖)) + 20

+ 𝑒 

30 [-32,32] 0 

Rosenbrock  𝑓(𝑥) − ∑
𝑖=1

𝑛−1
  [100 ∗

(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2] 

30 [-30.30] 0 

Rastrigin 𝑓(𝑥) = 10 ∗ D + ∑𝑖=1
𝐷  [𝑥𝑖

2 − 10
∗ cos (2𝜋 ∗ 𝑥𝑖)] 

30 [-5.12,5.12] 0 

Schwefel 2.22 𝑓 = ∑𝑖=1
𝐷  |𝑥𝑖| + ∏𝑖=1

𝐷  |𝑥𝑖|  30 [-10,10] 0 

Schwefel 1.22 𝑓(𝑥) = ∑𝑖=1
𝑛  (∑𝑗=1

𝑖  𝑥𝑗)
2

  30 [-100,100] 0 

Schwefel 2.21 f(x) = max𝑖  {|𝑥𝑖|,  1 ≤ 𝑖 ≤ 𝑛} 30 [-100,100] 0 

Step: US 𝑓 = ∑𝑖=1
𝐷  ([𝑥𝑖 − 0.5])2 

 

30 [-100,100] 0 

Dixon & Price 

𝑓 = (𝑥1 − 1)2 + ∑  

𝐷

𝑖=1

𝑖(2𝑥𝑖
2

− 𝑥𝑖−1)2                           

30 [-10,10] 0 

Sum squares 𝑓  
= ∑𝑖=1

𝐷  (𝑖𝑥𝑖)2                                                                      
30 [-10,10] 0 

Griewank 
𝑓 =

1

4000
∑𝑖=1

𝐷  𝑥𝑖
2 − ∏cos (

𝑥𝑖

√𝑖
) + 1 

 

30 [-600,600] 0 

Booth 𝑓(𝐱) = (𝑥1 + 2𝑥2 − 7)2

+ (2𝑥1 + 𝑥2 − 5)2 

2 [-10,10] 0 
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Quartic  𝑓 (𝑥) = ∑𝑖=1
𝐷  𝑖𝑥𝑖

4 + random [0,1] 30 [-1.28,1.28] 0 

Quadratic  𝑓 (𝑥) = ∑𝑖=1
𝐷  (𝑖𝑥𝑖)2  + random [0,1] 30 [-1.28,1.28] 0 

Zakharov 𝑓(𝐱) = ∑𝑖=1
𝑛  𝑥𝑖

2 + (∑𝑖=1
𝑛  0.5𝑖𝑥𝑖)2

+ (∑𝑖=1
𝑛  0.5𝑖𝑥𝑖)4 

30 [-5,10] -1 

Periodic  𝑓(𝐱) = 1 + ∑𝑖=1
𝑑  sin2 (𝑥𝑖)

− 0.1exp (−∑𝑖=1
𝑑  𝑥𝑖

2) 

 

30 [-10,10] 0.9 

Brown 𝑓(𝐱) = ∑𝑖=1
𝑑−1  (𝑥𝑖

2)(𝑥𝑖+1
2 +1)

+ (𝑥𝑖+1
2 )(𝑥𝑖

2+1) 

 

30 [-1,4] 0 

Beale  𝑓(𝑥, 𝑦) = (1.5 − 𝑥 + 𝑥𝑦)2

+ (2.25 − 𝑥 + 𝑥𝑦2)2

+ (2.625 − 𝑥 + 𝑥𝑦3)2 

 

30 [-4.5,4.5] 0 

Xin She Yang N.2 𝑓(𝐱)

= (∑𝑖=1
𝑑  |𝑥𝑖|)exp (−∑𝑖=1

𝑑  sin (𝑥𝑖
2)) 

 

30 [-2π,2π] 0 

Powell Singular 𝑓(𝐱) = ∑𝑖=1
𝑑/4

 [(𝑥4𝑖−3 + 10𝑥4𝑖−2)2

+ 5(𝑥4𝑖−1 − 𝑥4𝑖)2

+ (𝑥4𝑖−2 − 2𝑥4𝑖−1)4

+ 10(𝑥4𝑖−3 − 𝑥4𝑖)4] 

 

30 [-100,100] 0 

Stepint 𝑓(𝑋) = 25 + ∑𝑖=1
𝑛  ⌊𝑥𝑖⌋ 30 [-100,100] 0 

Trid 𝑓(𝐱) = ∑𝑖=1
𝑑  (𝑥𝑖 − 1)2

− ∑𝑖=2
𝑑  (𝑥𝑖 − 1𝑥𝑖−1) 

 

30 [-10,10] 0 

Matyas  𝑓(𝑥, 𝑦) = 0.26(𝑥2 + 𝑦2) − 0.48𝑥𝑦 30 [-10,10] 0 
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Holder table 𝑓(𝑋)

= −
|

|
sin (𝑥1)cos (𝑥2)𝑒

||1−
√𝑥1

2+𝑥2
2

𝜋 ||∣

|

|
 

 

30 [-10,10] 0 

Sumpow 𝑓(𝐱) = ∑𝑖=1
𝑑  |𝑥𝑖|

𝑖+1  30 [-100,100] 0 

levy13 𝑓(𝑥, 𝑦) = sin2 (3𝜋𝑥) + (𝑥
− 1)2(1
+ sin2 (3𝜋𝑦)) + (𝑦
− 1)2(1
+ sin2 (2𝜋𝑦)) 

 

2 [-10,10] 0 

Sum Squares 𝑓 = ∑𝑖=1
𝐷  (𝑖𝑥𝑖)2 30 [-10,10] 0 

                             

                           Table 3- Benchmark function 

 

6.2 Manually Results of Sphere function 

But when it is manually done, the sphere function that has been chosen by iteration got the best 

score of 2.7595. Chosen Parameter, p = 0.03, 𝛽 = 3, 𝑤 = 0.08, lb= -10, ub= 10, Maxt=1, 

pop_size=3. 

 
No of 

Gorillas 

X(t) F(X(t)) GX’(t+1) F(GX’(t+1)) GX’’(t+1) F(GX’’(t+1)) 

1 [4.1702, 3.0233, 1.8626]    30.0005 [4.1702, 3.0233, 1.8626] 30.0005 [4.1702, 3.0233, 1.8626] 30.0005 

2 [7.2032, 1.4676, 3.4556]    65.9817 [ 1.4731 0.3001 0.7067] 2.7595 [ 1.4731 0.3001 0.7067] 2.7595 

3 [0.0011, 0.9234, 3.9677] 16.5951 [0.0011, 0.9234, 3.9677] 16.5951 [0.0011, 0.9234, 3.9677] 16.5951 

                                                        Table 4- Manually result 

 

 And 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘  = [ 1.4731    0.3001    0.7067] (Best solution) with silverback score 2.7595.  

 

6.3 Experimental result of AGTO using MATLAB and PYTHON and MGTO using 

PYTHON 

The execution time and best score are compared on these two platforms by using the Gorilla 

Troops Optimizer. Also, the best score is compared between AGTO and MGTO. Then ten runs 

were completed. The detailed comparative analysis is listed below. And JUPYTER 

NOTEBOOK and SPYDER 3.9 were the first to be compared to MATLAB. an open-source 
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programming language that has some advantages compared to other languages. It is easy to 

implement as well as easy to understand. It has some inbuilt libraries also. Python supports OOP 

(object-oriented programming) as well. Some well-known Python libraries are used in the AGTO 

Python code, such as Numpy, which is used for mathematical operations, Matplotlib, which is 

used for various curve plotting; and Random, which is used to randomly initialise the random 

position of a candidate solution (Gorilla candidate position vector). Aside from that, the optimise 

library is used along with the time library to determine the execution time of the entire program. 

By using ten benchmark functions, the best solution has been computed that has a silverback 

score and its positions. Chosen parameters are listed below.  

Maximum 

no of 

iteration 

Upper 

bound 
Lower 

bound 
p w Beta Population size Variables no 

100 10 -10 0.03 0.8 3 30 3 

                                                       Table 5- Chosen parameter  

6.3.1 Matlab result, taken run =1  

Benchmark  

     function 

 

Obtain result 

Sphere function Ackley 

function 

Rosenbrock Function Rastrigin Function Schwefel function 

Best Score 1.3962e-93 -1.7634 3.2547e-13 0 5.6947e-49 

Best position [-0.1358 0.3107   -

0.1569] 

[-0.1841    

0.0782   -

0.0589] 

[1.000 1.000 1.0000] [0.0683 -0.2148 0.2723] [5.2392    5.2392    5.2392] 

Execution time 0.568507 seconds 0.525480 

seconds 

0.568498 seconds 0.581671 seconds. 0.530179 seconds 

                                                         Table 6- Matlab result 1  

6.3.2 Best, Worst, Median, Mean and Std. value of Benchmark function using MATLAB, 

run = 10  

Functio

n 

Popula

tion 

size 

Dimen

sion 

Iterati

ons 

No 

Best 

valu

e 

Worst 

value 

Media

n value 

Mean 

value 

Std. Executi

on time 

Sphere 30 3 100 0 4.4082e-

86 

2.172e-

92 

4.4359

e-87 

1.3931

e-86 

0.67 

seconds 

Ackley 30 3 100 0 -1.7634 -1.7634 -1.7634 4.6811

e-16 

0.69 

seconds 

Rosenb

rock 

30 3 100 0 1.1768e-

10 

9.817e-

15 

1.2481

e-11 

3.7008

e-11 

0.67 

seconds 

Rastrig

in 

30 3 100 0 0 0 0 0 0.66 

seconds 

Schwef

el 2.22 

30 3 100 0 1.3505e-

42 

2.1508

e-45 

1.7134

e-43 

4.2441

e-43 

0.92 

seconds 

Step: 30 3 100 0 5.4328e- 1.6983 6.3874 0 0.56 
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US 22 e-25 e-23 seconds 

 

Dixon 

& Price 

30 3 100 0 2.1243e-

18 

2.1243

e-18 

2.1243

e-18 

0 0.57 

seconds 

Sum 

squares 

30 3 100 0 1.5683e-

86   

1.9612

e-91 

1.6477

e-87   

0 0.53 

seconds 

Griewa

nk 

30 3 100 0 0   0 0   0 0.52 

seconds 

Booth 30 3 100 0 0 0 0 0 0.99583

9 

seconds 

Quartic 30 3 100 0.00

00 

0.001103

7 

0.0006

1034 

0.0005

8192 

0.0003

1458 

1.09 

seconds 

Quadra

tic  

30 3 100 0.00

03 

0.000190

7899 

0.0001 0.0002 74.394

3 

1.21sec

onds 

Zakhar

ov 

30 3 100 0.00

00 

9.1486e-

86 

4.9044

e-88 

1.4429

e-86 

3.0771

e-86 

1.00sec

onds 

Periodi

c  

30 3 100 0.9 0.9 0.9 0.9 1.1703

e-16 

2.79 

seconds 

Brown 30 3 100 0.00

00 

2.395e-

85 

9.646e-

91 

2.3962

e-86 

7.5733

e-86 

1.24 

seconds 

Beale  30 3 100 0.00

00 

3.2359e-

27 

3.9406

e-29 

5.9096

e-28 

1.1865

e-27 

1.01sec

onds 

Xin She 

Yang 

N.2 

30 3 100 0.00

00 

9.6994e-

36 

2.1532

e-40 

9.8261

e-37 

3.0629

e-36 

1.09 

seconds

. 

Xin She 

Yang 

N.4 

30 3 100 -1 -1 -1 -1 0 1.27 

seconds 

Powell 

Singula

r 

30 3 100 0 0 0 0 0 1.17 

seconds 

Stepint 30 3 100 -

5.00

00 

-5 -5 -5 0 1.11556

6 

seconds 

Trid 30 3 100 -

7.00

00 

-7 -7 -7 -7 1.05 

seconds 

Matyas  30 3 100 0.00

00 

5.1226e-

81 

1.7498

e-93 

5.123e-

82 

1.6199

e-81 

1.02 

seconds 

Holder 

table 

30 3 100 -

19.2

085 

-19.2085 -

19.208

5 

-

19.208

5 

2.3685

e-15 

1.04 

seconds 

Sumpo

w 

30 3 100 0.00

00 

7.4437e-

103 

8.3894

e-107 

8.9059

e-104 

2.3279

e-103 

1.19 

seconds 

levy13 30 3 100 0.00 1.3498e- 1.3498 1.3498 0 1.14 
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00 31 e-31 e-31 seconds 

Sum 

Square

s 

30 3 100 0.00

00 

5.4067e-

84 

1.5467

e-89 

5.4423

e-85 

1.7085

e-84 

1.08 

seconds 

 

                                                           Table 7- Matlab result 2 

6.3.3 Python result, taken run =1  

Benchmark  

     function 

 

Obtain result 

Sphere 

function 

Ackley function Rosenbrock 

Function 

Rastrigin Function Schwefel function 

Best Score 5.643786374

245626 

 

7.680405931435

092 

 

6.21698596908

4413 
 

 

21.12256935259996 

 

8.819334724316416 

 

Best position [-0.10935595  

1.6833396  -

1.67278075] 

 

[ 2.64744421  0.

69371122 -0.622

86713] 

 

[ 1.72012837 -2

.17059875  2.86

536901] 

 

[ 0.07593651  8.7119964

8 -8.89904316] 

 

[4.52957593 3.43958932 0.05127718] 

 

Execution time 0.488641977

31018066 

Seconds 

0.410963058471

6797 

seconds 

 

0.41329026222

229004 

seconds 

 

0.36345386505126953 

seconds 

 

0.45641446113586426 

seconds 

 

                                                          Table 8- Python result 1 

 

6.3.4 Best, Worst, Median, Mean and Std. value of Benchmark function using PYTHON, 

run = 10  

Function Populati

on size 

Dimensi

on 

Iteratio

ns No 

Best 

valu

e 

Wor

st 

valu

e 

Media

n 

value 

Mea

n 

valu

e 

Std. Executi

on time 

Sphere 30 3 100 0.0 0.002

6 

 

0.0 

 

0.00

02 

 

0.000

7 

 

29.94 

seconds 

Ackley 30 3 100 0.0 

 

1.196

4 

 

0.0 

 

0.11

96 

 

0.358

9 

 

101.44 

seconds 

Rosenbro

ck 

30 3 100 0.0 

 

0.392

1 

 

0.0 

 

0.03

92 

 

1.167

9 

11.08 

seconds 

Rastrigin 30 3 100 0.0 20.00

000 

 

0.0 

 

2.00

00 

 

6.000

00 

 

14.76 

seconds 

Schwefel 

2.22 

30 3 100 0.0 0.000

8 

 

0.0 

 

8.90

6721

4667

9842

e-05 

 

0.000

2 

 

39.31 

seconds 
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Step: US 30 3 100 0.0 

 

0.002

3 

 

0.0 

 

0.00

02 

 

0 16.09 se

conds 

 

Dixon & 

Price 

30 3 100 0.0 

 

0.001

9 

 

0.0 

 

0.00

02 

 

0 21.69 se

conds 

 

Sum 

squares 

30 3 100 0.0 

 

2.374

1735

3209

3227

5e-0

5 

 

0.0 

 

7.12

2520

5962

7968

3e-0

6 

 

0 18.48 

seconds 

Griewank 30 3 100 0.0 

 

1.655

8912

7648

6354

3e-0

5 

  

0.0 

 

1.65

5891

2764

8635

43e-

06 

  

4.967

6738

2945

9063

e-06 

 

6.73 

seconds 

Booth 30 3 100 0.0 

 

0.090

8 

  

0.0 

 

0.00

90 

  

0.027

26 

 

6.90 

seconds 

Quartic 30 3 100 0.0 0.198

1 

 

0.0 0.01

98 

 

0.059

45 

 

23.16 

seconds 

Quadrati

c  

30 3 100 0.0 0.079

5 

 

0.0 

 

0.00

795 

 

0.023

85 

 

23.24 

seconds 

Zakharov 30 3 100 0.0 0.117 

 

0.0 

 

0.01

174 

 

0.035

24 

 

10.2693

1548118

5913 

seconds 

Periodic  30 3 100 0.9 

 

0.900

0 

 

0.9000 

 

0.09

000 

 

0.270

000 

 

73.44 

seconds 

Brown 30 3 100 0.0 

 

0.009 

 

0.0 

 

0.00

099 

 

0.002

977 

 

38.51 

seconds 

Beale  30 3 100 0.0 5.648 

 

0.0 0.56

489 

 

1.694

67 

 

9.33 

 seconds 

Xin She 

Yang N.2 

30 3 100 0.0 

 

0.002 

 

0.0 

 

0.00

019 

 

0.000

58 

 

18.59 

seconds 

Powell 30 3 100 0.0 0.000 0.0 6.07 0.000 14.25 
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Singular  6 

 

6052

7772

5874

3e-0

5 

 

18 

 

seconds 

Stepint 30 3 100 0.0 

 

4.0 

 

0.0 

 

0.4 

 

1.200

0 

 

41.25 

seconds 

Trid 30 3 100 -10.

05 

 

0.0 

 

0.0 

 

-1.00

5 

 

3.015

9 

 

9.89 

seconds 

Matyas  30 3 100 0.0 3.051

3144

0175

5933

e-07 

 

0.0 

 

3.05

1314

4017

5593

3e-0

8 

 

9.153

9432

0526

7799

e-08 

 

12.57 

seconds 

Holder 

table 

30 3 100 0.0 

 

1.007 

 

0.0 

 

0.10

07 

 

0.302

17 

 

51.85 

seconds 

Sumpow 30 3 100 0.0 0.0 0.0 0.0 0.0 3.93 

seconds 

levy13 30 3 100 0.0 0.161 

 

0.0 

 

0.01

61 

 

0.048 

 

57.13 

seconds 

Sum 

Squares 

30 3 100 0.0 4.756

2506

9527

0320

5e-0

6 

 

0.0 

 

4.75

6250

6952

7032

04e-

07 

 

1.426

8752

0858

1096

3e-06 

 

6.88 

seconds 

 

                                                        Table 9- Python result 2 

 

So, after comparison with ten benchmarks function every benchmark test function gives the 

optimal or near optimal value. By taking 10 run and 10 function mean median, best, worst and 

standard value has been computed also. In nutshell, by increasing runs from 1 to 10 PYTHO 

N takes least amount of time compare to MATLAB. And ten benchmark functions gave best 

score that is 0 or near 0 by using 100 iterations and 10 runs only.  So, future propose work 

PYTHON language will be used for critical gene selection purpose from microarray datasets.  
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6.3.5 Best, Worst, Median, Mean and Std. value of Benchmark function by run 50 and 

D=10 

  

Ben

chm

ark 

Fun

ctio

n 

Na

me 

Up

pe

r 

an

d 

lo

we

r 

bo

un

d 

R

u

n

s 

Pop

ulat

ion 

size 

Di

me

nsio

n 

Ite

rati

ons 

No 

(M

axt

) 

Best 

value 

Worst 

value 

Median 

value 

Mean 

value 

Std. 

val

ue 

Exe

cuti

on 

tim

e 

Sph

ere 

[-

10

0,1

00] 

5

0 

30 10 100 0 6.8219e-

74 

1.2791e-

83 

2.2144e-75 1.04

06e-

74 

4.1

906

91 

sec

ond

s. 

300 0 5.4158e-

239 

6.0636e-

249 

1.8257e-

240 

0 7.1

784

57 

sec

ond

s 

500 0 0 0 0 0 13.

137

892 

sec

ond

s 

100

0 

0 0 0 0 0 21.

303

799 

sec

ond

s 

Ack

ley 

[-

10

0,1

00] 

5

0 

30 10 100 -

125.9057 

-

125.6949 

-

125.6952 

-128.9515 5.97

29 

3.7

535

10 

sec

ond

s 

300 -

133.8541 

-

125.6949 

-

143.7182 

-137.9773 8.42

11 

7.8

214
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59 

sec

ond

s 

500 -

145.6949 

-

125.6949 

-

145.6949 

-140.8443 7.81

97 

11.

353

966 

sec

ond

s. 

100

0 

-

145.6949 

-

137.1749 

-

145.6949 

-145.5245 1.20

49 

29.

612

055 

sec

ond

s 

Ros

enb

rock 

[-

10

0,1

00] 

5

0 

30 10 100 4.5678e-

07 

7.3806 6.3543 5.2067 2.63

25 

3.0

457

54 

sec

ond

s 

300 1.3265e-

08 

4.7859 3.2029 2.4348 1.77

35 

6.7

009

62 

sec

ond

s 

500 0 2.7694 0.85026 0.90405 0.92

56 

10.

023

338 

sec

ond

s 

100

0 

1.2091e-

10 

0.42628 0.000307

43 

0.065387 0.11

986 

30.

176

280 

sec

ond

s 

Rast

rigi

n 

[-

10

0,1

00] 

5

0 

30 10 100 0 0 0 0 0 2.9

853

80 

sec

ond

s 
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300 0 0 0 0 0 7.1

098

75 

sec

ond

s 

500 0 0 0 0 0 11.

442

250 

sec

ond

s 

100

0 

0 0 0 0 0 22.

989

868 

sec

ond

s 

Sch

wefe

l 

2.22 

[-

10

0,1

00] 

5

0 

30 10 100 0 9.066e-

37 

1.8618e-

41 

3.7439e-38 1.64

59e-

37 

2.8

677

43 

sec

ond

s 

300 0 1.2193e-

117 

7.4154e-

125 

5.3001e-

202 

1.72

3e-

118 

11.9

195

61 

seco

nds 

500 0 2.2401e-

200 

2.5342e-

209 

 0 11.9

195

61 

seco

nds 

100

0 

0 0 0 0 0 22.

120

704 

sec

ond

s 

Step

: US 

[-

10

0,1

00] 

5

0 

30 10 100 0 5.4328e-

22 

1.6983e-

25 

6.3874e-23 0 6.3

874

e 

300 0 9.2276e-

13 

1.3285e-

15 

3.632e-14 1.36

37e-

13 

6.9

119

96 

sec
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ond

s 

500 0 1.3262e-

18 

1.6381e-

23 

2.7935e-20 1.87

4e-

19 

12.

513

371 

sec

ond

s 

100

0 

0 1.2289e-

24 

5.2123e-

30 

4.8793e-26 2.34

92e-

25 

21.

232

232 

sec

ond

s 

Dix

on 

& 

Pric

e 

[-

10

0,1

00] 

5

0 

30 10 100 1.7744e-

05 

0.66669 0.45686 0.35642 0.31

701 

3.1

132

38 

sec

ond

s 

300 0 0.66667 3.266e-

07 

0.053815 0.18

258 

7.0

402

05 

sec

ond

s. 

500 0 0.66667 6.8556e-

13 

0.013333 0.09

428

1 

11.

204

537 

sec

ond

s 

100

0 

0 1.1072e-

16 

3.6278e-

21 

3.2332e-18 1.67

66e-

17 

21.

017

895 

sec

ond

s 

Sum 

squ

ares 

[-

10

0,1

00] 

5

0 

30 10 100 7.2639e-

90 

1.1181e-

75 

5.7499e-

82- 

4.402e-77 2.14

52e-

76 

2.9

820

68 

sec

ond

s. 

300 1.1137e-

269 

1.6058e-

232  

3.9699e-

248 

3.2957e-

234 

0 7.7

291
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44 

sec

ond

s 

500 0 0 0 0 0 11.2

676

67 

seco

nds. 

100

0 

0 0 0 0 0 11.2

676

67 

seco

nds. 

Grie

wan

k 

[-

10

0,1

00] 

5

0 

30 10 100 0 0   0 0   0 2.9

843

43 

sec

ond

s 

300 0 0 0 0 0 6.4

612

81 

sec

ond

s 

500 0 0 0 0 0 11.

888

540 

sec

ond

s 

100

0 

0 0 0 0 0 21.

985

548 

sec

ond

s 

Boo

th 

[-

10

0,1

00] 

5

0 

30 10 100 0 7.0997e-

30 

0 1.7355e-31 1.01

16e-

30 

3.3

423

49 

sec

ond

s 

300 0 0 0 0 0 6.7

113

47 



35 

 

sec

ond

s. 

500 0 0 0 0 0 11.

578

858 

sec

ond

s 

100

0 

0 0 0 0 0 22.

047

211 

sec

ond

s 

Qua

rtic 

[-

10

0,1

00] 

5

0 

30 10 100 1.8776e-

06 

0.001981

1 

0.000405

63 

0.0005343 0.00

041

971 

3.7
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                                                       Table 10- Python result 3 

 

First, experimental result was done 100 iterations only. Then 100 iteration, 10 runs and 3 

dimensional were taken. In this case I got the optimal or near optimal solutions. After that AGTO 

has been tested on 100, 300, 500 1nd 1000 iterations with 50 runs and 10 D problems. But in this 

some benchmark function did not give well result like Holder table and Quadratic benchmark 

function. But it is proved that the AGTO is suitable for the large dimension also. For some 

benchmark function it’s not work well. Hence an improve and modified version of GTO will be 

used. Only 5 benchmark function has been tested on MGTO that is given bellow. Rest of 

function will be tested in future. And we will see how it is superior than AGTO.    

 

6.3.6 MGTO result, taken run=1 

 
Benchmark  

     function 

 

Obtain result 

Sphere function Ackley 

function 

Rosenbrock 

Function 

Rastrigin Function Schwefel function 

Best Score 17.3267983

96503644 

 

11.2471586

01644335 

 

10.6883927355

62644 

 

22.116257138319

348 

 

5.6947e-49 

Best position [1.21261181 

3.26379737 

2.28122724] 

 

[4.2110430

4 1.3440200

6 1.1971689

7] 

 

[-0.47899742  

1.65591665  1.

01389467] 

 

[ 0.91884999 -3.11

292959 -8.904205

54] 

 

[5.2392 5.2392    5.2392] 
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Execution time 0.40811324
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Seconds 

0.36085271

83532715 

Seconds 
 

0.36562776565

55176 
Seconds 

 

0.4256248474121

094 

Seconds 
 

0.530179 seconds 

 

 

Table 10- Python result 4 

So, I got best fitness value of Schwefel function from Modified Gorilla troops optimizer compare 

to Artificial Gorilla Troops optimizer by taking run 1 only. Rest of function gave better value in 

AGTO.  

 

6.4 Curve representation of benchmark function 
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                                                Figure 7- Benchmark curve 

 

7 Conclusion and future work 

A new metaheuristic algorithm has been introduced that is the Gorilla Troops Optimizer (GTO), 

which is stimulated by the Gorilla group and their social behaviour with their intelligence in 

nature. The GTO algorithm has a unique mechanism for switching between the exploration 

(Diversification) and exploitation (Intensification) phases. Additionally, because this method 

employs a variety of processes, it has demonstrated good performance and can be utilised as a 

robust metaheuristic algorithm to address a variety of issues. Due to the fact that the 

experimental results of the numerous standard functions utilised in the GTO test suggest 

outstanding performance, it is necessary to conduct adequate exploration and exploitation 

operations in order to achieve excellent results for several of the standard benchmark test 

functions under experiment. The suggested approach is evaluated against 25 benchmark function 

standards that are both standard and diverse. The results of the analysis are given above, which 

are interpreted through the above table. The results are compared based on best fitness value as 

well as run time analysis. The GTO algorithm produces a more optimal solution with a higher 
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degree of convergence than its competitors. The experimental results indicate that the GTO 

approach is applicable to the real world for solving any real-time problem. So, it is concluded 

that this approach can also be used to handle situations involving multi-objective optimization 

problems. Meanwhile, because metaheuristic algorithms are used to handle an extensive variety 

of problems, GTO can be evaluated in the future and used to address recombination optimization 

problems and diversified problems with different anchors. It has adequate capacity for moving 

the entire optimization space without any delay. GTO is smart enough to improve gorillas 

position vector in half the iterations, which indicates an excellent ability that GTO has compared 

to other meta-heuristic optimization algorithms. The first gorilla has momentous movements in 

the early stages, but it only goes by sudden movements in some stages. These features suggest 

GTO has an excellent ability to explore in various search spaces. But in next stages, the range of 

fluctuations changed and become decreased. This signifies that GTO has an exploitative nature 

in promising areas. And also, GTO is very stable for the first guerrilla movement. But GTO also 

has a problem. In GTO, the exploitation phase is still suffering from slow convergence speed. 

And GTO can fall into premature convergence. As in GTO, a random number is used 

significantly, which can increase the step size of the optimization process. And that’s why the 

new solution might be far from the best solution. It might involve the desired near-optimal 

solution but not be involved in the optimum solution. The equality between intensification and 

diversification might reduce the performance of the entire GTO algorithm, and hence, in some 

cases, higher exploration and/or exploitation operators are needed. But this gap can also be 

handled by MGTO, or modified Gorilla Troops Optimizer, which can give the desired optimum 

solution. In MGTO, the exploitation operator is replaced by another one. MGTO aids in 

exploring more promising search regions around the best solution. And one amazing thing is that 

other places in the promising search regions might be able to give the desired optimal solution as 

well as an optimal solution. In the current experiment, GTO is suitable for other benchmark 

functions that are not only unimodal but also multimodal and mixed benchmark functions. So, 

this algorithm will also be compared with other meta-heuristic algorithms like GWO, PO, GA, 

PSO, WO, etc., and GTO and MGTO will be applied in multi-objective functions as well as in 

bioinformatics problems for predicting biomarkers or critical genes from any high-dimensional 

genomic data. 
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