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Abstract—The Darknet is an encrypted corner of the internet,
intended for users who wish to remain anonymous and mask
their identity. Because of its anonymous qualities, the Darknet
has become a go-to platform for illicit activities such as drug
trafficking, terrorism, and dark marketplaces. Therefore, it is
important to recognize Darknet traffic in order to monitor and
detect malicious online activities. This paper investigates the
potential effectiveness of machine learning algorithms in iden-
tifying attacks using the CICdarknet2020 dataset. The dataset
includes two distinct classification targets: traffic label and
application labels. The objective of our research is to identify
optimal classifiers for traffic and application classification by
employing ensemble learning methods, aiming to achieve the
highest possible results. Through our experimentation, we have
found that the best-performing models surpassing all other state-
of-the-art machine learning models are LightGBM, achieving a
93.41% fl1-score in the Application classification, and Random
Forest, achieving a 99.8% f1-score in the traffic classification.

Index Terms—Darknet, Traffic analysis, Ensemble learning
methods, Lightgbm, Random forest, ANOVA

I. INTRODUCTION
A. Problem statement

In an increasingly interconnected world heavily reliant on
the internet, online safety must not be disregarded. While
the majority of individuals utilize the internet for good
intentions, it can also, unfortunately, serve as a platform for
illegal activities, particularly within the darknet. This hidden
part of the internet is frequently exploited by individuals
or groups seeking to conceal their online activities and
identities, thus becoming a breeding ground for various
criminal endeavors, including drug trafficking, weapon sales
[2], child pornography [3], human trafficking [4], and other
egregious violations, we, as data scientists , feel deeply
committed to making the internet a safer place using powerful
tools. Unlike traditional programming that heavily relies
on rule-based algorithms that requires a lot of time and
code and fails to cover all possible scenarios and take all
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edge cases in consideration, machine learning algorithms
can learn from historical data and identify patterns that
may indicate malicious activities or anomalies that deviate
from normal behavior without explicitly being programmed,
one more important thing is that machine learning models
can easily adapt to new scenarios, In cybersecurity, threats
are constantly evolving, with new attack techniques and
variations emerging regularly, Machine learning models,
unlike traditional programming, don’t rely on predefined
logic and the creation of rule-based algorithms from scratch
whenever a new intrusion technique emerges. Instead,
machine learning models have the ability to adjust their
parameters and learn to detect patterns in new scenarios,
while still being capable of detecting older cyber attacks
making them more robust and flexible.



B. Previous work

The journey to extract as much insights as possible from
the CIC-darknet2020 dataset includes many stations each of
them focuses on a specific task, here is a table that describes

some of them:
TABLE I
PREVIOUS WORKS

Work Considered Task Techniques| Obtained
Results
Lashkari,| Binary: benign or | CNN Binary: 94% ac-
et al. | darknet curacy
[8] Multiclass: 8 Multiclass: 86%
application types accuracy
Sarwar, Multiclass traffic na- | SMOTE Traffic: 96% F1-
et al. | ture: 4 classes PCA, DT, score
[9] Multiclass application | XGB Application: 89%
type: 8 classes CNN- Fl1-score
LSTM,
CNN-
GRU
Iliadis, Binary: benign or | KNN, Binary:  98.7%
et al. | darknet MLP, RF, | Fl-score
[10] Multiclass: 4 classes GB Multiclass:

89.61% F1-score

Demertizis,Multiclass: 11 applica- | WANN 92.68% accuracy
et al. | tion types
[11]
Futai 3 hierarchical filtering | LR, RF, | Filter 1: 99.42%
Zou, et | classifiers: MLP, accuracy
al. [12] Ist classifier: benign | GBDT, Filter 2: 96.85%
or darknet Light- accuracy
2nd classifier: darknet | GBM, Filter 3: 92.46%
traffic source XGB, accuracy
3rd classifier: darknet | LSTM

8 classes application
type

These works have made notable contributions to the field,
however, it is essential to critically evaluate certain aspects
of their methodologies. One common concern is the lack of
focus on feature selection techniques that plays a crucial role
in improving the performance and interpretability of machine
learning models. Other works have disregarded this aspect,
which could potentially lead to less-than-optimal outcomes.
Furthermore, numerous studies have identified a noteworthy
constraint: the overemphasis on accuracy as the main assess-
ment measure. Although accuracy is frequently employed, it
can be deceptive when dealing with datasets that lack balance.
The presence of imbalanced datasets creates difficulties in
accurately measuring the performance of models on minority
classes, which are frequently the ones of primary concern.
Therefore, adopting alternative metrics like the F1-score would
offer a more comprehensive assessment and more accurately
depict the model’s performance regarding the minority classes.

C. Proposed solution

Accurately identifying the presence of darknet traffic allows
security professionals to focus their efforts on investigating and
mitigating potential threats originating from these specific web
traffics. Furthermore, by classifying the specific application

types utilized within the traffic, such as P2P, audio streaming,
chat, file transfer, VOIP, and others, it becomes possible to gain
deeper insights about the purposes and goals of the network
users [1], [7], [8], [10]. Some application types [7] may be
more exposed to cyber crimes. For instance, P2P networks
can facilitate the distribution of pirated content, while video-
streaming platforms might be exploited for illegal activities
such as child exploitation or Graphic violence content or
terrorism-related communication.

By combining the detection of traffic nature and application
types, security systems can enhance their capabilities in iden-
tifying criminal web activities. This information serves as
a valuable resource for cybersecurity professionals, enabling
them to prioritize investigations, optimize resources allocation
so that they focus more on those suspicious activities, and
take measures to protect individuals and organizations from
potential threats. Therefore, the approach we adopt is to create
two filters, the first one catches web traffics coming from
the darknet, and the second one identifies which activity is
exploited within the traffics coming from darknet.

For the purpose above, we need two classifier models, the
first one will be trained on distinguishing between lightnet
and darknet traffics, while the second one will be trained on
identifying the application type exploited, and to accomplish
that, we need a large dataset that include as much as possible
of the specifics (the protocol used to transmit the traffic,
destination IP address, source IP address, the length of the
traffic in bytes...) of a huge amount of web traffics.

Fortuitously, we have access to a dataset called CIC-
Darknet2020 [7], which serves our purpose. This dataset
encompasses a wide range of traffic derived from various
sources and spanning different application types. Comprising
141,530 samples and 85 features, including 6 non-numeric
attributes, the CIC-Darknet2020 dataset also entails two target
labels: traffic nature and application type.
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Fig. 2. traffic label distribution

1) traffic nature label this label categorize web traffics by
their origines Tor,non-Tor, VPN and non-VPN:

2) Application type label This label classify instances by
the application used, it includes 8 possible applications
Browsing, P2P, Audio-streaming, Chat, File-Transfer,
Video-Streaming, Email and VOIP:



TABLE II
NUMBER OF SAMPLES PER TRAFFIC TYPE.

Traffic Label Number of Samples

Non-Tor 69065
NonVPN 23861

VPN 22919
Tor 1179

traffic

Non-Tor

NonVPN

Fig. 3. traffic label distribution
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Fig. 4. Application type distribution

TABLE III
NUMBER OF SAMPLES PER APPLICATION.

Application Number of Samples

Browsing 32714
P2P 24260
Audio-Streaming 17947
Chat 11473
File-Transfer 11173
Video-Streaming 9748
Email 6143

VOIP 3566

we followed two different phases:

(a) Data-centric phase: In this phase we focus on
transforming our dataset from its raw state into a more
consumable and cleaned data that contains the most
relevant features with balanced classes.

(b) Model-centric phase: In this phase we try to find
the best model and the best combination of hyper-
parameters that boost the classification performance to
the max.

The main contributions of this Thesis can be summarized as
follows:
1) 99.8% F1-score by a random forest model for identifying
traffic nature.
2) 93.41% Fl-score by a lightGBM model for classifying
traffics by application type.

II. METHODOLOGY

In this section, we explain the followed methodology. The
central objective of this research is to enhance the current state-
of-the-art classification methods for web traffic by exploring
the power of ensemble learning methods. Our base models are
random forest for traffic nature classification and lightgbm for
application type classification.
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Fig. 5. Methodology

Figure 5 demonstrates the methodology of our research.

A. Data-centric phase

1) Exploratory data analysis: Upon furnishing the data,
our initial step involves obtaining a comprehensive overview
and comprehending the diverse challenges it entails. This
understanding is essential for devising solutions to surmount
these obstacles, given that the data’s quality significantly
influences the effectiveness of our models. The ensuing list
outlines the predicaments afflicting the CIC-Darknet 2020
dataset:

o Categorical features (IP addresses)



o Noisy data

o Constant features

e Mutually highly correlated features
o Severe classes imbalance

The subsequent stages will be dedicated to resolving the
following concerns.

2) Data cleaning: Within the CIC-Darknet dataset, there
are instances of lectures featuring incomplete values. To
address this, various statistical imputation methods could be
applied, such as mean, median, or mode filling, along with in-
terpolation techniques. Alternatively, a model-based approach
like regression models (such as linear regression or random
forest regression) could be employed. However, due to the
relatively limited occurrence of such cases, the decision was
made to omit them, as the effort involved in addressing them
wouldn’t yield significant benefits.

3) Data transformation: In addition to converting cate-
gorical features into numerical data using ordinal encoding,
the features containing IP addresses require a transformation.
To achieve this, the initial step involves converting the IP
addresses into a compact 32-bit binary representation, with
each set of 8 bits representing a segment of the IP address,
typically ranging from O to 255. Subsequently, the compact bi-
nary representation is further converted into its corresponding
numerical format. This process is consistently applied to all IP
addresses, ensuring the preservation of their inherent patterns.

4) Data splitting: To ensure that all the sets (such as
training, validation, and testing sets) preserve a representation
of the original distribution of the classes, we opt to use a
stratified splitting which will reduce the bias from a specific
split while giving the model an idea about how the web traffics
are distributed in real life.

5) Data balancing: To address the problem of the se-
vere classes imbalance, and to diversify the synthetic gener-
ated samples, we used 3 different oversampling techniques:
SMOTE, ADASYN and Borderline-SMOTE, however the bal-
ancing didn’t introduce any significant improvement in the
obtained results due to the other precautions we took such as
stratified splitting and the usage of Fl-score.

6) Feature selection: The CIC-Darknet2020 dataset en-
compasses 85 features. In the process of selecting the most
relevant features, we start by excluding the 'Flow ID’ and
"Timestamp’ columns. Subsequently, constant features, which
offer no meaningful information, are removed. Following this
analysis, it becomes evident that there are 15 features that
remain invariant, resulting in a final count of 68 features.

As mentioned earlier, a significant number of these fea-
tures display strong mutual correlations. To retain the most
informative ones, we initiate by identifying features with
correlations exceeding a threshold of 0.8. Subsequently, we
leverage Random Forest feature importance to make informed
decisions about feature elimination. The feature deemed least
important by the classifier is discarded.

Progressing, we tailor the feature selection process to the
specific task at hand, whether it’s predicting traffic nature or

application type. For this purpose, we employ diverse method-
ologies, including filter methods such as ANOVA, information
gain, and CHi-square tests. Additionally, we utilize wrapper
methods like recursive feature elimination and embedded
techniques such as random forest feature importance.

B. Model-centric phase

This section present the models that forms the core of
our research methodology; Random forest for traffic nature
classification and lightGBM for application type classification.

1) Evaluationn metrics: In the process of evaluating our
models, we require a metric that accommodates the presence
of class imbalances. As elucidated earlier, accuracy can be
deceptive in such contexts. To delve further, let’s examine the
following confusion matrix:

TABLE IV
CONFUSION MATRIX
Actual / Predicted Positive  Negative
Positive 14 (TP) 130 (FN)
Negative 6 (FP) 850 (TN)

We note that the formula of the accuracy is as follows:

True Predictions
Accuracy = data size

In our case, the formula becomes:

850 + 14 N
14 +6 + 850 + 130
This evaluation means that our model is right 86% of the
times, which can give us an impression that our model is
effective and doing well while we can see that in the positive
class , from 144 predictions , only 14 were right, the model
has a poor performance on the positive class but since it
represent the minority, it has a slight effect on the accuracy.
F1-score is a widely used evaluation metric for assessing
the performance of classification models, particularly in
scenarios involving unbalanced datasets [14]. which is our
case, making accuracy an inadequate choice for evaluation.
Consequently, the F1 score emerges as a more suitable metric
due to its ability to consider both precision and recall, thereby
computing their harmonic mean. With a range from 0 to 1,
a higher F1 score signifies superior model performance in
effectively balancing precision and recall to achieve accurate
classification results.

0.86

Fl—9 Precision - Recall

" Precision + Recall
where:
o Precision:
True Positive
True Positive 4+ False Positive

Precision =

+ Recall:

Recall — True Positive

True Positive + False Negative



If we evaluate the F1 score for the previous case, we will
obtain: Fl-score ~ 0.17 which is a more accurate result.

2) Random forest: Random Forest is an ensemble method
that combines the results of multiple decision trees, denoted
as 11,715, ...,T,, where n is the number of trees [15]. Each
decision tree 7; is constructed by recursively partitioning the
training data into subsets based on different features. At each
split, a feature is selected based on a randomly chosen subset
of features. This randomness ensures diversity among the trees.

To make predictions using the Random Forest, the algorithm
employs a voting mechanism for classification tasks and
averaging for regression tasks. For classification, the predicted
class ¢ is determined by majority voting among the trees:

§= argmgxeH(Ti(x) =c¢) (1)
i=1

where x is the input instance, c is a class label, and I is the
indicator function.

Random Forest also provides a measure of feature impor-
tance. The importance score Iy of a feature f is calculated
as the average decrease in impurity (e.g., Gini impurity or
entropy) caused by that feature across all the trees:

1 n
Iy = - Z impurity(T;) — impurity (73| f) 2)
i=1

where impurity(7;) is the impurity of tree 7;, and
impurity(T;|f) is the impurity of tree T; after splitting on
feature f.

3) Lightgbm: LightGBM is a gradient boosting framework
that uses tree-based learning algorithms. It is designed to be
efficient and provides excellent performance on large-scale
datasets. LightGBM builds an ensemble of decision trees,
where each tree is trained to correct the mistakes of the
previous trees. Given a training dataset {x;,y;}) ;, where
x; represents the input features and y; is the corresponding
target variable, LightGBM aims to learn a prediction function
F(x) that minimizes a differentiable loss function L(y, F'(x)).
The prediction function F'(x) is modeled as the sum of M
individual trees:

F(x) =Y fm(x) (3)

where f,,(x) is the prediction of the m-th tree.

To train the individual trees, LightGBM uses a gradient-
based optimization approach. It minimizes the loss function
by iteratively adding trees to the ensemble. At each iteration,
a new tree is constructed to fit the negative gradient of the loss
function with respect to the current ensemble predictions:

OL(yi, F(xi))

OF (x.) @

residual; = — { }
F(X):Fcurrem(xi)

where Fiyent(X;) represents the current ensemble prediction
for the ¢-th instance.

LightGBM employs a technique called “leaf-wise” tree
growth, which aims to grow the tree by splitting the leaf with
the highest gain. The gain is calculated as the improvement in
the loss function after the split, taking into account the samples
assigned to each leaf. This approach leads to a more efficient
and effective tree construction process.

Additionally, LightGBM includes regularization techniques
such as shrinkage (learning rate) and feature sub-sampling to
prevent overfitting and enhance generalization performance.

4) Interpreting the results: In this section we try to unravel
the ’black box’ state of the models and answer the ques-
tion:how the influences of the features adds up to make a
prediction? For that purpose,we will use SHAP which is a
model-agnostic technique that can be used for all tasks whether
supervised or unsupervised [16].

III. RESULTS AND DISCUSSION

This section presents the major findings of this research.
First, we bring to light the experiment results of the two
classifications, then we interprate them using SHAP.

A. Traffic nature classification

By solely implementing the data-centric phase steps, en-
compassing data cleaning, balancing, and selecting optimal
features for the traffic nature classification task, we achieve
an impressive Fl-score of 99.8%. This outcome underscores
the crucial significance of this phase.

Confusion Matrix (Normalized) 10

Non-Tor 100.00% 0.00%

0.8

NonVPN 0.02%

0.6

True

~-0.4

Tor 0.00% 0.39%

-0.2

VPN 0.00% 0.02% 0.02%
-0.0
5,& & & &
& £
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1) Stratified cross validation : The accompanying standard
deviation offers insights into the model’s performance consis-
tency across varying fold sizes. Notably, with an increase in the
number of folds, there is a slight enhancement in the F1-score.
The peak performance is observed during 100-fold cross-
validation, while the standard deviation remains consistently
low. Table V shows the results.



TABLE V
F1-SCORES AND STANDARD DEVIATIONS FOR DIFFERENT NUMBERS OF
FOLDS FOR TRAFFIC NATURE TASK

Number of Folds | Fl-score | Standard Deviation
5 99.85% + 0.02%
10 99.86% + 0.03%
20 99.86% + 0.05%
50 99.87% + 0.06%
100 99.87% + 0.07%

2) Exploring F1-Scores Across Different Classes: Figure 11
shows the Fl-score obtained by each class, as shown below
the model lowest performance is with instances originating
from the Tor class.
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Fig. 7. F1 Score by class using Random Forest
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Fig. 8. most influencing features for traffic nature task
In Figure 8, we can see that the most influencing feature on

the classification of web traffics by nature is Src IP.

B. Application type classification

In this section, our focus shifts to the most challenging as-
pect of the project: discerning the specific application (Audio-

Streaming, Browsing, Chat, Email, File-Transfer, P2P, Video-
Streaming, VOIP) utilized within each instance of web traffic.
To accomplish this, we tailor the data to our objective by
channeling it through the pipeline established during the data-
centric stage. This pipeline encompasses data balancing for the
application type label and the selection of an optimal feature
set through the utilization of our base model. Notably, in our
case, the traffic nature column is also treated as a feature.

On the initial trials of training and tuning, lightGBM seems
to achieve better results in comparison to other models, which
is why we decide to continue with it.

The next step is to find the best combination of hyper-
parameters that boost the results to the max, for that we
use different hyper-parameters tuning techniques including
random search, grid search, bayesian optimization, genetic
algorithms, but after many essays, we found out that op-
tuna provides state of the art optimization algorithms like
Tree-structured Parzen Estimator (TPE) that are efficiently
implemented, it comes with many benefits, one of the most
interesting features of Optuna is its ability to store trials on a
database, this means that you can pause a search trial and
resume it at a later time or even on a different machine,
this flexibility is especially useful in scenarios where you
have limited computational resources or need to interrupt the
optimization process, it also allows to resume a previous study
with a new optimization algorithm which can be so important,
for our case, we first used TPE to find an initial well doing
model, after that we switched to using the NSGAII (Non-
dominated Sorting Genetic Algorithm II), that way, instead of
optimizing a population of randomly initialized models, it will
work on a population of “good” models which will optimize
the time to find the best performing model as well as increasing
the chances to find the most efficient one, the metric that we
optimize is the F1-score.

After few hundreds of exploration trials of the search spaces
of the hyper-parameters, the results seem to converge to 93.4%
F1-score:
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Fig. 9. optimization history plot

C. Confusion Matrix:

To ensure there’s no overfitting, we assess the tuned model’s
performance using unseen test set data, yielding an F1-score of
93.43%. The subsequent figure illustrates the confusion matrix
for the test set.
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The model appears to encounter the greatest confusion with
instances belonging to the email, VOIP, chat, and Video-
Streaming classes. Notably, approximately 13.52% of the
email samples and 14% of the VOIP data points are misclas-
sified as chat instances. Similarly, around 10.36% of Video-
Streaming instances are inaccurately classified as Audio-
Streaming samples.

1) Exploring F1-Scores Across Different Classes: Figure
11 shows the Fl-score by class. The model achieved a high
Fl-score of 99.73% for the P2P class, indicating accurate
predictions for the majority of P2P instances. However, the
Video-Streaming class had the lowest Fl-score of 82.12%,
suggesting some difficulty in distinguishing it from the Audio-
Streaming class. This confusion between the two classes is un-
derstandable due to their similarity as streaming applications.
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Fig. 11. F1 Score by Class for the LightGBM model

2) Stratified Cross Validation: To ensure that we are not
facing a bias introduced by a single train-validation split, we
will check the stratified cross validation F1-score on different
numbers of folds and the standard deviation of results on
each fold to ensure that the results are similar. The lower the
standard deviation, the better. Table VI shows the results.

TABLE VI
F1-SCORES AND STANDARD DEVIATIONS FOR DIFFERENT NUMBERS OF
FOLDS FOR APPLICATION TYPE TASK

Number of Folds | Fl-score | Standard Deviation
5 93.07% + 0.14%
10 93.24% + 0.17%
20 93.38% + 0.19%
50 93.39% + 0.49%
100 93.41% + 0.72%

Figure 12 depicts the collective influence of features on
the model’s decision-making process. This is determined by
calculating the mean of absolute SHAP values for all features
across all classes. Notably, ”Idle Max” and “traffic nature”
exhibit the most substantial impact on model predictions,
closely followed by ”Dst Port” and ”Src IP.”
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Fig. 12. most influencing features for application task

IV. CONCLUSION AND PERSPECTIVE

We introduced ensemble learning models designed to clas-
sify network traffic: Random Forest for traffic nature clas-
sification and LightGBM for application type classification.
The initial segment of our approach centered on the data-
centric phase, where we executed essential operations to
ensure our models were built on pristine and refined data.



TABLE VII

COMPARING THE RESULTS

Work Considered Task Techniques | Obtained
Results

Stamp, Multiclass traffic | AC-GAN, Traffic: 99.8% F1-
et al. nature: 4 classes CNN, RF, score
(previous Multiclass SVM Application: 92.2%
state of the | application type: F1-score
art) [13] 8 classes
Our Multiclass traffic | REF, Traffic: 99.8% F1-
proposed nature: 4 classes lightGBM, | score
approach Multiclass XGBoost Application: 93.4%

application type: F1-score

8 classes

These operations encompassed data cleaning, data splitting,
label encoding, and feature selection.

Following this, we delved into identifying the optimal en-
semble learning models for both classification tasks. Once suit-
able models were determined, we employed hyper-parameter
tuning techniques to enhance our models’ performance, specif-
ically focusing on the application type classification. Sub-
sequently, we proceeded to interpret the results through the
utilization of SHAP.

The following insights can be inferred from the research
conducted in this paper:

« Data-centric phase is a crucial part in the training of every
model.

o Ensemble learning methods are powerful in the classifi-
cation tasks and can make more accurate predictions.

o Random forest was able to reach 99.8% F1-score in the
traffic nature classification

o Lightgbm was able to reach 93.4% Fl-score in the
application type classification outperforming the state-of-
the-art studies on CIC-Darknet2020 [13].

In future endeavors, it might be worth considering the
exclusion of one or two of the perplexing features. However,
we should bear in mind that these features do not singu-
larly influence predictions; rather, they collaborate in shaping
predictions. Removing a misleading feature could potentially
affect other valuable features, creating a trade-off. To identify
the optimal features for removal, a comprehensive examination
of feature interactions is essential. This involves analyzing
how a feature influences others, particularly within a decision
tree, which serves as the foundation of our ensemble models.
The selection of the subsequent feature hinges on the current
feature’s value.

In summary, a feature’s direct impact on predictions might
seem unfavorable, but it could contribute positively to the
model’s overall performance, as well as the behavior of other
features. To assess these interactions, we can measure the
differences in outcomes when a feature is included or excluded
across all feasible feature combinations. If minimal interaction
exists and a feature primarily impacts incorrect predictions
rather than accurate ones, it could potentially be removed.
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