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Abstract—Area is an integral part of any spatial database and has a 

significant role in many geographic analyses and applications. 

Planar algorithms that are widely used to calculate area ignore the 

slope and curvature of the terrain and result in under-estimation, 

particularly as pixel size increases or in uneven terrain. Calculating 

surface area using a regular DEM can overcome this issue by 

considering localized variations on the terrain surface. This paper 

investigates the scale- and algorithm-dependence of surface area 

calculations. The expectation is that for any individual pixel, the 

improvement in measurements can be relatively small, however, the 

additive effects across the study area can become significant. The 

method of dividing each DEM pixel into eight 3D triangles is 

commonly used to calculate surface area. In this research, the 

elevation of triangle vertices are estimated using different 

interpolation methods to establish rates of under-estimation for 

progressively larger pixels. These methods are validated against 

vertex elevations on a 3 meter lidar data benchmark. Bi-Cubic 

interpolation outperforms other interpolation methods for 

calculating DEM surface areas, with Linear, Bi-Linear and Jenness 

methods performing nearly as well, especially at coarser resolution.  

Relative accuracies are shown to degrade somewhat in rougher 

terrain. 

I.  INTRODUCTION  

Estimating the area of features is very important in geographic 
analysis. Area of a land parcel, a forest patch or a wetland can be 
computed directly from land surveying or computed indirectly 
from a 2D map using grid coordinates. The key weakness of this 
approach is that the 2D method used for calculating area ignores 
the effects of topography and surface roughness, i.e., it does not 
account for the slope and curvature of the terrain. Planar projection 
and measurement of spatial features can distort information when 
areas are systematically underestimated. For example, Zhiming et 
al. [1] illustrate that surface area is significantly larger than planar 
area in two different mountainous areas using a parametric T-Test. 
Rogers et al. [2] show that the area of forest fire patches is 
underestimated by 20% when planar metrics are used. Jenness [3] 
demonstrates that surface area will always exceed planar area, 
adding that the ratio of the two can provide a useful measure of 

terrain roughness, as the discrepancy increases between the two 
measures. Differences between planar area and surface area can be 
expected to vary with size of geographic footprint, DEM 
resolution, terrain roughness, and landscape conditions. This error 
can be neglected for individual pixels, but it can propagate 
dramatically for measurements that encompass many pixels or 
where pixel sizes become quite large, corrupting terrain-based 
measurements and spatial modeling outcomes. This paper 
compares different interpolation methods for calculating surface 
area from DEMs with various resolutions. 

Several available methods can determine surface area on 
terrain. Surface area can be calculated simply as: planar area / 
cos(slope). Dorner et al. [4] use this method to calculate surface 
area to account for non-uniform topography in landscape pattern 
analysis. A Triangulated Irregular Network (TIN) also can be used 
to calculate surface area, within each 3D triangle. This method 
takes the slope of the terrain into account. Xue et al. [5] have 
shown that TIN-based surface area calculations are preferable for 
vector data, while Jenness [3] works with raster data, calculating 
the surface area in a regular grid DEM using a focal window. 
Hoechstetter et al. [6] compare planar area with surface area to 
characterize patch area, patch perimeter, perimeter-area ratio, and 
terrain roughness for two different resolutions (2m and 20m). They 
conclude that terrain complexity significantly affects area and 
distance calculations. The surface area calculation methods also 
are compared in Zhang et al. [7] who conclude that when more 
than 30% of a region contains slopes greater than 18.2°, the 
difference between planar and surface area can exceed 5%. 

A continuous surface also can be modeled to calculate surface 
area. Each pixel in a DEM represents a small area by a horizontal 
planar surface with an elevation assumed to be constant, which can 
be described by a zero-order polynomial function. Therefore, a 
DEM provides a discretized sample of the continuous elevation 
surface. The slope and curvature of the terrain is ignored under the 
horizontal pixel assumption and the slope-adjusted surface area of 
each pixel cannot be calculated directly. Instead, one can apply 
continuous interpolation methods to reconstruct the three-
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dimensional (3D) surface of each pixel using contextual 
information from adjacent pixels [8, 9]. Each DEM cell is modeled 
with a polynomial function z = f(x,y) whose surface area can be 
calculated with a double integral: 𝐴 =

 ∬ √1 +  [𝑓𝑥 (𝑥, 𝑦)]2 +  [𝑓𝑦 (𝑥, 𝑦)]2
𝑅

 𝑑𝐴 . In previous research 

by the authors of this paper, this double integral method was tested 
on regular mathematical surfaces but it proved computationally 
very slow. Even with the emergence of High Performance 
Computing (HPC), continuous polynomial estimation methods for 
surface area are not yet feasible in terrain modeling processes 
simply because the basic computation of surface area by such 
polynomials remains overly time-consuming.  

On the other hand, Light Detection and Ranging (lidar) has 
provided finer resolution and more precise data but it introduces 
other challenges such as the need for initial filtering and additional 
data storage, and increased processing times. Furthermore, the 
current availability of lidar data is not exhaustive in developed 
nations, and is sparse or non-existent in rural and undeveloped 
regions. Lidar data is used as a benchmark in this research. It 
should be noted that the accurate measurement of surface area is 
similar to the well-known problem of coastline length. A terrain 
surface has a fractal nature and the surface area increases as 
resolution or level of detail improves [10]. The fractal dimension 
can be used to establish the relationship between surface area and 
DEM resolution [11]. 

This research reports on a pilot project that examines the 
sensitivity of slope-adjusted surface area estimation on a DEM 
incorporating slope and curvature across a progression of spatial 
resolutions. Surface area is estimated using a series of increasingly 
complex discrete interpolation methods, applied to digital terrain 
compiled independently at five different spatial resolutions. 
Results are validated using 3m lidar benchmark data to establish 
errors introduced as pixel sizes increase. The study areas reported 
here include an area of smooth terrain and an area of rougher 
terrain, both in a relatively humid landscape in the coastal plain of 
North Carolina. Results to be presented at the conference will 
incorporate additional smooth and rough terrain samples in dry 
landscapes, and at varying elevations.  

II. DATA SETS AND STUDY AREAS 

The study areas are limited to areas for which 3m resolution 
lidar data is available for validation. DEM data is tested at 10m, 
30m, 100m, and 1000m resolutions, and compared against a 3m 
lidar benchmark. The 3m, 10m, and 30m resolutions form part of 
the USGS National Elevation Dataset (NED); and the source for 
100m and 1000m resolutions is the Shuttle Radar Topography 
Mission (SRTM) dataset (http://dds.cr.usgs.gov/srtm/version2_1/).  
The two terrain patches in North Carolina (Fig. 1) are drawn from 
a DEM centered on 35.798 degrees N and 81.473 degrees W. Its 
location at the southeast end of the Appalachian Mountains 

provides elevations ranging from 209m - 1602m. Located where 
the Blue Ridge Mountains drop towards the coastal plains is a 
humid, uneven landscape, with annual precipitation averaging 51 
inches (129.5 centimeters). The study area provides a mix of 
uninhabited land with smaller rural settlements. Two different sub-
regions of this study area are selected (A and B in Fig. 1) in the 
northwest as a rough terrain and in the east as a more flat terrain. 
For the 10m DEM, region A spans 1811 rows and 1471 columns. 
Region B spans 2085 rows and 1468 columns. The results of 
estimates are discussed for these two areas to investigate how the 
results vary with terrain roughness. In region A, the average 
elevation, standard deviation of elevation, and average slope are 
765m, 239m, and 20 degrees (exceeding Zhang et al’s [7] 18.2% 
slope threshold). In region B, by contrast, the respective values are 
297m, 19m, and 5 degrees. 

 
Figure 1.  Study area located in North Carolina. Regions A and B are selected to 

examine how estimation errors vary with respect to terrain roughness, elevation, 
and local slope. 

III. METHODS 

This research modifies the method proposed by Jenness [3] for 
calculating surface area from a DEM. In Jenness’s original method, 
each pixel centroid is linked to the pixel centroid of the 8 
surrounding pixels to generate 8 triangles (Fig. 2-a). The vertices 
of each triangle have differing elevations, taken from respective 
pixel centroids. The lengths for the sides of the 8 triangles can be 
calculated using the Pythagorean Theorem, incorporating slope 
because of each vertex’s unique elevation value. Because the 
connecting vectors are bisected by pixel boundaries, all length 
values are divided by 2 to consider only the portion of triangles 
that fall within the central pixel’s boundary. The area of each 
triangle given the lengths of sides a, b, and c is calculated as: 𝐴 =

 √𝑠 (𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐) , where  𝑠 =  
𝑎+𝑏+𝑐

2
 . The surface area 

of each pixel is equal to the sum of the 8 triangle areas.  

In the modified method, the 8 triangles laying within the pixel 
are created (Fig. 2-b). Then instead of simply dividing by 2 (i.e., 
bisecting the triangle edges), a new set of 8 vertices is created on 
the pixel boundary. The elevations of new vertices are estimated 
using five different interpolation methods. The accuracy of 
estimates is assessed using lidar data to capture actual elevations 
of the 8 estimated points, and lidar values are used to compute a 
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validation surface area value. The surface area values computed 
using interpolation methods are compared with the lidar surface 
area values to find the interpolated results that are closest to the 
summed pixel areas of the lidar benchmark.  

 

Figure 2.  (a) Jenness’s original method, and (b) modified method used in this 
research. 

Given a regular elevation grid within the defined 
neighborhood, different interpolation techniques will generate 
differing elevation estimates. The methods compared in this 
research include Weighted Average and discrete polynomial 
surfaces (Linear, Bi-Linear, Bi-Quadratic, and Bi-Cubic), all of 
which are exact interpolators. Different contiguity configurations 
are used in the interpolation methods. The Linear, Bi-Linear, 
Weighted Average, Bi-Quadratic, and Bi-Cubic interpolators use 
3, 4, 9, 9, and 16 neighboring pixels, respectively. Fig. 3 illustrates 
the mathematical function and the contiguity configurations used 
for each interpolation method.  

Linear 3 

 

𝑧(𝑥, 𝑦) = 𝑎0 + 𝑎1 x + 𝑎2 y 

 
Bi-Linear 4 

 

𝑧(𝑥, 𝑦) = 𝑎0 + 𝑎1 x + 𝑎2 y + 𝑎3 x y  

 
Weighted Average 9 

 

𝑧(𝑥, 𝑦) =
∑ 𝑤𝑖  𝑧𝑖

n
𝑖=1

∑ 𝑤𝑖
n
𝑖=1

 ;    𝑤𝑖 =  
1

𝑑𝑖
2 

 
Bi-Quadratic 9 

 

𝑧(𝑥, 𝑦) = 𝑎0 + 𝑎1 x + 𝑎2 y + 𝑎3 x y +

𝑎4 𝑥2 + 𝑎5 𝑦2 + 𝑎6 𝑥2𝑦2 + 𝑎7 𝑥2 𝑦 +

𝑎8 𝑥𝑦2  

 

Bi-Cubic 16 

 

 𝑧(𝑥, 𝑦) = 𝑎0 + 𝑎1 x + 𝑎2 y + 𝑎3 x y +

𝑎4 𝑥2 + 𝑎5 𝑦2 + 𝑎6 𝑥2𝑦2 + 𝑎7 𝑥2 𝑦 +

𝑎8 𝑥𝑦2 + 𝑎9 𝑥3 + 𝑎10 𝑦3 + 𝑎11 𝑥3𝑦3 +

𝑎12 𝑥3𝑦2 +  𝑎13𝑥2𝑦3 + 𝑎14 𝑥3y +

𝑎15 𝑥𝑦3 
 

Figure 3.  Different interpolation methods and their corresponding contiguity 

configuration 

 

IV. RESULTS 

Tables I and II show the method comparison for region A and 
region B at various DEM resolutions. Surface areas are computed 
for a planar solution in each table, to provide a baseline “worst 
case” comparison. Also, the slope-adjusted surface area calculated 
based on the local slope at each DEM cell (Planar area / Cos(slope)) 
is reported. The original (unmodified) Jenness method is also 
reported to determine if the modification (that adds some 
processing time) is warranted. RMSEs are reported to evaluate the 
performance of various methods. Error magnitudes can be seen to 
vary with DEM resolution and with interpolation method within 
each table, with higher RMSEs overall for region A, in rough 
terrain, and lower RMSEs for region B, in flatter and smoother 
terrain. The general trend in either table is that RMSE values 
increase to varying degrees moving from finer to coarser DEM 
resolutions. In both regions, the Bi-Cubic interpolation shows 
lowest RMSEs at all resolutions, and the Planar and Weighted 
Average methods show the highest RMSEs. Linear, Bi-Linear and 
Jenness (original) interpolations show the next lowest RMSEs at 
all resolutions. Also evident from the tables for both regions, 
higher order polynomials do not appear to outperform lower order 
polynomials in every case. For example, Bi-Quadratic shows a 
larger RMSE than Linear and Bi-Linear methods. 

When reported as percentages relative to the Bi-Cubic RMSEs, 
a slightly clearer pattern emerges, indicating that error percentages 
increase from 10m to 30m but then drop at 100m and 1000m 
resolutions. It is possible that the drop at coarsest resolutions is due 
to over-sampling relative to the 3m lidar validation; but the jump 
in error at 30m resolution bears further investigation, since it 
happens consistently across methods. In region A (the rougher 
terrain), percentages fall below 5% error for Linear interpolation 
at all resolutions, and for Bi-Linear and Jenness at coarser 
resolutions.  Recall that Zhang et al [7] found that when slopes 
exceed 18.2 degrees, slope errors can exceed 5%.  The finding that 
slope errors do not exceed 5% in region A indicates that any of 
these three methods could serve as an alternative to the Bi-Cubic 
interpolation, assuming the region in question is characterized by 
steep slopes.  
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TABLE I.  RMSE VALUES (SQ. M.) FOR DIFFERENT METHODS AT DIFFERENT 

RESOLUTIONS FOR REGION A (ROUGH TERRAIN). BOLDFACE SHOWS THE LOWEST 

RMSE VALUES. UPPER TABLE SHOWS RMSE VALUES AND LOWER TABLE 

REPORTS THESE AS PERCENTAGES RELATIVE TO THE BI-CUBIC METHOD. 

A  10m 30m 100m 1000m 

Planar 14.649 111.923 810.425 30,417.716 

Planar/ Cos 

(Slope) 
3.983 40.361 745.191 25515.852 

Jenness 3.504 30.691 423.386 20,064.473 

Linear3 3.307 29.735 419.091 20,015.471 

Bi-Linear4 3.440 30.974 427.636 20,551.611 

Wtd Average9 7.802 61.262 579.130 22,816.463 

Bi-Quadratic9 3.562 33.983 446.086 23,583.277 

Bi-Cubic16 3.123 27.358 411.628 19,971.391 

 

Planar 369.068 309.105 96.883 52.306 

Planar/ Cos 

(Slope) 

27.538 47.529 81.035 27.762 

Jenness 12.200 12.183 2.856 0.466 

Linear3 5.892 8.689 1.813 0.221 

Bi-Linear4 10.150 13.217 3.889 2.905 

Wtd Average9 149.824 123.927 40.693 14.246 

Bi-Quadratic9 14.057 24.216 8.371 18.085 

Bi-Cubic16 0.000 0.000 0.000 0.000 

RMSE VALUES (SQ. M.) FOR DIFFERENT METHODS AT DIFFERENT RESOLUTIONS 

FOR REGION A (ROUGH TERRAIN). BOLDFACE SHOWS THE LOWEST RMSE 

VALUES. UPPER TABLE SHOWS RMSE VALUES AND LOWER TABLE REPORTS THESE 

AS PERCENTAGES RELATIVE TO THE BI-CUBIC METHOD.  

B 10m 30m 100m 1000m 

Planar 2.134 13.111 74.424 1016.487 

Planar/ Cos 

(Slope) 
1.100 7.467 61.105 998.146 

Jenness 0.969 5.938 55.243 924.711 

Linear3 0.931 5.691 55.041 924.844 

Bi-Linear4 0.966 5.996 55.995 938.028 

Wtd Average9  1.406 8.643 62.983 964.650 

Bi-Quadratic9 1.006 6.455 57.958 955.460 

Bi-Cubic16 0.904 5.440 54.204 917.951 

 

Planar 136.062 141.011 37.304 10.734 

Planar/ Cos 

(Slope) 

21.681 37.261 12.732 8.736 

Jenness 7.190 9.154 1.917 0.736 

Linear3 2.987 4.614 1.544 0.751 

Bi-Linear4 6.858 10.221 3.304 2.187 

Wtd Average9  55.531 58.879 16.196 5.087 

Bi-Quadratic9 11.283 18.658 6.926 4.086 

Bi-Cubic16 0.000 0.000 0.000 0.000 

V. SUMMARY 

This research employs realistic terrain surface geometries 
using different interpolation methods and the information from 
adjacent pixels for purposes of incorporating terrain slope and 
curvature into surface area computations. Findings of this research 
indicate Bi-Cubic polynomial has the lowest RMSE. The Linear 
interpolations perform nearly as well and slightly better than 

Jenness’s method. The Bi-Linear interpolation performs slightly 
worse except at 10m resolution. All three methods show nearly 
similar RMSEs for this pair of very small pilot study areas. One 
can expect that the improvement in RMSEs will be more 
pronounced for larger terrain footprints. Furthermore, the accuracy 
of slope-adjusted surface area estimation appears to bear some 
relation with terrain roughness, but this relationship will have to 
be tested to confirm statistical significance. In ongoing research, 
additional study areas and larger spatial footprints are tested to 
further explore these findings and understand error propagation in 
surface area calculations. Our research is investigating the extent 
to which slope- and curvature-adjusted surface area measurements 
can make a difference in higher order metrics utilized in spatial 
modeling, as for example in weighted flow accumulation, debris 
flow extents, and similar areal metrics. We are also investigating 
how much computational complexity the surface-adjusted area 
adds to the model processing.  
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