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Abstract

Robin criterion states that the Riemann Hypothesis is true if and only if the inequalityσ(n) < eγ×
n × log log n holds for all n > 5040, where σ(n) is the sum-of-divisors function and γ ≈ 0.57721
is the Euler-Mascheroni constant. This is known as the Robin inequality. We know that the
Robin inequality is true for all n > 5040 which are not divisible by 2. In addition, we prove the
Robin inequality is true for all n > 5040 which are divisible by 2. In this way, we show the Robin
inequality is true for all n > 5040 and thus, the Riemann Hypothesis is true.
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1. Results

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with real part 1

2 [1]. As usual
σ(n) is the sum-of-divisors function of n [2]: ∑

d|n

d

where d | n means the integer d divides to n. Define f (n) to be σ(n)
n . Say Robins(n) holds

provided
f (n) < eγ × log log n.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural logarithm. The
importance of this property is:

Theorem 1.1. Robins(n) holds for all n > 5040 if and only if the Riemann Hypothesis is true [1].

It is known that Robins(n) holds for many classes of numbers n.

Theorem 1.2. Robins(n) holds for all n > 5040 that are not divisible by 2 [2].

In addition, we know that:

Theorem 1.3. Robins(n) holds for all 101010
≥ n > 5040 [3].
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Let h(n) be defined as
h(n) =

∏
q|n

q
q − 1

.

These are known results:

Theorem 1.4. [2]. For n > 1:
f (n) < h(n).

Theorem 1.5. [4]. For n ≥ 3:

h(n) < eγ × log log n +
2.50637
log log n

.

Let’s prove our main result:

Theorem 1.6. Robins(n) holds for all n > 5040 that are divisible by 2.

Proof. Let’s assume that n > 5040 is divisible by 2. We have that

f (n) ≤ f (2) × f (
n
2

)

since the function f (n) is submultiplicative (that is f (q×r) ≤ f (q)× (r)) [2]. We use that theorem
1.4 to show that

f (2) × f (
n
2

) ≤ f (2) × h(
n
2

) =
f (2)
h(2)

× h(n) =
3
4
× h(n)

since f (2) = 3
2 and h(2) = 2. According to the theorem 1.5, we obtain that

f (n) ≤
3
4
× h(n) <

3
4
×

(
eγ × log log n +

2.50637
log log n

)
.

Hence, it is enough to prove that

3
4
×

(
eγ × log log n +

2.50637
log log n

)
≤ eγ × log log n

which is equivalent to
3
4
×

(
1 +

2.50637
eγ × (log log n)2

)
≤ 1

after of dividing the both sides of the inequality by eγ × log log n. We know that Robins(n) holds
for all 101010

≥ n > 5040 due to the theorem 1.3. Consequently, we would have that(
3
4
+

3
4
×

2.50637
eγ × (log log n)2

)
<

(
3
4
+

3
4
×

2.50637
eγ × (log log 101010 )2

)
for n > 101010

. In this way, it is enough to show that(
3
4
+

3
4
×

2.50637
eγ × (log log 101010 )2

)
≤ 1

2



which is the same as
3
4
×

2.50637
eγ × (log log 101010 )2

≤
1
4

that is equal to
3 × 2.50637

eγ × (log log 101010 )2
≤ 1

after of multiplying by 4. Finally, we need to prove that

3 × 2.50637 ≤ eγ × (log log 101010
)2

which is trivially true and therefore, the proof is complete.

This result implies the following consequences:

Theorem 1.7. Robins(n) holds for all n > 5040.

Proof. This is a direct consequence of theorems 1.2 and 1.6

Theorem 1.8. The Riemann Hypothesis is true

Proof. This is true because of the theorems 1.1 and 1.7.
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