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Abstract—In high-resolution automotive radar tracking sys-
tems, vehicle targets are often regarded as extended targets,
which means multiple measurements originated from scattering
centers of vehicle targets can be detected at each scan and
thus the traditional point target tracking schemes are unsuitable.
Meanwhile, vehicle maneuvers, e.g., braking and swerving, cause
serious degradation of the classical extended target tracking
methods. In this paper, a novel method is proposed for ma-
neuvering extended vehicle tracking with automotive radar. The
data-region association (DRA) strategy is adopted to handle
the vehicle extension effect, which is superior in describing the
complex spatial distribution of vehicle target measurements. The
interacting multiple model (IMM) method is combined with
this DRA strategy to describe the evolution of target motion
models. Accordingly, the proposed DRA-IMM method achieves
satisfying tracking performance of extended vehicles and also
guarantees the robustness in case of maneuvers. Furthermore,
in view of the correlation between vehicle extension and its
kinematic state, a ray-based strategy is devised to improve the
prior distribution of the data-region association of the basic DRA-
IMM, and accordingly an enhanced DRA-IMM (EDRA-IMM)
method is proposed. Simulation result validates the effectiveness
of the proposed DRA-IMM method for maneuvering extended
vehicle tracking and the further improvement of the proposed
EDRA-IMM method.

Index Terms—Automotive radar, extended target tracking,
maneuvering target tracking, data-region association, interactive
multiple model

I. INTRODUCTION

Automotive radar has been recognized as a powerful sensor
in the intelligent transportation application. Nowadays, ad-
vanced automotive radars are devised for increasingly high
resolutions and enabled to capture multiple scattering centers
of vehicle targets. In this context, the traditional point target
tracking schemes are inadequate, while the extended target
tracking (ETT) algorithms, capable of estimating the shapes

apart from the kinematic states of vehicles, become more and
more popular [1]–[5].

Representative methods for ETT are summarized as follows.
The random matrix model (RMM) is developed to describe the
elliptical extension pattern of targets [1], [2]. Another prevalent
method is the random hypersurface model (RHM) which can
describe other extension patterns [3], [4]. Note that these tra-
ditional ETT solutions simply assume that the measurements
are uniformly distributed over the entire extension, which may
be violated and much more complex in practice. For example,
the rear of a vehicle is more likely to be detected than the
other regions when the radar trailed behind, but so is the right
region when this vehicle turns right.

To depict the complex spatial distribution of measure-
ments over vehicle extension, a data-region association (DRA)
method is proposed for automotive radar tracking [5]. The
DRA method partitions the rectangle extension of vehicles into
five regions, each of which represents a cluster of scattering
centers and corresponds to an individual component of the
spatial distribution of measurements. This division strategy
is more reasonable and superior to uniform distribution as-
sumption of the RMM and the RHM methods since radar
measurements of a vehicle mainly originate from its boundary
close to the radar as well as the headlamps and the wheel
housings [6]. However, the standard DRA assumes that the
vehicle moves according to a certain motion model, resulting
in serious degradation of tracking performance of maneuvering
vehicles.

Vehicle maneuver is another challenge to automotive radar
tracking [7]–[9]. The existing algorithms for maneuvering tar-
get tracking can be categorized as single-model and multiple-
model schemes. Comprehensive reviews of these algorithms
are presented in [10]–[14]. Among these algorithms, the



interacting multiple model (IMM) [15] is preferred due to the
reasonable balance between tracking accuracy of maneuvering
targets and complexity [16]. The IMM is a suboptimal hybrid
filter that holds several dynamic hypotheses simultaneously
and is verified to be a cost-effective hybrid state estimation
scheme [13]. However, the IMM is proposed for point target
tracking and not suitable for ETT, especially for vehicle
measurements subject to complex spatial distributions.

In this paper, we propose a novel method integrating the
standard DRA with the IMM, referred to as the DRA-IMM.
In this method, the standard DRA strategy is adopted to depict
the complex spatial distribution of extended vehicle target
measurements. Then the IMM method is combined with the
DRA strategy to describe the evolution of target motion mod-
els. Accordingly, the proposed DRA-IMM not only achieves
satisfying tracking performance of extended vehicles, but also
guarantees the robustness in case of maneuvers.

Furthermore, an enhanced DRA-IMM (EDRA-IMM) is
proposed to overcome the drawback that the basic DRA-IMM
uses a constant prior probability of data-region association
and ignores the temporal variation of vehicle extension with
kinematic state. A ray-based strategy is devised to depict
the correlation between vehicle extension and its kinematic
state, and adaptively adjust the prior probability of data-region
association to vehicle maneuvers. Hence, the proposed EDRA-
IMM further improves the vehicle tracking accuracy compared
with the basic DRA-IMM, especially in the maneuvering
phase.

Simulation results of vehicle tracking validates the signif-
icant superiority in robustness of the proposed DRA-IMM
over the standard DRA in case of sharp maneuvers. Moreover,
the proposed EDRA-IMM further reduces the tracking error
compared with the basic DRA-IMM, especially when the
vehicle maneuvers and exhibits time-varying extension effect.

II. SYSTEM MODEL

The system model is defined on the following three co-
ordinate systems: The global Cartesian coordinate system
OG − xGyG in which the states of the target, radar, and ego
vehicle are defined, the target Cartesian coordinate system
OT−xTyT which is used to describe the spatial distribution of
measurements and the radar polar coordinate system OS−xSyS
(see Fig. 1).

A. Target Dynamic Model

The target motion model is defined as:

xk = Fk−1xk−1 +Gk−1wk−1, (1)

where xk is the state vector and Fk−1 is the state transition
matrix; wk denotes the zero-mean white Gaussian process
noise with the following covariance matrix Qk and coefficient
matrix Gk:

Qk = cov
(
[wx, wy, wω,wp]

T
)
= diag([σx, σy, σω, σpI4])

(2)
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Fig. 1. Illustration of the data-region association concept. Regions 1-5
correspond to the five clusters of scattering centers over the vehicle extension.
p1 and p2 are the vertices of the rectangle extension. αe is the ego-vehicle’s
orientation. αs is the angle between the ego-vehicle’s orientation and the
radar’s boresight that is known.

Gk = diag (Gc,Gc, 1, I4)

Gc =
[
T 2/2, T, 1

]T
,

(3)

where In is the n × n identity matrix, cov(·) represents
covariance operator and diag(·) represents a diagonal matrix.
Note that Gk is an 11× 7 matrix, Qk is a 7× 7 matrix and
wk is a 7× 1 vector.

The state vector xk is defined as:

xk =
[
xk, ẋk, ẍk, yk, ẏk, ÿk, ωk,

(
p1
k

)T
,
(
p2
k

)T]T
(4)

Here (xk, yk)
T , (ẋk, ẏk)

T , (ẍk, ÿk)
T, and ωk denote the posi-

tion, velocity, acceleration, and yaw rate of the target centroid,
respectively. To handle vehicle maneuvers, the IMM algorithm
is employed, consisting the constant-velocity (CV) model, the
constant-acceleration (CA) model and the coordinated-turn
(CT) model. Note that in the CV model, ẍk = ÿk = ωk = 0.
Similarly, ωk = 0 in the CA model and ẍk = ÿk = 0 in the CT
model. p1

k and p2
k are the vertices of the rectangle extension

(see Fig. 1). Here p1
k or p2

k is a vector of two values each
referring to x and y coordinates of the vertice in the target
Cartesian coordinate system. Clearly, the other two vertices
p3
k and p4

k shown in Fig. 2 can be represented by −p1
k and

−p2
k in the same coordinate system. So p1

k and p2
k suffice to

describe the rectangle extension.
Particularly, Fk is defined as [5]

Fk = diag
(
F̄k,F

s
k

)
, (5)

where F̄k denotes the kinematic state transition matrices and
Fs

k is the extension state transition matrix as defined in [5].
Although the exact forms of transition matrices are distinct in
CV,CA and CT models which can be found in [17], [18], they
are uniformly characterized by the same symbol for simplicity.

B. Measurement Model

Suppose that an extended target generates Nk measure-
ments, represented by a stack vector at time k:

Zk =

[(
z1
k

)T
,
(
z2
k

)T
, . . . ,

(
zNk

k

)T
]T

. (6)



Here zr
k = [drk, D

r
k, β

r
k]

T
(r = 1, . . . , Nk) contains the

distance d, the radial Doppler velocity D, and the azimuth
angle β in the radar polar coordinate, as shown in Fig. 1.

The measurement model of the DRA strategy is stated as
follows [19]:

zr
k =

 ∥Hixk − ps
k∥+ vrd,k

(A3xk+(A4xk)A1(Hi−A2)xk−Ds
k)

T(Hixk−ps
k)

∥Hixk−ps
k∥

+ vrD,k

(∠ (Hixk − ps
k))− αs − αe

k + vrβ,k


= hr

i (xk, ζ
r
k,v

r
k) ,

(7)
where ps

k and Ds
k are the position and velocity of the radar

and vr
k = [vrd,k, v

r
D,k, v

r
β,k] is Gaussian noise. Hi is a function

of ζr
k. Since the extension is divided into five regions (Fig. 1),

i in Hi and hr
i represents the index of the region ranging from

1 to 5. Then ζr
k = [srk, 0] if i < 5 and ζr

k = [sr1k , sr2k ] if i = 5.
Specifically [5],

H1 = [A5, s
r
kI2, (1− srk) I2] (8)

H2 = [A5, (s
r
k − 1) I2, s

r
kI2] (9)

H3 = [A5,−srkI2, (s
r
k − 1) I2] (10)

H4 = [A5, (1− srk) I2,−srkI2] (11)
H5 = [A5, (1− sr1k − sr2k ) I2, (s

r1
k − sr2k ) I2] . (12)

Here, srk (or sr1k , sr2k ) represents a uniform distribution vari-
able over [0, 1] which means the scattering centers are
uniformly distributed in each region. In (7)-(12), A1 =[
[0, 1]

T
, [−1, 0]

T
]
, A2 = [A5,02×4], A3 =

[
e29, e

4
9

]T
,

A4 =
(
e59

)T
, A5 =

[
e15, e

3
5

]T
, where 0n×m represents n×m

zero matrix and ein = [0, · · · , 0, 1, 0, · · · , 0]T denotes the n-
dimensional base vector of all zeros except the i-th element
being one.

III. THE PROPOSED METHOD

In this section, the DRA-IMM method is first presented.
Then, based on that, the EDRA-IMM method is proposed
by incorporating the estimated kinematic state information to
improve the calculation of the prior data-region association
probability.

A. The proposed DRA-IMM method

1) The posterior estimation formulation:
The proposed DRA-IMM method has a recursive estimation

scheme. At the k-th scan, the posterior state estimate of the
proposed DRA-IMM method is calculated by

x̂k|k =

3∑
j=1

[
mk∑
η=1

x̂η,j
k|kPφ

(
φη

k | Zk, uj
k

)]
Pu

(
uj
k | Zk

)
,

(13)
where φη

k is the η-th data-region association hypothesis of all
mk hypotheses. Specifically, given Nk measurements, there
are mk = 5Nk association hypotheses and mk is likewise quite
large for large N. To reduce computation, five rectangle gates
covering the corresponding regions are used for data-region
association. For instance, in Fig. 2 there are two measurements

Fig. 2. Illustration of gating and data-region association. Only the region 1, 4
and 5 (ϕ1, ϕ4 and ϕ5) are displayed, and the same size of gates applies to
the region 2 and 3. The blue and red circles are the two measurements. γl
and γb determine the size of gates for sides while λl and λb determine the
gates for interior. They can be calculated by γl = t

(
p̂1
k|k−1

− p̂4
k|k−1

)
,

γb = t
(
p̂1
k|k−1

− p̂2
k|k−1

)
, λl = t̃

(
p̂1
k|k−1

− p̂4
k|k−1

)
, λb =

t̃
(
p̂1
k|k−1

− p̂2
k|k−1

)
with predetermined scaling factors t and t̃, where

p̂v
k|k−1

(v = 1, ..., 4) can be calculated by (1).

at the k-th scan. After gating, one of the measurements only
falls within the gate of region 4, while the other simultaneously
falls within the gates of region 1 and region 5, resulting in two
association hypotheses: φ1 =

{
ϕ4, ϕ1

}
and φ2 =

{
ϕ4, ϕ5

}
.

In this case, η = 1 or 2. Particularly, if the measurement is
not inside any gate, it is associated with the nearest side.

In (13), uj
k (j = 1, 2, 3 for the CV, CA and CT models)

is the motion model, and Zk is the measurements over the
previous k scans; x̂η,j

k|k is the posterior estimation conditioned

on φη
k and uj

k. Pφ

(
φη

k | Zk, uj
k

)
is the data-region associ-

ation probability given the motion model uj
k, which can be

calculated by the DRA method. Pu

(
uj
k | Zk

)
is the motion

model probability which is updated by the IMM.
2) The DRA update:
Given the motion model uj

k, the data-region association
probability in (13) is calculated by

Pφ

(
φη

k | Zk, uj
k

)
= p

(
Zk | φη

k, u
j
k,Z

k−1
)

· Pφ

(
φη

k | uj
k,Z

k−1
)/

c1
(14)

c1 =

mk∑
η=1

p
(
Zk | φη

k, u
j
k,Z

k−1
)
· Pφ

(
φη

k | uj
k,Z

k−1
)
,

(15)
where the prior data-region association probability
Pφ

(
φη

k | uj
k,Z

k−1
)

given uj
k is assumed as [5]

Pφ

(
φη

k | uj
k,Z

k−1
)
=

1

mk
, η = 1, . . . ,mk, (16)

and p
(
Zk | φη

k, u
j
k,Z

k−1
)

is the likelihood of measurements

given φη
k and uj

k, satisfying

p
(
Zk | φη

k, u
j
k,Z

k−1
)
= N

(
Zk; Ẑ

η,j

k ,Sη,j
k

)
, (17)

where Ẑ
η,j

k is measurement prediction whose covariance is
Sη,j
k . Note that (14)-(17) are similar to the DRA formulations



in [5]. However, the proposed DRA-IMM method incorporates
the IMM strategy in the basic DRA framework to handle
vehicle maneuvers, and thus (14)-(17) are reformulated under
the condition of the motion model uj

k, as defined in (13).
The unscented transformation (UT) [20] is utilized to esti-

mate Ẑ
η,j

k and Sη,j
k . Given φη

k and uj
k, the measurement model

is

Zk =

[(
z1
k

)T
, . . . ,

(
zNk

k

)T
]T

=

[(
h1
i

)T
, . . . ,

(
hNk
i

)T
]T

= ȟ
(
xk, ζ

1
k, . . . , ζ

Nk

k ,v1
k, . . . ,v

Nk

k

)
,

(18)
where hr

i (i = 1, . . . , 5) is the measurement model for zr
k

defined in (7) and ȟ is the overall measurement model. To
estimate Ẑ

η,j

k and Sη,j
k , the state vector is augmented by

xη,j,A
k ≜

[
(xη,j

k )T, ζ1
k, . . . , ζ

Nk

k ,v1
k, . . . ,v

Nk

k

]T
. (19)

Then we have(
Ẑ

η

k,S
η
k

)
= UT

[
ȟ
(
xη,j,A
k

)
, x̂η,j,A

k|k−1,P
η,j,A
k|k−1

]
, (20)

where UT means the unscented transformation with sample
points

{
ȟ
(
xη,j,A,l
k

)}
weighted by {δl} , l = 1, . . . , Ñ and

xη,j,A,l
k is the lth sample point of xη,j,A

k . From (14)-(20), the
data-region association probability can be obtained.

The posterior estimation x̂η,j
k|k conditioned on φη

k and uj
k

in (13) is calculated by two steps of the unscented filtering
including prediction and update. The predicted state in (20) is
calculated by

x̂η,j
k|k−1 = Fk−1x̃

j
k−1|k−1 (21)

Pη,j
k|k−1 = Fk−1P̃

j
k−1|k−1F

T
k−1 +Gk−1Qk−1G

T
k−1, (22)

where the mixed state x̃j
k−1|k−1 and P̃j

k−1|k−1 are elaborated
in Section III-A3, Gk−1 and Qk−1 are defined in Section II-A.
And then the state estimation can be updated by

x̂η,j
k|k = x̂η,j

k|k−1 +Kη,j
k

(
Zk − Ẑ

η,j

k

)
(23)

Pη,j
k|k = Pη,j

k|k−1 −Kη,j
k Sη,j

k

(
Kη,j

k

)T

, (24)

where the gain Kη,j
k is

Kη,j
k = Cη,j

xz

(
Sη,j
k

)−1

(25)

Cη,j
xz =

Ñ∑
l=1

δl
[
xl
k − x̂k|k−1

] [
ȟ
(
xA,l
k

)
− Ẑ

η

k

]T
. (26)

Eventually, the posterior state estimate under uj
k is

x̂j
k|k =

mk∑
η=1

x̂η,j
k|kPφ

(
φη

k | Zk, uj
k

)
(27)

Pj
k|k =

mk∑
η=1

Pφ

(
φη

k | Zk, uj
k

)
[
Pη,j

k|k +
(
x̂η,j
k|k − x̂j

k|k

)(
x̂η,j
k|k − x̂j

k|k

)T
]
.

(28)

3) The IMM update:
The mixed state conditioned on φη

k and uj
k in (21) and

(22) are calculated by interacting the estimated states of the
multiple motion models [15], namely:

x̃j
k−1|k−1 =

3∑
i=1

x̂i
k−1|k−1πijµ

i
k−1/

3∑
i=1

πijµ
i
k−1 (29)

P̃j
k−1|k−1 =

{ 3∑
i=1

[
Pi

k−1|k−1 +
(
x̂i
k−1|k−1 − x̃j

k−1|k−1

)
(
x̂i
k−1|k−1 − x̃j

k−1|k−1

)T ]}
πijµ

i
k−1/

3∑
i=1

πijµ
i
k−1,

(30)
where πij is the transition probability from motion model i
to j and µi

k−1 is the motion model probability estimated at
time k − 1. Then the motion model probability is updated by

Pu

(
uj
k | Zk

)
= Pu

(
uj
k | Zk−1

)
· c1

/
c2 (31)

c2 =

3∑
j=1

Pu

(
uj
k | Zk−1

)
· p

(
Zk | uj

k,Z
k−1

)
, (32)

where Pu

(
uj
k | Zk−1

)
is the prior motion model probability

that can be obtained by
{
µi
k−1

}3

i=1
and πij [15]:

Pu

(
uj
k | Zk−1

)
=

3∑
i=1

πijµ
i
k−1, (33)

and p
(
Zk | uj

k,Z
k−1

)
can be calculated by (15).

Based on the above DRA update and IMM update steps, the
posterior state estimate of the proposed DRA-IMM method is
obtained as (13):

x̂k|k =

3∑
j=1

x̂j
k|kPu

(
uj
k | Zk

)
(34)

Pk|k =

3∑
j=1

Pu

(
uj
k | Zk

)
[
Pj

k|k +
(
x̂j
k|k − x̂k|k

)(
x̂j
k|k − x̂k|k

)T
]
.

(35)

In this way, the proposed DRA-IMM can estimate the state
iteratively.

B. The proposed EDRA-IMM method

The proposed DRA-IMM in the previous section assumes
that the prior data-region association probabilities given the
different motion models are equal and constant in (16). In fact,
this prior data-region association probability is closely related
to the relative position and attitude between the target and the
radar, and varies with the target motion model. For example,
if the car turns right in front of the radar, the probability of
capturing the right side of the vehicle increases.



Therefore, we propose the EDRA-IMM method and revise
the prior data-region association probability in (16) as:

Pφ

(
φη

k | uj
k,Z

k−1
)
= Pφ

(
ϕη,1
k , . . . , ϕη,Nk

k | uj
k,Z

k−1
)/

c3,

(36)
where c3 is the normalization factor as follows

c3 =

mk∑
η=1

Pφ

(
φη

k | uj
k,Z

k−1
)
, (37)

and ϕη,i
k (i = 1, . . . , Nk) is the region to which the i-th

measurement is associated in the η-th data-region association
hypothesis as depicted in Fig. 2. Assume that each measure-
ment is generated independently, (36) can be derived as

Pφ

(
φη

k | uj
k,Z

k−1
)
= Pφ

(
ϕη,1
k | uj

k,Z
k−1

)
·

Pφ

(
ϕη,2
k | uj

k,Z
k−1

)
· · ·Pφ

(
ϕη,Nk

k | uj
k,Z

k−1
)/

c3.

(38)
Inspired by [21], we propose a ray-based strategy to calcu-

late Pφ

(
ϕη,i
k | uj

k,Z
k−1

)
, as shown in Fig. 3. If the associated

region ϕη,i
k is in the line of sight of radar, then

Pφ

(
ϕη,i
k | uj

k,Z
k−1

)
= Pnear ·

(
θnear

θnear + θ′near

)
, (39)

otherwise,

Pφ

(
ϕη,i
k | uj

k,Z
k−1

)
= Pfar ·

(
θfar

θfar + θ′far

)
, (40)

where Pnear and Pfar, along with the interior part Pinterior, are
the pre-defined probabilities referring to [5], satisfying

Pnear + Pfar + Pinterior = 1. (41)

The definitions of θnear, θ′near, θfar, and θ′far based on the vertices
of the rectangular extension are illustrated in Fig. 3, while
these vertices can be obtained from the predicted states in
(21) of the most likely motion model in the IMM scheme. In
this way, P

(
ϕη,i
k | uj

k,Z
k−1

)
is updated in real time and in

accordance with the estimated kinematic state.
From (36)-(41), the prior knowledge of the data-region

association probability can be extracted from the estimated
kinematic state. Hence, the proposed EDRA-IMM further
improves the calculation of the prior data-region association
probability over the proposed DRA-IMM.

Radar

(a) ϕη,i
k is in the line-of-sight region

Radar

(b) ϕη,i
k is in the non-line-of-sight

region

Fig. 3. Visualization of the ray-based strategy to calculate
Pφ

(
ϕη,i
k | uj

k,Z
k−1

)
.
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Fig. 4. Trajectories of the target vehicle and the radar.

TABLE I
TARGET ACCELERATION TABLE

Maneuvering time (s) 10 15 20 30 40
X-Acceleration (m/s2) -3 -3 2 0 0
Y-Acceleration (m/s2) -2 -4 3 0 0

Yaw rate (rad/s) 0 0 0 0 π/20

IV. EVALUATION

In this section, a 4.8m× 1.8m maneuvering car is tracked,
as shown in Fig. 4. The trajectory of the target begins at
(0m, 800m) at a speed of 30m/s and moves for 50 seconds
with the acceleration and yaw rate changing at certain time.
The maneuvering acceleration table is shown in Table I. The
acceleration keeps constant until the next maneuvering time.
Note that the trajectory of the radar is not the same as that
of the target, since the noise is different. In the simulation,

Fig. 5. The estimated probabilities of the CV, CA and CT models of the
proposed DRA-IMM method. The ground truth of target motion model is
represented by the background color. The proposed method achieves satisfying
estimation of the target motion models.

there are Nk = N̄k + 1 measurements at time k, where N̄k

follows Poisson distribution with mean 5. A measurement is
a scattering center perturbed by Gaussian noise. The spatial
distribution of scattering centers are set to Pnear = 0.6,
Pfar = 0.1 and Pinterior = 0.3, which is more similar to those



(a) Position RMSE. (b) Velocity RMSE.

Fig. 6. Comparison of the RMSEs of the standard DRA method (using the CV model only), the proposed DRA-IMM and the proposed EDRA-IMM.

TABLE II
PERFORMANCE EVALUATION OF THE PROPOSED METHODS

CV Stage (0-10s and 30-40s) CA Stage (10-30s) CT Stage (40-50s)
Pos. RMSE Vel. RMSE Pos. RMSE Vel. RMSE Pos. RMSE Vel. RMSE

(m) (m/s) (m) (m/s) (m) (m/s)
DRA (CV) 0.33 0.10 0.65 0.88 1.78 3.29
DRA-IMM 0.34 0.11 0.50 0.48 1.52 2.79

EDRA-IMM 0.31 0.08 0.45 0.40 1.35 2.34

of the real dataset like nuScenes [22]. The sampling interval
is 0.1s. The covariance matrices of process noise in different
models are set by

QCV = QCA = diag
([
0.12, 0.12, 10−6, 10−4I4

])
QCT = diag

([
0.52, 0.52, 10−6, 10−4I4

])
.

(42)

The covariance matrix of measurement noise is set by

R = diag
([
0.12, 0.0272, 0.0052

])
. (43)

The measurement data is generated with the extension model
in Section III-B, while the ground truth of target motion model
and vehicle shape can be used (in contrast to the estimated
value for tracking).

The proposed DRA-IMM and EDRA-IMM are compared
with the standard DRA in terms of the root-mean-square
error (RMSE) in position and in velocity. Fig. 5 displays the
estimated probabilities of the CV, CA, and CT models of
the proposed DRA-IMM. The intervals with different back-
ground colors correspond to different target motion models.
The motion model with the highest probability estimated
by the proposed DRA-IMM is highly consistent with the
truth, and the estimated model probabilities respond rapidly
to the vehicle maneuvers (10s, 15s, 20s, 30s and 40s), which
verifies that the proposed DRA-IMM can precisely estimate
the probabilities of the motion models.

The RMSEs of the standard DRA using CV model and
the proposed DRA-IMM over 1000 Monte Carlo are plotted
in Fig. 6. The RMSE of the standard DRA is low only
when the target performs CV motion, but rises dramatically
when the target vehicle maneuvers. In contrast, the proposed
DRA-IMM method yields lower RMSE than the standard

DRA, and maintains much better robustness in case of vehicle
maneuvers. From Table II, the RMSE of the proposed DRA-
IMM is reduced by approximately 23% in position and 45% in
velocity during CA motion, and by about 15% in both position
and velocity during CT motion over the standard DRA. Fur-
thermore, the proposed DRA-IMM yields a lower peak RMSE
than the standard DRA when the target executes maneuvers.
It is concluded that the proposed DRA-IMM achieves more
satisfying estimation performance than the standard DRA.

Fig. 6 also validates the further improvement of the pro-
posed EDRA-IMM over the basic DRA-IMM. It is shown that
when the target performs maneuvering motion, the RMSE of
the proposed EDRA-IMM is lower than that of the DRA-IMM.
The RMSE of the proposed EDRA-IMM is reduced by about
11% in position and 17% in velocity during CA motion, and
by 11% in position and 16 % in velocity during CT motion
compared to the DRA-IMM. This is due to the fact that the
basic DRA-IMM ignores the correlation between the vehicle
extension and its kinematic state, and uses a constant prior
data-region association probability. In contrast, the proposed
EDRA-IMM implements a ray-based strategy to calculate the
prior data-region association probability in real time and in
accordance with the estimated kinematic state. Accordingly,
the proposed EDRA-IMM is superior to the basic DRA-IMM
especially when the target maneuvers.

V. CONCLUSION

In this paper, we first propose a novel DRA-IMM method
for maneuvering extended vehicle tracking with automotive
radar. The proposed DRA-IMM method achieves better ro-
bustness in case of vehicle maneuvers than the standard DRA



method. Based on that, an EDRA-IMM method, characterized
by a ray-based approach, is proposed. The EDRA-IMM effi-
ciently extracts the prior information of data-region association
from the estimated kinematic state and thus further improves
the tracking performance, especially when the target vehicle
maneuvers. Simulation result validates the superiorities of the
proposed methods in robustness over the standard DRA, along
with the further improvement of the proposed EDRA-IMM
over the basic DRA-IMM. In our future work, real-world radar
data will be used to further improve the proposed methods.
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