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Abstract—Formal verification is a trustable method to produce
correct, safe, and fast code. However, the cost of formal verifica-
tion remains prohibitively high for most projects, as it requires
significant manual effort by highly trained experts. In this paper,
we propose a novel approach to proof automation in Coq that
generates proof script based on context-awareness. We develop
AutoMagic, an automatic theorem proving framework, which can
use the generated proof script to achieve a fully automatic proof
of the theorem. Our method is simple but pushes the limits of
automatic proof. The performance of AutoMagic is evaluated in
the Coq standard library. We show that 37.87% of the theorems
can be proved in a push-button mode, and can be used to prove
new theorems not previously provable by automated methods.

Index Terms—Theorem proving, Context-aware, Proof script
generation, Proof automation

I. INTRODUCTION

Security verification of software systems, such as operating
system kernels, has long been recognized as an important
and extremely challenging task. On the one hand, software
vulnerabilities can cause significant financial losses. On the
other hand, verification of security properties is difficult since
the specifications need to be written in expressive logic lan-
guages and theorem proving problem for such languages is
usually undecidable. Over the past two decades, interactive
theorem proving (ITP), such as Coq [4] or Isabelle [19], has
been successfully applied to the security properties verification
of complex software systems. Among those verified software
systems, the most well-known ones are probably the seL4
microkernel [13], using Isabelle, and the CompCert C compiler
[16], using Coq.

“Theorem proving” in terms of program verification simply
refers to writing down intended properties as propositions
and then proving them as one does a mathematical theorem-
usually with the aid of an ITP. The ITP systems used in these
validations rely on higher-order and type systems to maximize
expressivens and generality, while also facilitating modularity
and reuse of proofs. However, despite the rich expressiveness
of these theorem provers, the process of performing proofs in a
proof assistant is extremely laborious and costly. For instance,
it took the seL4 team more than 20 person years and 200,000
lines of Isabelle scripts to verify a microkernel consisting of
around 8,000 lines of C code.

Due to complicated behaviors of the software system, it
is extremely difficult to achieve fully automated verification

of functional correctness and there is currently no work to
achieve this. Relying on humans in the loop, ITP executes
those proofs interactively via the use of proof scripts that
consists of tactics as well as items from goals and context.
To complete a proof, a programmer must provide guidance to
the proof assistant at each step by picking which proof scripts
to apply, and if the machine checks pass, it will generate a new
subgoal and context, repeat the process until no new subgoals
are generated. Indeed, some recent efforts have attempted to
support automated in ITPs, but these tools suffer from two
limitations. One is to provide automatic tactics that require
manual input and can only solve a specific goal, which cannot
fully automatically prove one theorem or multiple theorems in
succession [5] [3] [6]. The other is to use machine learning
model to predict the proof script, but this learning model lacks
flexibility. A tactic argument can be a sophisticated line of
code with variables, functions, and compound expressions,
and the space of possible arguments is infinite. Prior work
has limited flexibility because they generate proof scripts by
copying from a fixed, predetermined set [9] [1], and arguments
are only extracted from the local context, excluding the global
context [23] [11].

In this paper, we propose a method for dynamically gen-
erating proof scripts, which analyzes the context, extracts the
items related to the proof, and then combine the tactics to
generate a set of proof scripts. And we implement AutoMagic,
a general and extensible framework of automatic theorem
proof in Coq proof assistant, which provides a structured
Python representation of Coq proofs, including all proof states
encountered in a proof, the steps and the recording of previous
proofs. AutoMagic enables lightweight interaction with Coq so
that it can be used to build proofs dynamically.

Experimental results show that AutoMagic can generate
effective tactics. It can successfully prove 37.87% of the
theorems in the Coq standard library, significantly outperform-
ing CoqHammer [6]. It’s simple enough, but it solves more
problems than existing tools. The advantage of AutoMagic is
that it is a general system, not depending on any domain-
specific knowledge.

Our main contributions are:

(1) We propose a context-aware technique for generating
proof scripts.



Theorem andb_true_elim : forall b c : bool, andb b c = true -> b = true.   

Proof.

  intros b c H; induction b.

  Case "b = true".  (* <----- here *)

    reflexivity.

  Case "b = false".  (* <---- and here *)

    rewrite <- H. 

    reflexivity.

Qed.

PS4

c : bool

H : andb true c = true

true = true

PS3

c : bool

H : andb false c = true

false = true

PS5

c : bool

H : andb false c = true

false = andb false c

Inductive bool : Type :=                     (*define the type [bool] of boolean*)  
  | true : bool
  | false : bool.

Definition andb (b1:bool) (b2:bool) : bool :=      (*define the and operation*)
  match b1 with
  | true => b2
  | false => false
  end.                 

PS1

forall  b  c : bool, andb b c = true -> b = true

intros b c H; induction b.

rewrite <- H.

reflexivity.

PS ident ifier

local  context

goal

Fig. 1. A proof script in Coq (left) and the resulting proof states, proof steps, and the complete proof tree (right).

(2) We have implemented an automatic proof framework
that can use the generated proof script to achieve fully
automated proof of the theorem.

II. RELATED WORK

A lot of work has been done on the automatic proof of
ITPs. We can summarize it into three categories according to
the different methods used.

A. Automatic proof tactic

Automatic proof tactic is actually a semi-automatic proof
method, which is defined by Latc [7], Coq’s tactic language.
Such tactics are based on pattern matching and can auto-
matically solve specific goals, but requires manual interaction
to complete the proof. For example, the tactic omega, is an
automatic decision procedure for Presburger arithmetic. Coq
has built-in automatic tactics such as auto, fourier, field.
There are also automation tactics defined by experts to solve
problems in specific fields, such as [3], [6], [18].

B. Hammer for ITP

Hammers are proof assistant tools that employ external
automated theorem provers (ATPs) [15] to find proofs of user
given conjectures automatically. For example, CoqHammer
[6] translates theorems in the Coq proof assistant to first-
order logic. It then proves the theorems using external provers
and converts the proof back to Coq’s tactics. Most developed
hammers exist for proof assistants based on higher-order
logic (Sledgehammer [20] for Isabelle, CoqHammer for Coq,
HOLyHammer [12] for HOL Light [10] and HOL4 [21]).
The hammer-based approach essentially bypasses the proof
assistant and outsources the work to external ATPs. In contrast,
our method of generating tactic is simper, using native tactics
without hammers, but it can solve more problems.

C. Automatically Generating Proofs with Machine Learning

Human experts have written a large amount of ITP code,
which provides an opportunity to develop machine learning
systems to imitate humans for interacting with the proof

assistant. ML4PG [14], Gamepad [11], and CoqGym [23], all
introduce benchmark suites and frameworks for exploring ma-
chine learning in Coq. ML4PG, while it introduces machinery
which should allow it to generate proofs, focuses instead on
clustering proofs, and does not attempt to generate proofs.
Gamepad builds a machine learning environment for theorem
proving, considering the problem of predicting proofs, but
only predicting tactics and arguments, without synthesizing
a complete proof script. CoqGym attempts to model proofs
with a fully general proof script and term model expressing
arbitrary AST’s, but it can only synthesize a simple proof
script and the arguments of tactic come only from the local
context.

III. BACKGROUND ON COQ

Coq is a proof assistant system that has been developed at
INRIA (Paris, France), since 1984. Coq is based on Calculus
of Inductive Construction, an implementation of intuitionistic
logic which uses inductive and dependent types. Nonetheless.
Coq’s logic may be easily extended to classical logic by
assuming the excluded middle axiom. A key feature of Coq
is the capability of extraction of the verified program (in
OCaml or Haskell) from the constructive proof of its formal
specification [17]. This facilitates using Coq as a tool for
software verification.

Coq allows the user to define proof goals alongside data
and program definitions. The process of theorem proving
is interactively entering a sequence of scripts called tactics
that manipulate the proof context. The proof context is a
proof state which is comprised of goal (expressed in the term
language) stating what we need to prove and a context con-
taining the assumptions. The user starts with the theorem itself
as an initial goal and repeatedly apply tactics to decompose
the goal into a list of subgoals. The proof is complete when
there are no subgoals left. For example, we can define the bool
type and the andb operation in Figure 1 (left). Then we state
the theorem forall b c : bool, andb b c = true → b =
true., using bool and andb. As in Figure 1 (left), theorem



proving starts with Proof. token, end with Qed. token, and
between them is a sequence of tactics. A successful Coq proof
implicitly generates a proof tree, where the root is the start
state and all the leaves are final states. All goals share the same
environment but have a unique local context with premise
local to each goal, such as PS3 hypothesis H in Figure 1
(right).

The edge of the proof tree are proof scripts. We use the code
intros b c H; induction b. to start a proof by introducing
variables and hypotheses, and use code induction b. to
generate two subgoals (on b). The expressions intros and
induction are tactics, the semicolon ; sequences two tactics,
and the period . signals the end of one proof step. After we
perform the induction, we see that proof state 2 is decomposed
into two cases, one is case b = false, the other is case
b = true. Tactic rewrite → H. rewrite the left side of
premise equation H to the right side of the current goal
equation, and reflexivity. checks that both sides of the
equation are convertible and then solve the goal. Proofs in
Coq are finished when the goal is trivially true, given the
context(e.g., true = true).

Coq represents a proof state PS as a tuple 〈Γ, G, n〉
of a local context Γ, a goal term G and a unique proof
state identifier n. A context Γ provides a list of identifiers
and their types that expresses all the current assumptions.
For instance, the proof state with identifier 3 has Γ = c :
bool, H : andb false c = true. A tactic invocation
creates edges between the appropriate proof states, which form
a proof tree.

Theorem proving requires manual interaction with the proof
assistant for completing the proof, which requires the user
to spend an important part of the proof effort on goals.
However, ITP automation techniques are able to reduce this
effort significantly. Theorem proving in Coq resembles a task-
oriented dialog [2]. AutoMagic can automatically interact with
the proof assistant, simply push a button, and the proof comes
out. At each step, the agent perceives the current goals, their
local context, and the global environment; it then generates set
of a proof script, trying each proof script to decompose the
current goal.

IV. OVERVIEW

In this section, we’ll present AutoMagic’s proof script gen-
eration and search process. We can see the toplevel structure
of AutoMagic in Figure 2. Each of the modules in written in
Python, with the Coq interface as a Python interface, on the
top of Coq serapi on top of Coq [8].

The input to AutoMagic is a .v suffix file, which contains
the formal definition of the verified program and the theorem
that needs to be proven. Given a theorem to prove, the tool
will call the Coq interface for machine checks to get an initial
proof state. The proof state of Coq output is divided into
three cases:

Case 1: The proof state is not null and is a new proof state.
Theorem proving can be regarded as a dynamic generation
process of a search tree. Context-Aware generation of proof

Theorem To 
Prove

Machine Check
Of Coq

Proof State

Generate proof 
scripts

Search Tree 

Prove successful

Throw except
Not null

No more goal

Fig. 2. The overall architecture of AutoMagic.

scripts is based on the assumptions and goals of the proof
state. Each proof state generates a set of proof scripts, which
are then added to the search tree. Try each node in a depth-
first search until a new proof state is generated. Repeating
this process, we can find a complete proof path, which is the
successful proof of this theorem.

Case 2: The machine check of Coq throws an exception.
If the generated proof script cannot pass the machine check,
Coq will throw an exception. In this case, the agent needs to
backtrack the search tree and try other nodes.

Case 3: The proof state is null, no more goals. With no
more goals for the proof state, the proof is completed and the
proof path is successfully found.

V. CONTEXT-AWARE GENERATION OF PROOF SCRIPT

The generation of the proof script is more complicated. The
proof script consists of tactics and items, where items are
arguments of the tactic. Coq terms can be identifiers, variables,
constants, functions, or expressions. It is very difficult to
construct an expression in the proof script and a topic of
research in itself—we do not address it in this paper. We
propose a novel mechanism for automatic generation of proof
scripts, which can be context-aware, extract useful items, and
then combine tactics to synthesize proof scripts.

A. Space of tactics

Coq comes with a set of builtin tactics, such as intros,
induction, rewrite, and so on, it has more than two hun-
dred. Statistics of AutoMagic show that many valid tactics
are seldom used in proofs. Therefore we simplify the tactic
grammar to facilitate the generation of proof scripts at the
expense of giving up on some cases. We only generate atomic
tactics while excluding compound ones such as “tac1; tac2.”.
This is not a severe handicap because all proofs can be
completed without compound tactics. We also exclude user-
defined tactics.



B. Space of arguments

The arguments could be (1) a term from the local contex-
t,which is the proof state, (2) a term form the global context
(e.g., a lemma), or (3) a term created by the human user.
As arguments in the third category can be any Coq term, the
space of arguments is potentially infinite. For our generation
method, we focus on arguments in the first two categories. The
arguments of the global context are a set of lemmas that have
been proved, which is a premise selection problem [22]. We
use premise selection of CoqHammer [6] to identify a fraction
of the available lemma as potentially relevant to discharge
the current interactive goal. The CoqHammer’s predict n.
command can search up to the top n lemmas most relevant
to the current goal. Then we can synthesize the following two
proof scripts:

try apply lemma1 ‖ · · · ‖ apply lemman. (1)

try rewrite lemma1 ‖ · · · ‖ rewrite lemman. (2)

C. Proof script synthesis

Synthesizing proof script is challenging because of the
syntactic output space is larger: all valid identifiers in Coq.
However, there are strong semantic constraints on the argu-
ments. For example, the tactic “apply H.” applies a premise
H to the goal. The argument H must be a valid premise either
in the environment or in the local context.

To leverage the semantic constraints in synthesizing argu-
ments and the logic of the use of tactics, we group tactics into
categories and take different actions for each category.
• Tactics for handling logical connectives: For the logical

connectives of the goal formula, Coq can use the intro-
duction and elimination rules to decompose the goal. As
in TABLE I, there are corresponding tactics to deal with
the logical connectives in goals and assumptions.

• Coq built-in and user-defined automatic tactics: The cate-
gory of tactics does not require arguments, but can auto-
matically solve some specific goals. we use coq’s built-in
tactic, such omega, firstorder, ring. In addition, we
also use automatic tactics defined by CoqHammer, such
as sauto, ycrush.

• Other tactics with arguments: Such tactics need to extract
items from the local context and environment.

TABLE I
TACTICS FOR LOGICAL CONNECTIVES

⇒ ∀ ∧ ∨
Hypothesis apply apply elim or destruct elim or destruct

goal intros intros split left or right
∼ = ∃ False

Hypothesis elim rewrite elim or destruct elim or case
goal intros reflexivity exists ν

To facilitate the description of the generation of the proof
script. We start with a set of definitions that will be used
throughout. A tactic τ ∈ T is a tactic name. An argument

α ∈ A. We use I for the set of Coq Inductive, D for the set
of Coq Definition and Fixpoint, S for the proof state.

Given a theorem to proof, the workflow of proof script
synthesis consists of the following steps:
• Step 1: We initialize a list Ptac to represent the set of

proof script synthesis. Use the tokenizer to tokenize the
goal and hypothesis of proof state, get valid tokens, and
then search for all tokens defined by Inductive and
Definition.

ι, δ = Search[Tokenizer(S.G, S.H), I, D] (3)

ι is a subset of variables that Inductive defines data
types (I). δ is a subset of D. For each element in ι, δ,
we can generate the following two kinds of proof scripts.
Tactic induction is to decompose the goal according to
the constructor. Tactic unfold is to unfold Definition.
Then return Ptac.

Ptac.append(“induction ι1; · · · ; induction ιn.”) (4)

Ptac.append(“unfold δ1; · · · ; unfold δn in ∗ .”) (5)

• Step 2: According to TABLE I, we generate correspond-
ing tactics based on the target and hypothetical logical
connectives. Then return Ptac.

• Step 3: We match the similarity of each hypothesis to the
goal and then generate the following proof scripts based
on the matching degree. H is the hypothetical identifier.

Ptac.append(“apply H.”) (6)

Ptac.append(“rewrite H.”) (7)

• Step 4: We add built-in and user-defined automation
tactics to Ptac. The middle lemma is very helpful in
proving that it can simplify or even directly solve a goal.
Therefore, we also add the proof scripts (1) (2) to the
list.

• Step 5: Return Ptac.

VI. GENERATION-GUIDED SEARCH

Each proof state will generate a list of proof scripts, from the
initial state to the end of the proof, which is a dynamic search
tree generation process. We generate proof scripts considering
a more general situation, not a large number of proof scripts
generated by random methods. According to our generated
proof script, the maximum width of the search tree is 15, so
we directly use depth-first search to explore the right proof
path.

VII. EVALUATON

We evaluate AutoMagic on the task of fully-automated
theorem proving in Coq, using the standard library of Coq
version 8.9.1. The tool perceives the current goals, their
local context, and the environment. It interacts with Coq by
executing commands, which include tactics, backtracking to
the previous step, and any other valid Coq command. We run



all experiments on machines with 8GB RAM and one Intel
i7-4790 CPU.

We compare the performance of our tool with CoqHammer.
The baseline is hammer [6]—a hammer-based system that
proves theorems using external ATP systems. In our particular
configuration, hammer simultaneously invokes Z3, CVC4,
Vampire, and E prover, and returns a proof as long as one
of them succeeds. We treat hammer as a block box tactic,
it sets a default time limit of 30 seconds to the external ATP
systems. We test hammer both in this setting and in a setting
where we extend the time limit to 10 minutes.

Coq standard library is general-purpose libraries with def-
initions and theorems for sets, lists, sorting, arithmetic, etc.
We have tested 3375 theorems from 9 subdirectories of the
standard library. AutoMagic solves 37.87% (1278/3375) of the
proofs in our test set.
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Fig. 3. A comparison of AutoMagic and CoqHammer abilities to complete
proofs.

Figure 3 shows the proofs solved by AutoMagic and
CoqHammer. The polyline represents the total number of
theorems contained in each subdirectory. Our tool significantly
outperforms CoqHammer. It’s important to realize that, Co-
qHammer only solve 691 of the proofs in the same test set, but
we can solve 1278 proofs, which is a 1.8X improvement over
CoqHammer. This demonstrates that our system can generate
effective proof scripts and can be used to prove theorems
previously not provable by automatic methods.

VIII. CONCLUSION

In this paper, we have studied automated proof of theorems.
We propose a context-aware method for theorem proving script
generation. Experimental results on AutoMagic confirm the
effectiveness of our method for synthesizing complete proofs
automatically.
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[15] Laura Kovács and Andrei Voronkov. First-order theorem proving and
vampire. In International Conference on Computer Aided Verification,
pages 1–35. Springer, 2013.

[16] Xavier Leroy. Formal verification of a realistic compiler.
[17] Pierre Letouzey. Extraction in coq: an overview. In Proceedings of

the 4th conference on Computability in Europe: Logic and Theory of
Algorithms, 2008.

[18] Andrew McCreight. Practical tactics for separation logic. In Interna-
tional Conference on Theorem Proving in Higher Order Logics, pages
343–358. Springer, 2009.

[19] Lawrence C Paulson. Isabelle: A generic theorem prover, volume 828.
Springer Science & Business Media, 1994.

[20] Lawrence C Paulsson and Jasmin C Blanchette. Three years of
experience with sledgehammer, a practical link between automatic and
interactive theorem provers. In Proceedings of the 8th International
Workshop on the Implementation of Logics (IWIL-2010), Yogyakarta,
Indonesia. EPiC, volume 2, 2012.

[21] Konrad Slind and Michael Norrish. A brief overview of hol4. In
International Conference on Theorem Proving in Higher Order Logics,
pages 28–32. Springer, 2008.

[22] Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise selection
for theorem proving by deep graph embedding. In Advances in Neural
Information Processing Systems, pages 2786–2796, 2017.

[23] Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting
with proof assistants. arXiv preprint arXiv:1905.09381, 2019.


