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Abstract. Neural networks have been applied in various fields, including ste-

ganography (called neural network steganography). The network used for secret 

data extraction is called the extractor. This paper proposes a neural network ste-

ganography scheme using extractor matching. In our scheme, the extractor is a 

publicly available normal network possessed by the receiver, which is used for 

conventional intelligent tasks. Sender connects extractor to another neural net-

work (called cover network), and then trains the connected network to guarantee 

correctly data extraction without decreasing the performance of the original task 

of cover network. During the process of training, the parameters of extractor re-

main unchanged. Specifically, these network parameters are obtained using an 

extraction key. The receiver can correctly extract secret data with the help of 

correct extraction key, while an incorrect key will fail to extract secret data. The 

feasibility of our scheme is demonstrated in experiments. 

Keywords: Steganography, Neural networks, Extractor matching. 

1 Introduction 

As neural network continues to evolve, their capabilities have become more powerful 

and diverse. Neural networks are now extensively utilized in various fields, demon-

strating their wide-ranging applications. Neural networks not only exhibit excellent per-

formance in many traditional tasks, e.g., target track [1], image recognition [2], natural 

language processing [3], but also demonstrate strong performance in steganography.  

Many researchers, like the authors in [4], use neural networks to achieve image ste-

ganography. With the rapid advancement of neural network, it has become increasingly 

common to directly implement steganography within neural networks. Wu et al. in [5] 

proposed a digital neural network watermarking framework, which can both perform 

the original task of the network and embed data within it. The authors in [6] used a 

backdooring technique to train a model that deliberately outputs specific data with a 

trigger. The specific data have no noticeable impact on the primary task for which the 

model is designed.  

In neural network steganography, the sender aims to embed secret data into neural 

network model with tiny impact on the original model. The receiver can extract secret 

data using an extraction network, which is designed for data extraction specially. The 
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extraction network is typically transmitted to receiver with the stego network, as shown 

in Fig. 1. The problem with this framework is the risk of interception by a third party 

during the transmission of extraction network.  

 

Fig. 1. Neural network steganography. 

To mitigate this risk, this paper proposes a novel neural network steganography scheme 

using extractor matching. Extractor is a publicly available normal neural network pos-

sessed by receiver. The sender performs data embedding based on extractor in order to 

make sure the secret data must use extractor for extraction. Matching training can 

achieve it. Extraction key is agreed upon in advance by the sender and receiver. This 

means that extractor and extraction key using for data extraction are available to the 

receiver before the secret data is transmitted.  

By doing so, the sender only needs to transmit the stego network because receiver 

already has extractor and extraction key. In this way, even if extraction key is accessed 

by a third-party during transmission, he cannot extract the secret data because secret 

data has not been transmitted at that time. If both extraction key and stego network are 

obtained by the third party, he cannot know which one is extractor because there are a 

huge number of publicly available normal networks on the Internet, and therefore he 

cannot get the secret data. Similarly, even if the third parties have extractor and stego 

network, they cannot extract valid secret data without extraction key agreed upon by 

the sender and receiver in advance. But receiver can correctly extract secret data by 

extractor with the help of correct extraction key. Wang et al. in [7] proposed a similar 

functionality, which involves extracting additional data without transmitting corre-

sponding key. In this way, the security of steganography can be enhanced. Neural net-

work steganography using extractor matching is designed precisely to avoid the issue 

of data leakage caused by extraction network.  

For certain scenarios, e.g., a general steganographic framework for neural networks 

to achieve covert communication proposed in [8], a multi-source data hiding scheme 

which multiple senders can simultaneously transmit different secret data to a receiver 

in [9]. Utilizing steganography using extractor matching can omit the step of transmit-

ting extracting network to receiver. The non-specific transmission of extraction net-

work greatly reduces the risk of data leakage, as it is very difficult for third parties to 

find extractor in the massive public normal network. 



In this paper, ResNet [10] and AlexNet [11] are used as an example. Neither network 

is necessary. Different networks need to design different embedding and extraction 

schemes. However, the use of a normal neural network is necessary because a publicly 

available neural network with normal functionality is less detectable by third parties 

than a special extractor or cover network, which is used for communication. In this 

paper, AlexNet serves as the extractor owned by receiver and ResNet acts as the cover 

of secret data, as shown in Fig. 2.  

 

Fig. 2.    Steganography scheme using extractor matching 

During the data embedding process, the method described in [12] was employed, which 

involves embedding during the training process. Because AlexNet is a public network, 

the sender can get it directly without the receiver specifically transmitting it. Adding 

the weights of AlexNet to the loss function calculation of ResNet links the two net-

works. The loss function of ResNet is modified to two parts: extraction loss and original 

network loss. AlexNet is a pre-trained network. The weights of AlexNet are used in 

training to calculate the extraction loss with the weights of ResNet, and its weights do 

not change throughout the training process, which ensures that the receiver can use the 

same network to correctly extract secret data. Extraction key is used to obtain the pa-

rameters of AlexNet. The weights of ResNet are constantly changed during training to 

make the loss small enough. This approach helps to maintain the neural network's orig-

inal detection accuracy without significant degradation. Receiver can extract the secret 

data from the stego network by AlexNet. Extraction key is agreed upon in advance by 

the sender and receiver, and it is only used to help extractor for extraction. The innova-

tion and contributions of this paper can be summarized as follows: 

1. This paper proposes a novel neural network steganography method using extractor 

matching. It involves incorporating extractor into cover network to participate in 

data embedding and model training, thereby achieving personalized neural network 

steganography tailored to the receiver.  

2. This paper addresses the transmission security issue of transmission. By considering 

a public normal network possessed by the receiver as extractor, a customized neural 

network steganography scheme is proposed. This scheme achieves the correctly data 

extraction without specially transmitting extractor by the sender.  
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3. The proposed method in this paper does not significantly affect the detection accu-

racy of cover network by embedding secret data during the training process. Satis-

factory results are shown in the experiments section.  

2 Method 

ResNet and AlexNet are both classic models of Convolutional Neural Networks 

(CNNs). In this paper, these two networks are used as examples to verify the feasibility 

of our scheme. The reason for using ResNet is that, in steganography, it is required that 

the cover network be common and that there be a large number of such networks. Such 

a network is secure in transmission, and ResNet is one such commonly available net-

work. AlexNet is used because of its simple structure, which allows the receiver to 

perform as few operations as possible during the data extraction process. The require-

ment for the extractor is to make it easier for the receiver to use it to extract secret data. 

In this paper, the proposed steganographic scheme is implemented on the MNIST 

dataset. Initially, the training of AlexNet is performed, simulating a scenario where the 

receiver possesses a normal network which is capable of recognizing handwritten digit 

images. 

2.1 Data embedding 

This paper aims to embed data into the weights of ResNet during training process. The 

embedding function is 

 𝑽𝑴 = 𝑓(𝑾, 𝑲), (1) 

where 𝑾 is the weights of cover network (ResNet in this paper) using for data embed-

ding, and 𝑲 is the weights of extractor (AlexNet in this paper). Since the sizes of two 

networks’ weights are different, it needs to be standardized during the embedding pro-

cess so that their sizes are the same with secret data. The secret data is a string of binary 

sequences that can be thought of as a two-dimensional tensor. In this paper, tensor is 

standardized by increasing the dimension, retaining the axis while translating the input 

tensor, and modifying the number of neurons. The output 𝑽𝑴 =
[𝑉𝑚(1), 𝑉𝑚(2), … , 𝑉𝑚(𝑡)]𝑇 ∈ [0,1]𝑡, "𝑡" represents the length of secret data. It is also 

the number of neurons in the last dimension after standardization.  

Let secret data 𝑴 = [𝑚(1), 𝑚(2), … , 𝑚(𝑡)]𝑇 ∈ (0,1)𝑡 . The value of 𝑽𝑴  should 

close to 𝑴 as much as possible. This makes the embedded data easy to extract in sub-

sequent operations. To achieve the function, the total loss of ResNet in (2) needs to be 

divided into two parts. One is the extraction loss of secret data, and the other part is the 

original loss of ResNet. 

 𝐿𝑜𝑠𝑠𝑅 = 𝛼 ∙ 𝐿𝑜𝑠𝑠𝑀 + 𝐿𝑜𝑠𝑠𝑟  (2) 

𝐿𝑜𝑠𝑠𝑟  is the original loss of ResNet using for ensuring satisfactory detection accuracy. 

𝐿𝑜𝑠𝑠𝑀 is the mean square error of the value of  𝑽𝑴 and the real embedded data, which 

is defined as 



                                                  𝐿𝑜𝑠𝑠𝑀 =
1

𝑛
∑ (𝑴𝒊 − 𝑽𝑴𝒊

)2𝑛
𝑖=1   (3) 

𝑛 is the number of samples in the dataset. The extraction error and extraction loss are 

not calculated in the same way. However, only if the extraction loss is small enough 

during training can sender guarantee that receiver will extract secret data correctly. Ex-

traction error is the basis for judging whether secret data is extracted correctly. Extrac-

tion loss needs to use the weights of AlexNet to participate in the calculation. Although 

the weights of AlexNet do not change during training, it does affect the training results 

of ResNet. Modifications under the guidance of loss function connect the two networks.  

In (2), 𝛼 is a very significant parameter which balances extraction error and detec-

tion accuracy by controlling extraction loss and original loss of ResNet during training. 

As the value of 𝛼 increases, the extraction error diminishes while the detection preci-

sion decreases. The discussion about the value of 𝛼 will be addressed in Section 3.1.  

2.2 Decoding Network 

In the above subsection, it was stated that the secret data is embedded into the weights 

of ResNet. The data is embedded in the second fully connected layer of ResNet. This 

result was obtained through multiple experimental attempts, and the use of this layer 

has less impact on the original task. Based on the network structure of AlexNet in Fig. 

3, this paper selects the second and third Conv (convolutional) layers, as well as the last 

FC (fully connected) layer for joint training. Again, this selection is the result of exper-

imentation. The experimental result is mentioned in Section 3.2. 

 

Fig. 3. Architecture of AlexNet for MNIST. 

For the receiver, it only needs to use the pre-agreed extraction key to get the weights of 

extractor, and the perform some simple calculations on the weights of cover network 

and extractor. Mathematically, receiver only needs to get the value of 𝑽𝒎 and round it 

to get the secret data. The value of 𝑽𝑴 can be obtained by computing the Hadamard 

product between 𝑾𝑑𝑟 and 𝑲𝑑𝑟, as shown in Fig.4. 𝑾𝑑𝑟 and 𝑲𝑑𝑟 are the parameters 𝑾 

and 𝑲 after standardization referred to in Section 2.1 and normalization referred to be-

low. 𝑾𝑑𝑟 and 𝑲𝑑𝑟  come in different sizes with 𝑾 and 𝑲.  
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Fig. 4. Decoding network. 

In Fig. 4, the value of 𝑾𝑑𝑟 and 𝑲𝑑𝑟 is any real number, but the value of 𝑽𝑴 is a real 

number between 0 and 1. To guarantee the value of 𝑽𝑴𝜖(0,1)𝑡, it is also necessary to 

normalize the Hadama product of 𝑾𝑑𝑟 and 𝑲𝑑𝑟 using the sigmoid function. Cause the 

output range of sigmoid is 0 to 1, after processing the Hadama product with sigmoid, 

the value of 𝑽𝑴 is maintained between 0 and 1. Hadamard product is defined as 

 𝐀 ⊙ 𝐁 = 𝑎𝑖𝑗 × 𝑏𝑖𝑗 (4) 

𝐀  and 𝐁  are both m×n-order matrices. 𝑨 = [𝑎𝑖𝑗]𝑚×𝑛  and 𝐁 = [𝑏𝑖𝑗]𝑚×𝑛 . Since the 

value of 𝑽𝑴 is any real number between 0 and 1, and the value of 𝑴 is 0 or 1, and the 

value of 𝑽𝑴 is designed as close to 𝑴 as possible by continuously adjusting the weights 

of ResNet during training process, the extraction data can be recovered by rounding the 

values of 𝑽𝑴 in (5). Thus, the extraction error can be calculated using (6). In (6), 𝑒 = 0 

means that the secret data are extracted correctly. 

                                                    𝑴𝑟 = 𝑟𝑜𝑢𝑛𝑑(𝑾𝑑𝑟 ⊙ 𝑲𝑑𝑟) (5) 

                                               𝑒 =
1

𝑛𝑡
∑ ∑ |𝑴𝑖(𝑗) − 𝑴𝑟𝑖

(𝑗)|𝑡
𝑗=1

𝑛
𝑖=1  (6) 

3 Experimental Results 

To verify the feasibility of the proposed scheme, this section presents experimental re-

sults and analysis. All the experiments are implemented by TensorFlow and trained 

under the environment of Python 3.6 on a Windows 10 system with an NVIDIA Ge-

Force GTX 1660 SUPER GPU with 14 GB of memory. The Adam optimizer [13] is 

used for optimization.  

3.1 Parameter Determination 

In Section 2.1, it was mentioned that 𝛼 can balance the relationship between extraction 

error and detection accuracy by controlling extraction loss and original loss of ResNet, 

ensuring both are satisfactory. This section will verify this point through experiments. 

In the experiment, a batch size of 20 and a capacity of 2000 bits were set. The second 



and third Conv layers, as well as the last FC layer were used for joint training. The 

detection accuracy of pre-trained AlexNet is hovered around 0.92. The extraction error 

and detection accuracy with different 𝛼 are shown in Fig. 5. 

 

Fig. 5. Extraction error and detection accuracy with different 𝛼, (a) extraction error; (b) detec-

tion accuracy 

In Fig. 5(a), when 𝛼 = 0, the extraction error 𝑒 = 0.4803, which is significantly higher 

compared to 𝛼 ≠ 0. This shows that it is indeed possible to control the magnitude of to 

alter the network’s emphasis of training.  

The experimental results indicate that increasing reduces the extraction error while 

simultaneously decreasing the detection accuracy, consistent with the description in 

Section 2.1 and confirming the rationality of the design.  

According to the Fig. 5, when 𝛼 = 2, the detection accuracy starts to noticeably de-

cline, whereas at 𝛼 = 2, the extraction error is relatively small. This suggests that the 

value of 𝛼 should be taken as small or equal to 2 as possible. Considering these factors, 

it can be concluded that 𝛼 = 2 satisfies the requirements for both detection accuracy 

and extraction error. 

3.2 Determination of Extractor Layers 

Layers of AlexNet using for joint training affects the efficiency of embedding and ex-

tracting. To obtain a good solution, the following experiments were conducted to decide 

which layer to use. The experiments were conducted with a batch size of 20, a capacity 

of 100 bits, and the parameter 𝛼 in (2) being 2. The extraction error, detection accuracy 

and training time with different layers or keys are shown in Table Ⅰ. 
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Table 1. Extraction error, detection accuracy and training time with different layers or keys 

Layers or keys of Extractor 
Extraction 

Error e 

Detection 

Accuracy 

Training 

Time(s) 

None / 0.9371 7.898 

Conv1, Conv2, Conv3 

FC1, FC2, FC3 
0 0.9395 86.807 

Conv1, Conv2, Conv3 

FC2, FC3 
0 0.9259 26.516 

Conv2, Conv3 

FC2, FC3 
0 0.9217 26.572 

Conv2, Conv3 

FC3 
0 0.9349 11.770 

Conv2, Conv3 0 0.8940 11.696 

Random Key Ⅰ 0.171 0.9242 8.020 

Random Key Ⅱ 0.183 0.9234 8.130 

In Table Ⅰ, “None” represents the original ResNet without being connected AlexNet for 

data embedding. “Random Key” refers to using a randomly generated extraction key to 

get the weights of AlexNet. This is to verify whether an erroneous key can assist the 

extractor in data extraction.  

Compared with the original ResNet, it can be observed that embedding secret data 

using AlexNet has an impact on the training time of ResNet. The magnitude of this 

impact depends on which and how many layers of AlexNet are used. The more layers 

are used, the longer training time will be. The training time with the FC layer evidently 

increasing when compared to the results of the experiments without FC layer. This is 

because when FC layers are connected to ResNet, they establish more neural connec-

tions than Conv layers, resulting in greater computational requirements. The experi-

mental results also showed that if only Conv layers are used, the network would sacri-

fice detection accuracy to ensure the correct extraction of secret data. This elucidates 

the rationale behind selecting the second and third Conv layers, along with the final FC 

layer in Section 2.2. By doing so, the training time is effectively reduced without com-

promising the extraction error of secret data and preserving the network's detection ac-

curacy. The last two sets of experiments also demonstrate that only with the use of 

correct extraction key can the secret data be successfully recovered, thereby confirming 

the security. 



3.3 Embedding Capacity and Security 

Embedding capacity is an important evaluation metric in steganography. This subsec-

tion will experimentally explore the embedding capacity of the proposed steganography 

scheme.  

The length of secret data is set as {500, 1000, ......, 6000}. The maximum capacity 

of the network is determined by extraction error and detection accuracy. When both 

values of extraction error and detection accuracy fall within the acceptable range, the 

maximum length of secret data is maximum embedding capacity. When the extraction 

error 𝑒 = 0, it indicates that the secret data can be embedded and extracted correctly. 

The batch size is set to 20, and the parameter 𝛼 in (2) being 2. The second and third 

Conv layers, as well as the last FC layer were used for training. The extraction error 

and detection accuracy with different capacity are shown in Fig. 6. 

 

Fig. 6. Extraction error and detection accuracy with different capacity, (a) extraction error; (b) 

detection accuracy 

In Fig. 6(a), when capacity 𝑡 > 4000, the extraction error 𝑒 ≠ 0. This can be consid-

ered as the embedding capacity of proposed scheme being 4000 bits, which is satisfac-

tory for steganography.  

In terms of the security of the proposed method, this paper proves that it is secure 

enough by comparing the histograms of the parameter distribution of ResNet before 

and after data embedding, as shown in Fig. 7.  The histogram shows that the similarity 

of the parameter distribution before and after data embedding is very high, and it is 

difficult to distinguish between stego and normal networks, so the security is also guar-

anteed. 
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Fig. 7. Histogram of parameter distribution, (a) before data embedding, (b) after data embed-

ding 

The experiments in this section demonstrated the feasibility of the scheme and its suc-

cessful embedding performance. However, further exploration is needed in the future 

to achieve better embedding performance. For example, how to achieve a larger em-

bedding capacity with no impact on the detection accuracy of cover network. 

4 Conclusion 

This paper proposes a neural network steganography scheme using extractor matching. 

The sender and receiver agree in advance on an extraction key, and then sender con-

nects a public normal network called extractor to the other network called cover net-

work for data embedding. Extraction key is used to obtain the parameters of extractor. 

The proposed scheme does not modify the parameters of extractor during data embed-

ding. Extractor is a publicly available normal network possessed by the receiver. There-

fore, there is no need for specially transmitting the extractor by sender, and receiver can 

have the extractor and extraction key before transmission of stego network, making the 

steganography more secure. Receiver can obtain the secret data via extractor with the 

help of correct extraction key, while other keys fail to extract secret data. In this paper, 

AlexNet serves as extractor owned by receiver and ResNet acts as cover network. The 

detection accuracy of the original cover network is not affected while ensuring the cor-

rectly data extraction. This is achieved by embedding data during the training process 

instead of modifying parameters after training.  

For further study, it is hoped to develop more neural network for steganography us-

ing extractor matching. Expand the choices for data embedding beyond just the weight 

of cover network, making the data embedding more covert. Additionally, a general 

framework of steganography using extractor matching can be considered.  
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