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Abstract

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its
zeros only at the negative even integers and complex numbers with real part % Many consider it
to be the most important unsolved problem in pure mathematics. It is one of the seven Millen-
nium Prize Problems selected by the Clay Mathematics Institute to carry a US 1,000,000 prize
for the first correct solution. The Robin’s inequality is true for every natural number n > 5040 if
and only if the Riemann hypothesis is true. We demonstrate the Robin’s inequality is possibly to
be true for every natural number n > 5040 which is not divisible by 2, 3 or 5 under a computa-
tional evidence. Indeed, we have checked this for every number 10°7 > n > 5040 which is not
divisible by 2, 3 or 5. In this way, if there is a counterexample for the Robin’s inequality, then
this should be for some natural number n > 5040 which is divisible by 2, 3 or 5.
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1. Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with real part % Many consider
it to be the most important unsolved problem in pure mathematics [1]. It is of great interest in
number theory because it implies results about the distribution of prime numbers [1]. It was
proposed by Bernhard Riemann (1859), after whom it is named [1]. In 1915, Ramanujan proved
that under the assumption of the Riemann hypothesis, the inequality:

Zk< e’ xnxloglogn
kln

holds for all sufficiently large n, where y ~ 0.57721 is the Euler’s constant and k£ | n means
that the natural number k divides n [2]. The largest known value that violates the inequality is
n = 5040. In 1984, Guy Robin proved that the inequality is true for all n > 5040 if and only if
the Riemann hypothesis is true [2]. Using this inequality, we show a new step forward in proving
that the Riemann hypothesis could be true.
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2. Results

Euler’s totient (phi) function is the number of integers less than 7 and co-prime to it, denoted
by ¢(n) [3]. In general, if n is written as the product of prime factors: n = p® X g” x r° ..., then
the number of co-primes to nis ¢(n) = (p — DX p* ' x (= D) x "' x (r=1) xr"" .. [3].
Definition 2.1. We define another function ¢ such that if n is written as the product of prime

C o = b g 7 = P s 4 _T
factors: n = p* X q° X ¥°. .., then the value of ¢(n) is ¢(n) = o1 X @D X oen
Theorem 2.2. For every natural number n, we obtain that n = ¢(n) X ¢(n).
Proof. This is true as a consequence of the definitions of these functions. O

Theorem 2.3. For every natural number n > 2, the inequality
Z k < o(n) xn
kln

is true.

Proof. We know that

D gt =n

kln

is true [3]. If we multiply both sides of this equation by ¢(n), then we obtain that

Z @(n) X ¢(k) = p(n) X n.

kln

D k=D k) x 9(k)

kln kln

In addition, we know that

as result of Theorem 2.2. However, we know that

D ety x ¢k < 3 gln) X 9(k)

kin kin

since we have that ¢(k) X ¢(k) < ¢(n) X ¢(k) for every divisor k of n > 2. Using the transitivity,
we finally have that
Z k < ¢(n) X n.

kln
[

Definition 2.4. A number will be a simple primorial if it is prime or it is the product of prime
numbers. For the j' prime number p i = 7 (jis equal to 1 for the prime 7), the incomplete

primorial p # is defined as the product of the first j primes without the numbers 2, 3 and 5.

Theorem 2.5. A computational verification shows that for every simple primorial number n > 7,
the inequality
o(n) < e’ xloglogn

is possibly to be true. We have study this behavior for every simple primorial number n > 7
lesser than 10°"7,
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Proof. We have checked that the value of s(n)
s(n) = ¢’ X loglogn — p(n)

is always greater than O for the first simple primorial numbers n > 7. It is trivially that for every
prime number n > 7, the number 7 has the smallest possible value of ¢(n). Based on this trivial
argument, we can see that for every product of j prime numbers which are greater than or equal
to 7, then the incomplete primorial p # has the smallest possible value of ¢(n). Consequently,
we only need to study the value of s(n) evaluated in the incomplete primorial p # for every
Jj = 1. We computationally analyze this behavior and we note that this tends to be greater than
0 as long as the incomplete primorial p # increases its value. Certainly, we study this behavior
for every incomplete primorial p # lesser than 10°". In this way, we have check this for every

simple primorial number 7 > 7 lesser than 10’77 at the same time. Therefore, we obtain that the
inequality

o(n) < € xloglogn
should be possibly true for every simple primorial number n > 7. O

Theorem 2.6. The Robin’s inequality is possibly to be true for every natural number n > 5040
which is not divisible by 2, 3 or 5 under a computational evidence.

Proof. This is a direct consequence of Theorems 2.3 and 2.5. From the Theorem 2.3, we have
that if we prove
p(n)xn< e’ xnxloglogn

for all n > 5040, then we could prove the Robin’s inequality since we have that

Zkﬁgo(n)xn.

kln
If we divide by n, then we would have that we only need to prove
w(n) < e’ xloglogn.

By a computational evidence, we know that this should be true for every simple primorial number
n > 7 due to Theorem 2.5. Note that, ¢(n) is the same as ¢(m) when n and m have the same prime
factors. Indeed, if we prove the inequality for every n that is a simple primorial, then we are
proving the same for every other number m with the same prime factors, because of loglogn <
loglogm. As a consequence, we have checked this for every number 10°”7 > n > 5040 which is
not divisible by 2, 3 or 5 according to Theorem 2.5. O

3. Conclusions

The practical uses of the Riemann hypothesis include many propositions known true under
the Riemann hypothesis, and some that can be shown equivalent to the Riemann hypothesis [1].
Certainly, the Riemann hypothesis is close related to various mathematical topics such as the
distribution of prime numbers, the growth of arithmetic functions, the Lindelof hypothesis, the
large prime gap conjecture, etc [1]. In this way, a possible proof of the Riemann hypothesis
could spur considerable advances in many mathematical areas, such as the number theory and
pure mathematics [1]. This paper shows if there is a counterexample for the Robin’s inequality,
then this should be for some natural number n > 5040 which is divisible by 2, 3 or 5. We know if
the Robin’s inequality is false for some natural number n > 5040, then the Riemann hypothesis
could be false. In this way, we provide a proof that could help in that direction.
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