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Abstract— Geometric navigation is nowadays a well-
established field of robotics and the research focus is shifting
towards higher-level scene understanding, such as Semantic
Mapping. When a robot needs to interact with its environment,
it must be able to comprehend the contextual information
of its surroundings. This work focuses on classifying and
localising objects within a map, which is under construction
(SLAM) or already built. To further explore this direction, we
propose a framework that can autonomously detect and localize
predefined objects in a known environment using a multi-modal
sensor fusion approach (combining RGB and depth data from
an RGB-D camera and a lidar). The framework consists of
three key elements: understanding the environment through
RGB data, estimating depth through multi-modal sensor fusion,
and managing artifacts (i.e., filtering and stabilizing measure-
ments). The experiments show that the proposed framework
can accurately detect 98% of the objects in the real sample
environment, without post-processing, while 85% and 80% of
the objects were mapped using the single RGBD camera or
RGB + lidar setup respectively. The comparison with single-
sensor (camera or lidar) experiments is performed to show that
sensor fusion allows the robot to accurately detect near and far
obstacles, which would have been noisy or imprecise in a purely
visual or laser-based approach.

I. INTRODUCTION

To boost navigation autonomy and contextual awareness of
mobile robots in unstructured environments, geometric infor-
mation collected from the surroundings and the associated se-
mantic data play key roles. The latter, in particular, includes
qualitative environment information that can contribute to
improving the robot’s autonomy for navigation, task planning
and manipulation, and simplifying human-robot interaction
(HRI). This problem is tackled in the Semantic Mapping
field, which aims to organize objects into classes and com-
pute their pose and shape in a specific fixed reference frame.
In this way, the environmental geometric information is
supported by high-level features which increase the robot’s
awareness of the environment. In our specific case, we deal
with the object detection and localization problem, which
nowadays is widely investigated. For instance, in the last
Darpa Subterranean Challenge1, the main objectives were
multi-robot exploration and object mapping in unknown
environments, and the overall score was calculated based on
the number of correctly detected and localized objects on the
map.

†Intelligent and Autonomous Systems, Leonardo Labs, Genoa, Italy
‡HHCM & HRII, Istituto Italiano di Tecnologia, Genoa, Italy
§Industrial Innovation, DISI, Università di Trento, Trento, Italy
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Fig. 1. An example of the framework during an experiment. On the left,
is the visual application where objects are shown with a landmark and a
spherical region of interest for the location in the Rviz visualization tool. On
the top right, is the instance segmentation inference of the image taken from
the robot camera while on the bottom right is the external representation of
the experimental scene.

Different works were proposed to cope with the semantic
mapping problem. Most recent results in robotics are facing
the problem of using only RGB data and some interactive
structures to be compliant with dynamic environments [1]
while others rely on RGB-D data exploiting older algorithmic
strategies (e.g. PnP algorithm) [2]. In autonomous driving,
the RGB camera and lidar sensor fusion for semantic under-
standing is a currently tackled problem [3]. For a broader
evaluation of the literature review see Sect. II.

Independently of the approaches used in robotics litera-
ture, the first thing which stands out is that most of them
rely only on camera sensors. Cameras can give lots of
dense information to the user especially if paired with depth
data. However, their accurate depth range is within a few
meters, leading to heavy depth measurement errors as the
distances increase, especially if the robot is moving. This is
particularly true for outdoor and vast indoor environments
(e.g., warehouses), where depth cameras are limiting and
object semantic mapping remains a major challenge for
far distances. In these cases, lidar sensors are an essential
camera partner, allowing to have precise depth measurements
for a wider distance range. Rather, in autonomous driving,
the lidar and the RGB camera are nowadays commonly
used but depth cameras are not considered due to their low
resolution in the wide outdoor areas commonly faced in
driving scenarios.

Another aspect not considered in most of the robotics
examined works is that they do not account for limited re-
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Fig. 2. This figure represents the whole Artifacts Mapping pipeline. The
top block groups the sensors’ data readings: (a) camera RGB image, (b)
camera depth image and (c) lidar point cloud. At the bottom, there are
(d) the RGB image inference performed with a Deep Neural Network for
instance segmentation, (e) the multi-modal sensor fusion for detection and
localization which uses as input the camera depth, the lidar point cloud
and the Neural Network inference, and (f) a representation of the artifacts
manager state-machines used to handle the sensor fusion detections and
stabilize them.

sources applications which should run on embedded devices
(e.g. Nvidia Jetson Nano2). Furthermore, Semantic Mapping
is often used in the context of grasping or augmented
reality scenarios while this work proposes an application for
detecting and localizing objects (a.k.a artifacts) for high-level
navigation tasks.

In our work, we aim to merge robotics and autonomous
driving applications’ strengths and present a modular archi-
tecture for semantic mapping3. We provide a multi-modal
(camera-lidar) online semantic mapping framework which
can fuse sensor information in real-time depending on the
object distance and sensor’s accuracies. We use image se-
mantic information to enrich objects’ filtered and stabilised
positions to have precise object localization. The artifacts’
shapes are simplified as spheres but they will be improved in
future development. Our work relies on external geometric-
based navigation frameworks such as SLAM algorithms or
other localization algorithms (e.g., AMCL [4]).

The proposed application demonstrates good accuracy for
both near and far objects thanks to the camera-lidar depth
fusion which, as far as the authors know, was not examined
in other robotic or autonomous driving semantic mapping
works. The application operates online also on low resources
embedded systems (see Sect. IV-B) which strengthens the
contributions of this paper. Moreover, we developed a Rviz4

application which improves the user experience (UX) for
visualization and interaction with the objects and the robot
(see Fig. 1). The authors will provide on-demand a Docker
application5 as an added contribution, for running the arti-
facts mapping applications in simulation or on a robot (see
Sect III-A-III-B and Sect. III-C).

The paper is divided as follows. In Sect. II a literature

2Nvidia Jetson Nano: https://developer.nvidia.com/
embedded/jetson-nano-developer-kit

3Artifacts Mapping Youtube videos: https://www.youtube.com/
playlist?list=PLdibjJfM06zugiWd-yUcdGH-SRWKTA3nQ

4rviz: http://wiki.ros.org/rviz
5The authors will grant access to a Docker image with the compiled

application upon acceptance of the paper, based on the Freeware license.

review of some recent works in semantic mapping is pre-
sented. The framework developed for this work is explained
in Sect. III. We can distinguish the framework pipeline as two
perception modules and a manager one. The first perception
module performs 2D object detection while the second aims
to estimate 3D artifacts position by fusing camera and lidar
depth information (see Sect. III-A). The last module is
needed to stabilize the perception estimations and to filter
out noisy outliers (see Sect. III-B). An application of the
presented framework (see Sect. III-C) is proposed based
on two steps: (i) the robot can autonomously classify and
localize objects on a map and save them in a specified
format, (ii) the robot can load the artifacts as way-points
on the map and the user can interactively select them to
command the robot moving in that place to successively
accomplish various kind of tasks such as manipulation,
grasping, inspections or others. In Sect. IV the experiments
to validate the framework are evaluated and discussed, and
in Sect. V the conclusion and some future improvements are
provided.

II. RELATED WORKS

In literature, the semantic mapping problem was addressed
using several approaches both in robotics and autonomous
driving fields. Different surveys were presented that analysed
this topic from various points of view. In [5] the authors
explored the semantic mapping application in a human-robot
collaboration scenario in an indoor environment while in
[6] the semantic SLAM problem is presented in a general
fashion analysing the works also in terms of perception,
robustness, and accuracy. In [7], the less recent semantic
mapping works are reviewed (i.e., before 2014). This survey
is a good reference to analyse the first development for the
semantic mapping problem which yielded the more recent
applications.

Among the modern semantic mapping approaches pre-
sented in robotics literature in the last decade, some first
successful examples are [8] and [9]. In [8] the authors
presented a monocular SLAM system that uses a SURF [10]
feature extractor to check correspondencies and reconstruct
the object’s geometry. Instead, the authors in [9] showed
an object-oriented 3D SLAM based on an ICP [11] object
pose refinement and demonstrated that the introduction of
semantic objects in the SLAM loop improves performances.
the authors in [12] developed a monocular SLAM-aware ob-
ject recognition system based on multi-view object proposals
and efficient feature encoding methods giving as output a
semi-dense semantic map. In [13] the authors proposed a
framework which directly manages 3D objects. They use
a Kinect6 camera to reconstruct the 3D environment from
different points of view and classify them while estimating
their pose. In [14] the Data Associated Recurrent Neural
Networks (DA-RNN) is introduced, which is an RNN for
semantic labelling of RGB-D videos. The network output

6Microsoft Kinect camera https://en.wikipedia.org/wiki/
Kinect
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is fused with the KinectFusion algorithm [15] to merge
semantic and geometric data. In [16] a Convolutional Neural
Network (CNN) is used along with the ElasticFusion SLAM
algorithm [17] to provide long-term dense correspondences
between RGB-D video frames even in loopy trajectories. The
authors in [18] leveraged ORB-SLAM2 [19] to reconstruct
the geometric environment while using Single-Shot multi-
box Detector (SSD) [20] along with an unsupervised 3D
segmentation algorithm to place objects in the environment.

Moving towards more recent works, in [21] is presented
the Contextual Temporal Mapping (CT-Map). They modelled
the semantic inference as a Conditional Random Field (CRF)
to account for contextual relations between objects and
the temporal consistency of their pose. MaskFusion [22]
is a real-time object-aware semantic and dynamic RGB-D
SLAM algorithm. The greatest difference with respect to
its predecessors is that it can cope with dynamic objects
by continuously labelling them. Fusion++ [23] performs an
object-level SLAM based on a 3D graph map of arbitrary
reconstructed objects. They used RGB-D cameras, Mask-
RCNN [24] instance segmentation and the Truncated Signed
Distance Function (TSDF) to perform the semantic recon-
struction. In [25] is presented an approach that incremen-
tally builds a volumetric object-centric map with an RGB-
D camera. They used an unsupervised geometric approach
with instance-aware semantic predictions to detect previously
unseen objects. They then associated the 3D shape locations
with their classes if available and integrate them into the
map. This approach has limited time performances to be
used on a mobile robot because it runs at 1 HZ so it could
be impractical in real-time. Conversely, in [26] the authors
obtained a real-time dense reconstruction and semantic seg-
mentation of 3D indoor scenes. They used an efficient super-
voxel clustering method and conditional random fields (CRF)
with higher order constraints from structural and object cues,
enabling progressive dense semantic segmentation without
any precomputation. The CRF infer optimal segmentation
labels from the prediction of a deep neural network and
runs in parallel with a real-time 3D reconstructor which
utilizes RGB-D images as input. In [27] an open-source C++
library for metric-semantic visual-inertial SLAM in real-
time is presented. They provide a modular code composed
of a visual-inertial odometry (VIO) module, a pose graph
optimizer, a 3D mesh-building module, and a dense 3D
metric-semantic reconstruction module. The authors in [28],
used a UAV equipped with a lidar, an RGB camera and
a thermal camera to augment 3D point clouds and image
segmentation masks while also generating an allocentric
map.

One of the last available works which focus on this topic
is [1] which presented a semantic mapping framework which
uses only RGB data. They did not accomplish only object
mapping but they provided a framework that can also distin-
guish different rooms and buildings. They exploited the 3D
dynamic scene graphs [29] to abstract the different layers of
inference (i.e. object, room and building), to solve problems
such as loop closure detection and to cope with the mapping

problem. Instead, the authors of [2] used RGB-D cameras
to reconstruct an allocentric semantic map. They used a
keypoint-based approach for pose estimation using a CNN
keypoint extractor trained on synthetic data. Object poses
were recovered from keypoint detections in each camera
viewpoint with a variant of the PnP algorithm. The outputs
obtained from the multi-camera system were then fused using
weighted interpolation.

In autonomous driving, the multi-sensor fusion problem
for 3D object detection is faced in [3] which uses lidar
and RGB camera sensors to estimate the objects positions
in the environment through ground estimation and depth
completion. They use an end-to-end approach to train their
multi-task network. The authors in [30] build a semantic map
with a laser-based semantic segmentation of the point cloud
not requiring any camera data. In [31], the authors provided
a lidar-based SLAM for the geometric mapping and then use
a CRF to fuse and optimize the camera semantic labels to
obtain the semantic map. Instead, in [32], the camera and
lidar data are used to build a probabilistic semantic octree
map considering all the uncertainties of the sensors involved
in the process. The authors in [33] presented one of the latest
works in autonomous driving semantic mapping. They use an
RGB camera and a lidar to perform semantic segmentation,
direct sparse visual odometry and global optimization to
include GNSS data in the mapping process.

Our review of the state-of-the-art indicated that most of
the works on robotics platforms rely only on camera mea-
surements and the experiments are limited to small indoor
environments. Instead, in the autonomous driving scenario
the camera-lidar fusion is already used for semantic tasks
but they rarely use depth cameras, their lidars are generally
more powerful (i.e., they have 128-row lidars compared to
the 16 ones commonly used in robotics) and they test the
application in driving outdoor scenarios which offer different
challenges with respect to robotic indoor once. Hence, with
our work, we aim to stress the fact that RGB-D cameras and
lidars are complementary sensors also in robotic semantic
applications. For the semantic mapping application, we stated
that with both sensors we can correctly localize objects at
different distance ranges, improving detection accuracy.

III. ARTIFACT MAPPING FRAMEWORK

In this section, the whole framework is presented as a
conjunction of two blocks: Sect. III-A for object perception
and Sect. III-B for object managing. In Sect. III-C the
provided UI application is illustrated.

A. Artifacts detection and position estimation

The perception part can be conceptually divided into
two components: (i) 2D object segmentation, (ii) 3D object
position estimation using camera-lidar filtering.

1) 2D object segmentation: In this phase, a deep neural
network [34] is used to infer from RGB images (see Fig. 2a)
some predefined objects’ classes and their masks. During
the navigation, the robot takes pictures of the environment
using the camera mounted on it. The pictures are passed



into an instance segmentation deep neural network which
outputs the classification labels and masks (i.e., a binary
image having 1 where the object is found and 0 elsewhere)
for each object recognized on the image (see Fig. 2d). The
outputs are grouped and passed to the next module which will
convert 2D data into 3D ones. An optional feature provided
in this module is the possibility to filter out classes in real-
time upon request. In this way, the robot can map different
objects online depending on the requirements proposed.
Other implementation aspects will be further explained in
Sect. IV.

2) 3D object position estimation using camera-lidar filter-
ing: This module fuses RGBD camera and lidar measure-
ments to have a precise estimate of the objects’ positions in
the environment. The input is composed of the classification
labels and masks found in the previous module, and depth
information extracted from the camera (see Fig. 2b) and
the lidar (see Fig. 2c). Sensors depth measurements are first
analyzed separately in the following.

The depth image obtained from the camera (see Fig. 2b) is
filtered using the recognized objects masks through element-
wise matrix multiplication. The output, containing only the
depth data of the object plus some sensor noise and environ-
ment outliers, is used to build a 3D point cloud projecting
the 2D image points in the 3D space using the formula in
the equation:xC
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where xC , yC , zC are the 3D point coordinates with respect
to the camera, u, v are the pixels on the image plane and
fx, fy , px and py are the camera intrinsic parameters (focal
distances and sensor’s centre). Note that zC is the depth
measured by the camera depth sensor.

The obtained point cloud is filtered using a voxel grid
downsampling filter7 to reduce the number of points and,
consequently, a radius outlier filter8 is applied to remove
the outliers induced by sensors noises and inference imper-
fections. The final point cloud is then used to compute the
camera artifact centroid XC as the mean of its points.

The 3D lidar centroid estimation is computed as follows.
Projecting the 3D lidar points (see Fig. 2c) in the 2D detected
masks images using Eq. 2, we are able to extract the object
points of interest from the point cloud (i.e., the points which
have the 2D projection inside the mask).
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where RC
L ∈ R3x3 and TC

L ∈ R3x1 are the rotation matrix
and the translation vector between the lidar and the camera,

7voxel grid downsampling filter: https://pointclouds.org/
documentation/tutorials/voxel_grid.html

8radius outlier removal: https://pointclouds.org/
documentation/tutorials/remove_outliers.html

Fig. 3. An example of the contribution weights of camera and lidar for
sensor fusion. The camera weight is in blue while the lidar one is in dashed
green. In the specific example, we considered the specifications of a generic
RGB-D camera you can find on the market: minC = 0.5, accC = 2.0
and maxC = 6.0.

xL, yL, zL are the 3D centroid position with respect to the
lidar and the other parameters are the same of Eq. 1.

The extracted point cloud, representing the noisy artifact,
will be then filtered using a radius outlier filter similar to
the one used for the camera. Both radius filter parameters
are directly dependent on the number of point cloud points
because different distances and sizes of objects affect the
point-cloud density and consequently the filtering. Finally,
the mean of the point cloud is computed to obtain the lidar
artifact centroid XL.

Once both centroid measurements are available, they are
fused in the artifact centroid X following the rules in the
equation:

X =


0 If distC < minC

XC If minC ≤ distC ≤ accC

ξXC + (1− ξ)XL If accC ≤ distC ≤ maxC

XL If distC > maxC ,
(3)

where distC is the euclidean distance between the 3D point
estimates and the camera, minC and maxC are the minimum
and maximum distances the depth camera can perceive, accC
is the distance within which the camera can have accurate
enough measurements to be used alone for the object local-
ization (the camera information are generally provided by
the sensors vendors), XL ∈ R3 and XC ∈ R3 are the lidar
and camera 3D centroid estimates and ξ ∈ [0, 1] ∈ R is the
fusion weight represented by the blue slope of the segments
between accC and maxC in Fig. 3 and it is computed as
follows:

ξ = − 1

maxC − accC
(distC − accC) + 1 (4)

Using the filtered camera and lidar point clouds, a rough
3D radius estimation ρ of the objects is performed. The
camera radius ρC and the lidar radius ρL are computed as
the mean of the two bigger dimensions along the X, Y and
Z point cloud axis. the final radius ρ is computed following
the same centroid fusion rules of Eq. 3 substituting X with
ρ, XC with ρC and XL with ρL.

https://pointclouds.org/documentation/tutorials/voxel_grid.html
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Also, the view angle ϕ of the artifact with respect to the
robot is computed. Such an angle is rotated with respect to
the map reference frame for implementation reasons with
equation:

ϕ = atan2(r21, r11) + atan2(yr, xr) , (5)

where the rij is the entry at row i and column j of the
rotation matrix Rm

r ∈ R3x3 between the map m and the robot
r and xr, yr are the x, y positions of the artifact centroid
with respect to the robot base. The two addends of Eq. 5
represent respectively the heading angle between the robot
and the map and the angle between the robot and the 3D
centroid.

B. Artifacts manager for data association

The manager (see Fig. 2f) is needed to filter out outliers
and to stabilize artifact position estimations provided by the
sensor fusion module. This process is generally known as
data association[5][14]. The manager is composed of two
modules: (i) object position filtering and (ii) object position
stabilization which runs asynchronously in parallel.

1) Position filtering: Using a temporary data structure, the
temporary buffer, we store and filter the perceived artifacts.
Once the manager receives the 3D artifacts position estima-
tions from the perception module (see Sect. III-A), it checks
if the artifacts were already seen before (i.e., the distance
between one of the already seen artifacts and the current one
is less than its 3D radius). If this is the case then the artifact
in the temporary buffer is updated. Otherwise, for each not
previously seen artifact received, the manager creates a new
artifact instance in the temporary buffer. These instances have
their own moving average filter which estimates the average
of the artifact centroid position and its radius with Eq. 6
and computes a variance based on the distances between the
position and the moving average in the filter horizon with
Eq. 7.

µ =
1

N

∑
χ∈ΩN

χ (6)

σ =
1

N

∑
χ∈ΩN

||χ− µ||2 , (7)

where N ∈ N is the number of measurement in the moving
average set ΩN of 3D points, χ ∈ R3 represent the current
3D position measurement, µ ∈ R3 is the 3D mean position
and σ ∈ R represent the variance of the filter.

2) Position stabilization: This module checks the stability
of the artifacts in the temporary buffer and stores stable
artifacts in another similar structure, the stable buffer. If an
artifact in the temporary buffer is stable, the stabilizer moves
the artifact from the temporary buffer to the stable one. An
artifact is considered stable when its moving average filter
variance σ is less than half its 3D artifact radius ρ and at least
half the average filter set ΩN is filled. This means that we
have enough stable object position estimations and the object

position average can be used for fixing the object position
on the map.

At the end of the Artifacts Mapping application, an
additional data association step is performed. The artifacts
belonging to the same class which overlay each other on the
XY plane are merged into a single artifact. This step reduces
the duplicated object which sometimes appears on the map
due to different point-of-view measurements and occlusions.
After that, the stable artifacts buffer is saved in a yaml file
which could be loaded into the user interface application
presented in the next section.

C. User Interface for goal sending

A User Interface (UI) application based on a Rviz plugin
(see Fig. 1) was developed to provide an intuitive visualiza-
tion of the artifacts on the map, to send commands to the
robot for moving near an artifact of interest and to delete
artifacts which the user do not need or are wrong. Such
artifacts can be loaded from the yaml file obtained with the
artifacts mapping application. Through the UI application,
the user can send nav msgs/goal ROS messages which can
be used by the robot to move towards the object (e.g., using
the ROS navigation stack as we do, see Sect. IV). The user
can interact with the artifacts by simply right-clicking on
them on Rviz and selecting the action Go To or Delete. Being
the artifacts centroid position inside the artifacts shapes, the
goal is moved in front of the artifact so that the robot stops
before colliding with the object. The other available option is
artifact deletion. If the user notices that an artifact is wrongly
identified (classification or position) then the user can delete
it and, once the UI application is closed, the loaded yaml
file is updated with the remaining artifacts.

IV. EXPERIMENTS

The experiments are performed both in simulation and
using a real robot in a laboratory environment. The experi-
mental setup is the same: some chosen objects are randomly
positioned in the experiment area and the robot, following a
predefined path, maps the predefined objects it encounters.
This strategy is chosen because the objective is the validation
of the artifacts mapping accuracy during an application,
for example during a patrol. In other application scenarios,
e.g. search and rescue, our framework could run in parallel
with an exploration algorithm and the robot could trigger
the exploration module every time an object of interest is
encountered to obtain a precise localization.

In the experiments, we compare the data fusion with the
mono-sensors application (i.e. using only an RGB-D camera
or only the lidar) to demonstrate that the data fusion highly
improves the detection accuracy and decreases the errors. For
each environment setup, the experiments are repeated three
times, one for each sensors configuration: only camera, only
lidar, and both.

This work focuses only on semantic mapping and does
not account for the robot localization which is assumed
to be given. Additional errors in mapping resulting from
localization are not considered in the final evaluation even if



TABLE I
DETECTION RESULTS OF THE SIMULATION AND REAL EXPERIMENTS.

Simulation Real
Camera Lidar Fusion Camera Lidar Fusion

Correct detection 386 391 416 86 81 99
Wrong localization 12 13 7 10 14 2

Duplication 19 24 15 10 14 6
Wrong classification 0 0 0 7 11 6

Total detections 417 428 433 113 120 113
Total objects 422 101

they negatively affect our application. Moreover, is important
to notice that quadrupedal robots’ movements are jerky and
the sensors can suffer from that.

We set the parameters minC , accC and maxC of Eq. 3
as 0.3, 4, 6 respectively based on the camera hardware in-
formation provided by the camera vendors (Intel Realsense).

The final validation performance is based on the number of
objects which the robot can correctly find over the number of
total objects. Also, the number of correctly-detected objects
over the total number of detections is evaluated. The object
is considered found if the difference between the estimated
position and the real one is less than the real object radius
and the associated class label is correct. The errors are
categorized as duplicated objects, wrong localization and
wrong classification. The duplications occur when there are
more artifacts on a single object. they could be caused by
the wrong artifacts radius computation due to occlusions or
distinct point of view detection (i.e., viewed from different
perspectives: front and behind). The localization is consid-
ered wrong if the artifact’s estimated position is outside the
real object shape while the classification is erroneous if the
artifact’s class label is not correct.

For the simulation, the Whole-body Locomotion Frame-
work (WoLF)[35] is used on a notebook with an Intel®
Core™ i9-11950H processor and an NVIDIA Geforce RTX
3080 Laptop GPU. In the real scenario, a Unitree Go19

quadrupedal robot equipped with a RoboSense RS-Helios16
lidar10, an Intel RealSense D45511 and three Nvidia Jetson12

(two Jetson Nano 4GB and one Nvidia Xavier NX) are
used for the evaluation. The experiments are performed
with the instance segmentation algorithms Yolact++ [34] and
YolactEdge [36] trained on COCO [37] data set.

A. Simulation Experiments

Gazebo13 simulator is used to simulate the robot in two
different environments: the office14 and Maze worlds where a
predefined number of objects are positioned randomly at each

9Unitree Go1: https://www.unitree.com/en/go1/
10RoboSense RS-Helios16: https://www.robosense.ai/en/

rslidar/RS-Helios
11Intel RealSense D455: https://www.intelrealsense.com/

depth-camera-d455/
12Nvidia Jetson: https://www.nvidia.com/it-it/

autonomous-machines/embedded-systems/
13Gazebo simulator: https://gazebosim.org/home
14Clearpath robotics worlds: https://github.com/

clearpathrobotics/cpr_gazebo/tree/noetic-devel/
cpr_office_gazebo

Fig. 4. Percentage of the correctly mapped and labelled objects concerning
the total number of objects on the scene. On the left are the simulation results
and, on the right, are the real experiments. Each block has three histograms
representing the three sensors configurations used during the experiments:
only RGBD camera, only RGB + lidar, and both.

iteration. The chosen objects for the simulation evaluation
are vase, couch, plant and person. Specifically, in the office
world, there are 5 vases, 12 couches, 6 plants and 11 persons
while in the Maze world, there are 15 vases, 13 couches, 12
plants and 12 persons. The robot path is chosen randomly
in advance using some waypoints on the map. In total, for
each sensors configuration, 10 experiments were conducted,
5 for each environment, using different setups, for a total of
30 experiments.

The results of the simulation experiments are shown in the
left part of Fig. 4 in terms of the number of correct detected
objects. Specifically, considering the three ordered sensors
configurations (i.e. only camera, only lidar, and both), we
obtain the 92%, 93% and 99% of correctly localized and
classified objects. Moreover, analysing the total number
of detections produced, we obtain the distribution of the
detections represented in the left column of Table I and the
top part of Fig. 5 for the simulation experiment. Among all
the detection produced, considering again in order the three
sensors configurations, the 92%, 91% and 95% were correct
while the remaining 8%, 9% and 5% of them were wrong.

The farthest object correctly detected in simulation during
the camera-lidar sensor fusion experiments was at 15.47m
from the robot, while the nearest was at 1.23m.

https://www.unitree.com/en/go1/
https://www.robosense.ai/en/rslidar/RS-Helios
https://www.robosense.ai/en/rslidar/RS-Helios
https://www.intelrealsense.com/depth-camera-d455/
https://www.intelrealsense.com/depth-camera-d455/
https://www.nvidia.com/it-it/autonomous-machines/embedded-systems/
https://www.nvidia.com/it-it/autonomous-machines/embedded-systems/
https://gazebosim.org/home
https://github.com/clearpathrobotics/cpr_gazebo/tree/noetic-devel/cpr_office_gazebo
https://github.com/clearpathrobotics/cpr_gazebo/tree/noetic-devel/cpr_office_gazebo
https://github.com/clearpathrobotics/cpr_gazebo/tree/noetic-devel/cpr_office_gazebo


Fig. 5. Distribution of correctly and wrongly detected artifacts among
the total generated detections. The pie charts represent the distribution of
the correctly detected artifacts in green, the doubled objects in blue, the
wrongly localized ones in pink and the wrongly classified ones in red. On
the top row are the simulations results while on the bottom are the real
ones. For each row, experiments are divided into three columns depending
on the sensors configuration used during experiments: only camera, only
lidar, and both.

B. Laboratory Experiments

The real experiments were carried out in a laboratory
setting considering two scenarios, a one-room laboratory en-
vironment and a complete floor environment where the robot
can move through corridors. In these environments were
positioned umbrellas, chairs, cabinets, backpacks and TVs
in variable amounts. For each sensors configuration, A total
of 6 experiments were conducted, 3 for each environment,
for a total of 18 experiments. For each trial, the objects
were randomly moved and the illumination changed, i.e.,
switching off lights or closing shutters.

The results of the laboratory experiments are shown in
the right part of Fig. 4 in terms of the number of correct
detected objects. Specifically, considering the three sensors
configurations in order (i.e. only RGBD camera, only RGB
+ lidar, and both), we obtain respectively the 85%, 80% and
98% of correctly localized and classified objects. Moreover,
analysing the total number of detections produced, we obtain
the distribution of the detections represented in the right
column of Table I and the bottom part of Fig. 5 for the
real experiment. Among all the detection produced, the 76%,
68% and 88% were correct while the remaining 24%, 32%
and 12% of them were wrong.

The farthest object correctly detected during the camera-
lidar sensor fusion experiments was at a distance of 10.37m
from the robot, while the nearest was at 0.98m.

C. Discussion

The first thing to point out is that the farthest distances of
the detected object were greater than 10m both in simulation
and in real experiments. We take into account this distance to
show a qualitative comparison between the lidar and RGB-D
measurement in Fig. 6. The figure qualitatively upholds the
thesis that a lidar sensor along with the camera is necessary
to improve semantic mapping and, in general, other detection
algorithms in wide areas. Moreover, from the results obtained

Fig. 6. Qualitative comparison between RGB-D camera (left image) and
lidar (right image) point cloud detections at an approximate distance of 10m
from the wall. At the bottom centre, there is the representation of the scene
taken with the robot camera at that time instant. At large distances, the
camera data are noisier and less accurate with respect to the lidar one but at
small distances cameras provide a denser accurate point cloud while lidar
data are sparser. From this comparison can be deduced that a visual-lidar
sensor fusion can enhance semantic mapping.

from the experiments, it is clear that in our framework the use
of both sensors improves the robustness of the application
and decreases the detection errors. These improvements are
less evident in a simulation environment where we used
almost ideal sensors, i.e. the noise representation is not
realistic as in Fig. 6. Still, it impacts real scenarios where
there is more sensor noise.

The lidar can map far obstacles precisely while the camera
introduces lots of errors at high distances. If we adopt only
the camera, one solution to avoid erroneous measurements
could be to not consider the depth measurement out of the
accurate range guaranteed by the device specifications. By
the way, by doing this the robot could miss some artifacts if
it does not get close enough to them.

The camera, by providing more information at near dis-
tances with respect to the lidar, yields more precise centroid
computations because it has fewer outliers than the lidar.
Lidar outliers can be caused by wrong camera-lidar pose
calibration and time synchronization which are essential for
these applications especially when the robot moves fast.
Instead, with RGBD cameras, the depth and the RGB images
are synchronized in time and can be spatially superimposed
almost exactly.

It is important to notice that wrong classification errors
result from erroneous classifications in the pre-trained in-
stance segmentation neural network which can be caused by
illumination, reflections or other environmental conditions.
They are here considered because the image inference is
a module of the proposed pipeline but such errors can be
decreased using more powerful neural networks.

V. CONCLUSION

We presented a framework which uses multi-modal sen-
sors fusion to tackle the semantic mapping problem which
is a rare setup in robotics applications. We fuse the lidar and
RGB-D camera sensor readings to achieve better accuracy
both for near and far objects as opposed to camera-only
systems which lose accuracy for distant objects or lidar-
only which lack high-level texture understanding of the
environment.



We proposed a UI application to interact with the artifacts
map obtained during the mapping application. This applica-
tion is useful to perform autonomous high-level decision-
making tasks because it exposes the object’s class and
location to the robot and the user.

The experiments showed that our application can correctly
detect, localize and map the 98% of the objects present in
the scene at different distances providing a small number
of detection errors and good localization accuracy. The
comparisons with the single-sensor scenario (only camera
or only lidar) proved that sensor fusion is essential for wide
areas and high-accuracy applications.

There are different future improvements we planned for
this framework: (i) evolve the algorithm to an independent
graph-based SLAM system, (ii) use 3D semantic point clouds
with oriented bounding boxes and dimension information for
better visualization and object understanding, (iii) deal with
dynamics obstacle.
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