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Abstract—This paper considers the integrated localization for
the mixed near-field (NF) and far-field (FF) sources using the uni-
form linear array (ULA). With the help of the polynomial rooting
methods and the propagator, an efficient algorithm is proposed
to provide an integrated estimation of the direction of arrival
(DOA) and the ranges of the sources. It takes low computational
burden without the requirements that separating the DOA and
range information or pre-classification of the sources. We first
construct two special fourth-order cumulant matrices using the
received array data, then extract the prior-electrical parameters
related to the array elements by its steering matrix, and finally
carry out parameter matching and classification. Besides, the
proposed algorithm eliminates the need for tedious eigenvalue
decomposition and spectral search steps, and has almost no
aperture loss. Eventually, several simulation results show that the
proposed algorithm has lower computational complexity under
an acceptable accuracy, compared to the state-of-the-art methods.

Index Terms—Sources localization, array signal processing,
mixed sources, mixed-order statistic.

I. INTRODUCTION

Sources localization using sensor arrays is already an impor-
tant part of array signal processing for many applications such
as sonar, radar and microphone arrays [1]. Up to now, many
literatures investigate the direction of arrival (DOA) estimation
of far field sources (FFSs) which satisfy ideal FF conditions
[2]-[5], or the localization of the near-field sources (NFSs)
[6]-[10]. However, when the FFSs and the NFSs coexist, the
above algorithms may fail or miscalculate in some practical
applications such as the speaker localization in a microphone
array [11].

To deal with this issue, many effective methods have
been proposed. The two-stage MUSIC algorithm (TSMUSIC)
in [11] utilizes the high degree of freedom characteristics
of the fourth-order cumulant, but the spectral search and
eigenvalue decomposition (EVD) of cumulant matrices have a
huge computational burden [12]. To reduce the computational
complexity, an oblique projection method based on the second-
order statistics (MBODS) was proposed in [12], which utilizes
the anti-diagonal elements in the covariance matrix. Based on
the MBODS, a rooting algorithm and an idea using second-
order statistics without oblique projection were proposed in
[13] and [14], respectively. The former avoids spectral search
and the latter improves the estimation accuracy. A method that

constructs three fourth-order cumulant matrices was proposed
in [15], which divides a linear array into two arrays with
different centers, and locating according to the geometric
relationship. Another commonly used approach, known as the
spatial difference method was proposed in [16], [17], which
utilizes the property that the receiving covariance matrix of the
FFSs is a Toeplitz conjugate symmetric matrix. In addition, the
higher-order difference algorithms separate FF and NF sources
through differential construction and transformation [18], [19].
The work in [20] utilizes the pseudo-orthogonality between
the steering vectors of the fourth-order cumulant matrix by
using mixed order statistics (MOS). Also, the propagation
operator and QR decomposition were used in [21] to estimate
the oblique projection operator and eliminate the FFSs from
the received signals.

However, all the above algorithms either separate the DOA
and range information of the sources, or estimate the param-
eters of FFSs and NFSs separately. The former may lead
to the detection of false sources in special scenarios (for
example, the sources of the FF and NF share the same DOA),
while the latter requires pre-classification of the sources before
the estimation. Moreover, the above algorithms need to use
spectral search or EVD in application, which has a huge
computational burden.

In this paper, we propose a novel mixed-order-based inte-
grated localization method (IMOS). Unlike the MOS-based
method [20], IMOS does not need to perform eigenvalue
decomposition or spectral search on the covariance matrix, and
does not need to approximate the kurtosis of the cumulant
matrix. We first construct two cumulant matrices rationally,
then extract the information of DOAs and ranges of all sources
from the cumulant matrices integrally, which neither estimates
the DOA and range of the source separately nor pre-classifies
the sources. Moreover, by using the propagator and rooting
method, the proposed algorithm avoids spectral search and
EVD, therefore requires a lower computational burden in real-
time signal processing applications.

II. MODEL AND PRECONDITIONS

Assume that there are K narrowband and independent
sources (FFSs or NFSs). The signals transmitted by these
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Figure 1. Uniform linear sensor array and the propagations of signals

sources impinge on a symmetric uniform linear array (ULA)
with N = 2L+1 sensors and distance d between two adjacent
sensors, as shown in Fig. 1. The sensors are labeled from —L
to L, and let the center of the array (the sensor labeled as 0)
be the phase reference point. Then, the signal received by the
Ith sensor at time index ¢ has the following form as [11],

K

xi(t) = sp(t)ed ™ 4 ny(t),

k=1
where —L <[ < L,t=1,...,T, and T is the number of
snapshots. The s (t) denotes the kth source signal waveform,
ny(t) represents the Ith sensor noise, and 7y, is the phase shift
from the kth source to the /th sensor due to propagation delay,
which has the following form

ey

ik & Iy + P, (2)
Here, the electric angles ~y;, and ¢, are given by
2md
Y = — 50 siny, 3)
A
and
d2
B, = ~—cos*y, (4)
)\’I“k

respectively, where A is the wavelength, 0, € [—7/2,7/2]
denotes the DOA of the kth source, and 7, is the range of the
kth source.

Then, the receive array data in (1) can be rewritten in a
matrix form,

x(t) = As(t) + n(t), ®)

where z(t) and n(t) are (2L 4+ 1) x 1 complex vectors,
x(t) = [&_1(t), ..., 2o (t), ..., (1)] ", (6)
n(t) = [n_p(t),..,not),...n (1), @)

and steering matrix A and sources vector s(t) can be written
as

®)
©))

A=la(n,01) - a(vky,Pkn) - 0(VK, OK)]s
s(t) =[s1(t) - sxy (1), Skpy41(t) - sk (D],

respectively, where
aly, dp) = [dCEmtLon) | i Lt LRo01T - (10)

and Ky represents the number of NFSs that lie in Fresnel
region, i.e., r € [0.62 (DB/)\)I/Z, 2D? /)] in K sources. Here,
D= 2Ld represents the array aperture.

For the rest of the paper, the following basic assumptions
are required as [9], [15], [18], [20]:

Assumption 1. The array has been well calibrated, to avoid
phase ambiguity, the distance d between two adjacent sensors
of the uniform linear array satisfies the relation d < /4.

Assumption 2. The signals {sy(¢)}/ | are mutually statisti-
cally independent, complex non-Gaussian fourth-order narrow-
band stationary processes with nonzero kurtosis.

Assumption 3. The sensor noises {n;(t)},_, are zero-mean,
additive (white or color) Gaussian processes with variance a?l
and statistically independent from the impinging sources.

Assumption 4. The number of all sources K is assumed to be
known, the numbers of FFSs or NFSs are unknown.

III. PROPOSED METHOD

In this part, we develop a new method for mixed FFSs
and NFSs localization using mixed-order statistics. In order
to locate the sources, it is necessary to represent the DOA
and range information of the sources in matrix forms that
can be solved from the array data at first. We use the high
degree of freedom of the fourth-order statistics to construct
two special cumulant matrices. According to (3) and (4), we
can evaluate the DOAs and ranges of sources by estimating
v and ¢. Several methods evaluate 7, from the cumulant
matrix directly [11], [15], [20], [22], [23], which will cause the
loss of the information of ¢ and make it difficult to estimate
later. Then, we extract the prior information of DOAs and
ranges of all sources from the cumulant matrices and make an
integrated estimation. Finally, The matching and classification
are arranged by using the second-order statistics. Moreover,
the use of propagator can avoid eigenvalue decomposition
without losing accuracy and save computing resources [24].

A. Construction of Two Special Cumulant Matrices

Based on the data model and assumptions, we first define
the fourth-order cumulant using array outputs as follows [11],
(201, [22],

cumn {zy, (), 2, (t), 25 (t), 24 () }

K K *
= cum {Z Sk(t)ej(m'}’k+m2(f)k)7 <Z sk(t)ej("7k+n2¢k)> ’
k=1 k=1
K *
(Z si(t)ed (7 +p”¢k>> S s()ed(mwraion) }
k=1 k=1

_ XK: G {lom=m) ==yt (m*—n?) = (»*~a)], }
k=1
x cum {sg(t), sk (t), si. " (t), s (t)}
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In (11), there is no need to consider the noise
component because the cumulant of Gaussian noise is
equal to zero when the order greater than 2. Here,
e s, =cum{sy(t), sg™(t), sx™(t), s, (¢)} is the kurtosis of the
kth source.

Based on (11), we denote by w and v the labels of the
sensors, and let u,v € [-L + 1, L — 1]. We use array outputs
to construct two new cumulants as

cum {2, (t), 25_, (1), 25 (1), 21— (t) }

K
=)y, 2O (ej2vm+¢k))* o aw
k=1
cum {a, (t), 2%, (), 2} (t), 21— (1) }
K
= 204 SkejQu,(%—m) (eﬂ"(w’c_‘i”“))* . (13)
k=1

Let w = u+ L € [1,2L — 1] and v = v+ L €
[1,2L — 1], then we construct two special cumulant matrices
Cl c (C(2L71)><(2L71) and 02 c (C(2L71)><(2L71) which
contain both the DOAs and the distances information of
sources. The (@, U)th element of C; and C- have the following
form

Ci(@,7) = com {wa_ (1), 25 (1), 251 (). 2151 (D)}

K
=) ey, @P2E DR (e.iQ(E—L)(vwm))
k=1

*
9

(14)

o1, ) = cum {ara_ (1), g (D). 25 (0,01 psr (1)}

K *
= Zc4skej2(ﬁ—L)('Yk_¢k) (ejQ(B—L)(%—qbk)) ’
k=1
(15)

Based on Assumption 2, the cumulant matrices C; and Cs
can be written in the matrix form as

C, = B,C,sB{. (16)
and

C> = B>Cy;BY, (17)
where Cyy = diag[css,,...,cas,] € REXE By =
[bl (91,7’1),...,1)1 (9}(,7’}()] S CRL-1XK and By, =
[by (A1,79),....bs (A, 1K) € CEL=DXEK are virtual steer-

ing matrices with

by 0k, i) = [e*jZ(Lfl)(w#ék:)’ " ejz(Lfl)(’Yk-,erm)] T, (18)
-

ba(Be,ri) = [ T2 V0RO, PETOI0] (1)

It is noted that, the two types of sources cannot be distin-
guished by 7, when the FFSs and NFSs share the same DOA:s,
which results in the rank reduction of the steering matrix [20],

[22], [23], i.e., rank(B) < K. However, the steering matrix
is related to both ranges and DOAs of our work, which avoids
this problem.

B. Extract the Prior Information of DOAs and Ranges

The methods in [11], [15], [20], [22], [23] implement EVD
to separate the main eigenvalues from all eigenvalues to get
the corresponding eigenvectors, then the MUSIC or ESPRIT is
employed to make estimations. However, the calculation of the
eigenvalues is computationally complex and time consuming
in some applications when the number of the sensors is large
[21], [24], [25]. In this part, we employ the propagator method
to avoid implementing EVD.

Assume that K < 2L — 1, then we divide C;, Cy and
corresponding steering matrices B, Bs as follows,

K 2L—1-K K 2L—1-K
— —
Ci=[Ci1, Ci2 ], Cy=[Cs1, Caa ], (20)

K 20—1-K K
~ T N ANy
B, =[Bi1, Bi, ], By=[By1, Bss ], (2D

2L-1-K

where By, € CEXK and By, € CK*E contain the first
K rows of By and Bs, respectively. We can get two linear
operators P; and P» equivalently defined as follows,

Bis=PB;), Bis=P/!B,,, (22)
Ci=0C 1P, Coo =01 P, (23)
and we can get the following relation as
QY B1 = Opr—1-K)xK>
QY B> = O@r-1-K)xK, (24)

where Q; = [P/, _I2L—1—K]T» Q:= [P, —IzL—1—K]T,

-1 —1
P1 = (Cflcli) Cflclg, and P2 = (0510271) CQI_:Il
C' 5. Here we set the relations for convenience as

o = Vi + P, Br =Tk — Gk (25)

The ranges and DOAs of all sources can be calculated from
the prior information «y, and Jj after matching. Obviously,
b1 (0k, 1) and by(0y, 1) are functions of «y and Sy, respec-
tively. The «y and By can be estimated from C; and C,
through minimizing the cost function

f(@) =b1(0)Q1 (QFQ1) ' QPbi(a),  (26)
and

£2(8) = b (3)Q2 (QF Q2) ' QF'ba(8).
C. Matching and Classification

27

Since the o, and [j, are estimated, a pairing and classifying
procedure which calculates the ranges and DOAs of all sources
at the same time is shown below.

1) Construct and partition the array covariance matrix R €
CRL+DX 2L+ which is given by

R=E{z(t)z"(t)} = AE{s(t)s" (t)} A" + 021, (28)



and
K 2L-1-K

A~ =
R=[R,, R, ] (29)

2) Construct noise subspace using propagator [21], and the
cost function is given by

fr(7,0) = a (v,¢)a(y, ¢), (30)

where
I=Qr(Q1Qr) " QL 31)
Qr =[P}, L x] (32)
Prp=(RIR,) ' RIR,. (33)

3) Pairing and estimate -, and ¢ by solving the following
problem,

’?k»ﬂsk: _IIIiIl fR(’77¢)7 kz]—v--'7K7 (34)
1€[1,K]
where
1
T=3 (i + Br), (35)
-1
¢ = 3 (i — Br), (36)
then we can calculate the DOA and range of kth source from
(3) and (4),
N 2
0, = arcsin ( 9rd ) , 37
7d? cos? (ék)
Ty = ————=. (38)

Ay,

When the range of the kth source does not belong to the
Fresnel domain, we discard its range information and judge it
as a FFS. In fact, ¢; would be close to zero if the kth source
is FFS, so we can easily make a distinction between FFSs and
NFSs.

D. Summary of the IMOS

After obtaining the array data with a certain number of
snapshots, the main stages for the IMOS can be described
as follows:

Step 1: Construct C; and C5, and partition them according
to (20).

Step 2: Estimate o, and By from the phase of the K roots of
the polynomial p, (z,) and pg(zs) respectively nearest to the
unit circle in the z-plan in accordance with (26)(27),

Pa (Za) = ZZ(L_l)ng (Za) Ql (Q?Ql)_l Q{{gl (Za) ) (39)
ps (z5) = 25 Vgl (25) Q2 (QFQ2) ™" Qg2 (25), (40)
L

where 9 (za) = [Z _17'--717--~7Z07(L_1)]a 92 (Zﬂ) =

—(L—-1 _94 _94
( ),ZQIBQJQ,Z@:EQJH.

L-1
Zﬁ ) 17 3
Ltep 3: Construct and partition R, use (34) to match ay, and
Bk, obtain v, and ¢y, through (35) (36) at the same time.
Step 4: Calculate DOA and range of kth source from (37)
(38).

E. Discussion

1) Estimation accuracy: The MOS-based method [20] uses
mixed-order statistics as the IMOS. However, the IMOS has
no pseudo-orthogonality restriction when estimating NFS pa-
rameters, thus it has higher estimation accuracy. For DOAs
of FFSs, the error of the IMOS is higher. The TSMUSIC
only makes use of eigenvalues and ignores other vectors of
the cumulant matrix when estimating the ranges of NFSs.
Compared with TSMUSIC, the proposed algorithm has higher
accuracy.

2) Computational complexity: Regarding computational
complexity, we only consider the major part of the computa-
tion that the algorithms consume. According to [11], the TS-
MUSIC algorithm needs to construct two large cumulant ma-
trices and decomposes its eigenvalues when estimating the pa-
rameters, then perform a one-dimensional spectral search. The
computational complexity is O{9(2L + 1)2T+9(4L + 1)>T+
(4/3)K (2L +1)3+(4/3) K (4L + 1)3+(180/A0) (2L + 1)2}.
Similarly, the MOS-based method also needs to perform
eigenvalue decomposition on a second-order covariance ma-
trix and a constructed fourth-order cumulant matrix. It has
a spectral search and a ranges search process, which re-
quires O{(2L + 1)?T + 4(2L + 1) + (180/A0) (2L + 1)* +
9(2L 4+ 1)°T + 4(2L + 1) + (R/Ar)(2L + 1)?}. The pro-
posed IMOS algorithm also constructs two fourth-order cu-
mulant matrices with smaller dimensions while it introduces
the propagator and the rooting method to avoid the eigenvalue
decomposition and spectral search with a high computa-
tional burden. It requires O{18(2L — 1)*T + (2L —1)3 +
(2L —1)’K + (2L — 1)K? + (2L 4+ 1)°T + (2L + 1)K }.
Obviously, the IMOS has a lower computational cost (see the
simulation section for details).

IV. SIMULATION RESULTS

In this part, we compare the IMOS with TS-MUSIC [11]
and MOS-based method [20] and analyze the performance of
the novel algorithm. Without loss of general, we assume that
the ULA has 13 elements and consider a quarter wavelength
inter sensor. The power of all sources to be measured is
equal, and the zero mean additive Gaussian white noise is
uncorrelated with the sources and array elements. We will
use the average root mean square error (RMSE) in 300
independent Monte Carlo simulations to analyze the DOAs
and ranges of NFSs and FFSs under different signal-to-noise
ratio (SNR) or snapshots number. The SNR of the kth signal
is defined as 10log;y(c7/02). The DOA and range are in rad
and wavelength respectively.

In the first simulation, we consider one NFS and one FFS
located at (17°,3\) and (25°,+00) respectively with equal
power. Here, the SNR is varied from OdB to 30dB and the
snapshots number 7'=200 is an invariant value.

Fig. 2 and Fig. 3 show the RMSEs versus the SNR of
estimated DOAs and range individually, including NFS and
FFS. Compared with the other methods, the IMOS has better
performance in estimating the parameters of NFS. For the FFS,
the IMOS is better than TS-MUSIC in DOA estimation, and
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Figure 3. RMSEs of estimated ranges for NFS versus SNR (7'=200).

the MOS-based method utilizing second-order statistics has
less errors in the ideal case. However, it is noted that the MOS-
based method has the worst accuracy of the three algorithms
when estimating the DOA of the NF target.

In the second simulation, the performance of the above
methods is assessed versus the number of snapshots when
we fix SNR=10dB and the number of snapshots is varied
from 200 to 2000. The RMSEs of estimated DOAs and range
are displayed in Fig. 4 and Fig. 5, respectively. From the
figures, we can see that the results are similar to the first
simulation. For the NFS, the IMOS has better convergence
accuracy regardless of the DOAs or range.

Finally, the third simulation is conducted to compare the
computational consumption of the above algorithms. We as-
sume that the number of spectral searchs is 20001 as [11].
The number of targets is set to 2, although its impact on
the computational consumption can be almost ignored. Fig.
6 shows the change of computations (flops) with the number

RMSE/rad

=—©— TS-MUSIC (NF azimuth)

—€— MOS based method (NF azimuth)

——#— IMOS (NF azimuth)

= ©- - TS-MUSIC (FF azimuth)

- 4~ -MOS based method (FF azimuth)

= %= -IMOS (FF azimuth)

10% | | | : ; . . .
200 400 600 800 1000 1200 1400 1600 1800 2000

Number of snapshots

Figure 4. RMSEs of estimated DOAs for NFS and FFS versus snapshots
number (SNR=10dB).
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Figure 5. RMSEs of estimated ranges for NFS versus snapshots number
(SNR=10dB).

of sensors when the number of snapshots is 400, and Fig.
7 shows the change of computations with the number of
snapshots when the number of sensors is 15. It can be seen
from the figures that the IMOS has the lowest computational
consumption among the three, especially when the number
of snapshots is small. These results are consistent with the
discussion in Section III-E.

V. CONCLUSION

In this paper, we consider the localization for the mixed
sources using the ULA. To combat the issues caused by
separating the DOA and range information of the sources or
estimating the parameters of FFSs and NFSs separately, an
integrated localization method based on mixed-order statistic
is proposed. We extract the electrical angles of the constructed
cumulant matrices using the propagator and rooting methods,
then use the second-order statistics for matching. The novel
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method has higher computational efficiency while enabling ac-
curate estimation of sources compared to traditional methods,
which is demonstrated by several simulation experiments at

last.
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