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Abstract. This paper uses the finite element method to study the static bending response of 
stiffened FGM plates resting on a discontinuous elastic foundation. The structure is computed 
using the first-order shear deformation theory coupled with the four-node and two-node 
quadrilateral elements. The accuracy of the method is evaluated by validating the obtained 
numerical results against reference solutions available in the literature. In addition, the effect of 
certain geometrical parameters, materials, and elastic foundations on the static bending response of 
the plate is also researched. This is a reference for the design and practical use of stiffened 
structures. 
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1. Introduction 

Functionally Graded Composite Materials (FGM) are made from a mixture of ceramic and 
metal in certain proportions. Due to both ceramic and metal properties, especially heat resistance, and 
anti-radiation, the application of these materials can be used widely in aerospace, marine, civil 
construction, nuclear reactor industry, and so on [1-10]. In addition, the mechanical behavior of plates 
will change in the presence of a foundation. Plates supported by the ground, water, and some kinds of 
liquid can be modeled as a plate resting on an elastic foundation.  Developing a realistic mathematical 
model for this complex foundation-structure interaction problem is essential to provide safe and 
economical designs [13].  

 Because of FGM plate advantages, many researchers have focused on the mechanical analysis 
of these structures in the past decades. Duc and Cong [11] applied the Galerkin method and stress 
function for nonlinear post-buckling of discontinuous eccentrically stiffened thin FGM plates resting 
on the Pasternak elastic foundation. Thai and his co-worker [12] used the third-order shear 
deformation theory to establish the closed-form solution of thick FGM plates supported by the 
Pasternak foundation. So the problem of the plate resting on an elastic foundation is very useful in the 
design of FGM for engineering applications. This study aims to present a finite element algorithm for 
static analysis of FGM stiffened plates resting on discontinuous elastic foundations. 

2. The theoretical model and governing equations. 

Considering a rectangular stiffened plate satisfying the Mindlin hypothesis (Figure 1). The 
material plate is made from a mixture of metal and ceramic components. The material properties vary 
continuously through the plate thickness by an exponential function. Stiffeners are made of the same 
material as the plate surface material on which it is placed. 

In this study, a rectangular FGM stiffened plate resting on a discontinuous elastic foundation as 
shown in Figure 1 is considered, and the dimension of the plate is a×b×h. The volume fraction 
proportion  is calculated by the following law: 

          1m cV V   and 
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where z  is the thickness coordinate variable, n is the volume fraction exponent ( 0)n  ; Vm  and Vc  are 

the volume fractions of the metal and ceramic, respectively. 

   

Figure. 1. Geometry of rectangular FGM plate resting on a discontinuous elastic foundation. 

3. Finite element formulation for mechanical behavior of the plate. 

According to [4], the displacement field can be expressed as follows: 

0 0 0  ;    ;    x yu u z v v z w w                  (2) 

where 0 0 0, ,u v w  are the displacements at the mid-plane of a plate in the x, y, z directions and ,x y   are 

the transverse normal rotations of the y and x axes,  respectively. 

In this study, we adopted a quadrilateral four-node plate element; the strain field, stress field, 
and internal force can be given as in [3]. 

4. Finite element formulation for mechanical behavior of the stiffeners. 

4.1. The x -direction stiffener element 

In this work, the stiffener was assumed to be parallel to the x-axis and y-axis (See Figure 2). 
The displacement component for the x-stiffener element can be expressed as: 

0 0 ;   0;     xg xg xg xg xg xgu u z v w w           (3) 

where 0 0, ,xg xg xgu w  are the displacements in the middle surface and the rotation around the y-axis, 

respectively. 

 

Figure 2. Four-node FGM plate element with stiffener parallel to the plate edges 

The displacement of an arbitrary stiffener element will be expressed by the shape function and 
the node displacement vector: 
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where Ni is the shape function, which can be expressed in terms of the plate by substituting s = s0; 

   0 0 0

T

ixg ixg ixg ixg ixg iyge e
q u v w    - nodal displacement vector i. 

The strain field: 

         1 2xg mxg xg xg xg xg xge e e e e
z B q z B q             ;   3xg xg xge e

B q                     (5) 

where 1 2 3,  ,  xg xg xgB B B            are the differential shape functions, respectively. 

 Relation between the stress and strain is expressed as follows: 
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 Stiffeners' internal force field is calculated as: 
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with gh is the height of the stiffeners. 

According to the displacement compatibility condition, one has: 
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Equation (9) can be rewritten in the matrix form as:    xg xgu T u     where    tg
xg x ee

q T q    . 

4.2. The y-direction stiffener element 

Displacement components of y-direction stiffeners are defined as follows (Figure 2): 

                                   0 00;    ;   yg xg yg yg yg ygu v u z w w                      (10) 

where 0 0, ,yg yg ygv w   are the displacements on the middle surface and the rotation around the x-axis, 

respectively. 

The same calculation as x-direction stiffeners, the displacement compatibility condition between 
stiffeners and plate is expressed as follows: 

                                          tg
yg y ee

q T q       (11) 
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with 
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4.3. The foundation element 

In this study, the plate is placed on a two-parameter (
wk  and 

sk ) elastic foundation, then the 

elastic foundation's strain energy in a plate element is computed as follows: 
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By expanding similar to the above expressions, the additional stiffness of the elastic foundation 
is obtained as follows: 
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5. Matrix and static equilibrium equation of the structure  

The elastic potential energy of the plate element including the elastic foundation and the 
stiffeners is expressed as follows: 
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where   ,  ,  t xg yge e e
K K K        are the plate element stiffness matrix, the x-direction stiffener element 

stiffness matrix, the y-direction stiffener element stiffness matrix, and  
e

F is the element nodal force 

vector due to uniformly distributed external force acting perpendicular to the mid-plane. These 
matrixes can be given as: 
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where P is uniformly distributed load acting perpendicular to the mid-plane, ,xg ygb b - the width of 

stiffeners parallel to the x, y axes. Integrals in the expression (17) ÷ (20) are calculated by the Gaussian 
quadrature method [4]. According to the principle of minimum total potential energy, conduct matrix 
aggregation, remove boundary conditions [3], and the governing equation of the plate is obtained as: 

    K q F         (21) 

Equation (21) is solved in the Matlab environment. 

6. Numerical results and discussion  

6.1. Accuracy Study 

To confirm the accuracy and reliability of this approach, consider an un-stiffened rectangular 
FGM plate with a length of a = b = 1 m, and a thickness of h = a/10. The plate was simply supported 
at all edges. The material properties are [8, 9]: Aluminum (metal): 

mE  = 70.109 (N/m2), 0,3m  ; 

Alumina (ceramic): cE  = 380.109 (N/m2), 0,3c  . The load P is uniformly distributed over the plate. 

The results of the maximum deflection at the center of the plate compared with the analytical results of 
Zenkour [5] are shown in Table 1. 

Table 1. The maximum static displacement of the plate 
 [5] Present 

3 410 , / ( )
2 2

c

a b
w w E h Pa

 
  

 
 1,194 1,198 

Error 0,02% 

6.2. Effect of the stiffeners on the static response of the FGM plate 

Table 2. Maximum deflection wmax and stress x max 

 Un - stiffened FGM plate  
FGM plate with 1 

stiffener 
FGM plate with 2 

stiffeners 
Simply supported plate 

wmax (m) 1,30.10-3 0,93.10-3 0,73.10-3 

maxx  (N/m2) 1,742.108 1,306.108 1,010.108 

Clamped plate 
w (m) 1,21.10-5 0,87.10-5 0,68.10-5 

maxx  (N/m2) 2,916.106 1,709.106 1,133.106 

Consider Al2O3/SUS304 plate with the parameter a = b = 1m, the thickness h = a/10, and the 
volume fraction exponent n = 0,5. The properties of the functionally graded material components [6]: 

Ceramic: 9320, 24.10cE  (Pa), 0,260c  , 3800  (kg/m3); 

Metal: 9207,79.10mE  (Pa), 0,318m  , 8166  (kg/m3); 
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Consider the problem in several cases: An un-stiffened plate, a plate with one central stiffener, 

and a plate with two central stiffeners at the metal-rich surface. The stiffener width 2gb  cm, the 

stiffener height 2gh h . The plate was simply supported or claimed at all edges. A uniformly and 

perpendicularly distributed load on the ceramic-rich plate surface has a value of 2.105 N/m2.  

Using the established program, the displacement and stress values  max / 2, / 2w w a b ; 

 max / 2, / 2, / 2x x a b h   at the top surface of the mid-plate are presented in Table 2. 

The maximum displacement and stress of the FGM stiffened plate have been greatly 
reduced compared to the FGM non-stiffened plate, the more stiffeners the plate has, the more 
displacement and stress will be reduced. Thus, stiffeners have a significant effect on increasing 
the stiffness and strength of the FGM plate. 

6.3. Effect of material volume ratio of ceramic and metal 

 

Figure 3. Effect of volume fraction exponent on deflection and stress at the midpoint             
of the FGM plate. 

Considering a clamped FGM plate of the same size as above, two perpendicular stiffeners at 
the center of the plate. Changing the volume fraction exponent n, the graphical investigation 
representing the variation of deflection and stress x at the midpoint (x=a/2; y=b/2; z=h/2) of the 
plate is shown in Figure 3. 

As the exponent n increases from 0 to 10, the displacement and stress at the midpoint x of the 

plate increase, which shows that the “stiffness” of the plate in bending decreases, and the variation of 
both deflection and stress is high. when n varies in the range of 0 - 2. 

7. Conclusions 

In this paper, we have built the finite element algorithm and examined some specific examples 
to determine the deflection and stress at the midpoint of the FGM stiffened plate resting on a 
discontinuous elastic foundation. The results show that, with the specific problems considered above, 
when reducing the number of stiffeners, and increasing the volume fraction exponent n, the deflection 
and stress in the middle of the plate increase. Therefore, depending on actual requirements, the above 
parameters can be reasonably selected when designing FGM stiffened plates to obtain the most 
reasonable structural form to ensure the required strength and durability. 
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