
EasyChair Preprint
№ 13839

Understanding Compliance Properties of Soft
Continuum Robots: from Analytical Model to
Model-Based Control

Jialei Shi and Helge Wurdemann

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 6, 2024



RSS PIONEERS 2024
July 14, Delft, Netherlands

Understanding Compliance Properties of Soft
Continuum Robots: From Analytical Model to

Model-based Control
Jialei Shi, Helge A Wurdemann

Imperial College London and University College London, UK.
Email: j.shi@imperial.ac.uk

I. PROBLEM STATEMENT AND RESEARCH OBJECTIVES

Continuum robots offer continuous deformation and are
highly flexible, which is advantageous in applications involv-
ing compliant interactions [19, 9, 10]. Moreover, leveraging
soft materials to construct elastomer-based continuum robots
can further enhance robots’ inherent compliance and flex-
ibility, leading to safer robot-environment interactions [17]
and enabling variable stiffness behaviour [26]. To utilise the
intrinsic compliance of these soft continuum robots, address-
ing challenges in modelling and controlling their compliant
behaviours are of paramount importance [14, 6].

A. Open Challenges for Compliance Modelling and Control

1) Compliance Modelling: The significance of understand-
ing the configuration-dependent compliance has been under-
scored in both rigid-linked and continuum robots [2, 8, 1].
The fundamental difference between robot compliance in tradi-
tional rigid-linked robots compared with soft robots primarily
lies in the generation of compliance. Rigid-linked robots regu-
late compliance through finite variable compliance joints [27]
(see Fig. 1(a)). The compliance matrix in the Cartesian space
is determined via the Jacobian projection [20, 3]. Instead,
soft robots undergo continuous deformations without physical
joints, with compliance distributed along their bodies (see
Fig. 1(b)). Consequently, the challenge lies in comprehending
how robot configurations affect passive compliance properties.

2) Compliance Regulation and Control: Typical methods
for controlling the compliance of soft robots include integrat-
ing stiffening mechanisms [13] and employing antagonistic
actuation principles [4]. However, the specialised structural
design needed for these approaches limits their utility in space-
constrained scenarios like minimally invasive surgery. More-
over, achieving on-demand compliance control along speci-
fied directions remains a challenge. Exploring the potential
of utilising modelled compliance for achieving model-based
compliance control without resorting to stiffening mechanisms
is an intriguing area for exploration.

B. Research Objectives

Aiming at advancing compliance modelling and model-
based control approaches for soft continuum robots, my re-
search objectives include:
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Fig. 1. Illustration of robot compliance for (a) rigid-linked and (b) soft
continuum robots, under two different robot configurations.

• To propose a compliance modelling and analysis frame-
work, which can reveal the configuration-dependent com-
pliance properties and the compliance distribution along
the continuum structures.

• To achieve model-based compliance regulation and con-
trol, without requiring additional stiffening mechanisms.

II. CONTRIBUTED RESEARCH TO DATE

My research to date primarily contributes to a static com-
pliance modelling and control framework (see Fig. 2) for
pneumatic-driven soft continuum robots [22], to understanding
their inherent compliance using analytical models, meanwhile,
to achieve model-based compliance control, exclusively rely-
ing on regulating the actuation pressure.

A. Configuration-dependent Compliance Model

To model the compliance, soft robots can be characterised
by discretising their structures into finite elements, using the
piecewise constant curvature (PCC) model for instance [26].
The Cartesian compliance of soft robots can then be modelled
using Jacobian mapping [26]. In addition, compliance can
be modelled through finite differentiation [18, 5]. However,
dimensions of the Jacobian matrix depend on the number of
virtual joints, and the finite differentiation approach involves
multiple forward kinematics calculations. Furthermore, while
the distribution of compliance along the robot is crucial, it
often remains unexplored. Moreover, material hyper-elasticity
was usually not considered.

A Lie theory based-compliance modelling framework is
proposed in my previous work [21, 24]. This framework can
investigate the underlying compliance/stiffness characteristics
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Fig. 2. Summary of the research to date: A static compliance modelling and
model-based control framework.

for pneumatic-driven soft continuum robots and deliver a
configuration-dependent stiffness/compliance analysis.

Specifically, the framework is, for the first time, capable of
configuration-dependent compliance modelling and analysis at
different static robot configurations derived from various for-
ward kinematics models (e.g., the PCC model and the Cosserat
rod model). This framework considers nonlinear responses
resulting from large longitudinal deformations (e.g., when
elongating or bending). In addition, my approach demonstrates
that the robot compliance can be derived by various integra-
tion schemes based on the obtained static configurations of
soft robots, without using Jacobian projections [26] or finite
differentiation [15, 18]. Moreover, the proposed modelling
framework can thoroughly reveal the compliance distribution
along the soft robot, and for the first time, it achieves a detailed
configuration-dependent compliance/stiffness modelling and
analysis for extensible fluidic-driven continuum robots.

B. Model-based Compliance Control

Stiffening mechanisms include granular or layer jam-
ming [7, 28], use of low melting point alloys [16], and a com-
bination of tendon-driven and air pressurisation [26, 25]. The
pioneering work of stiffness control for continuum robots was
outlined in [12]. Building on a PCC assumption, a Cartesian
stiffness control approach was proposed for a multi-segment,
tendon-driven soft robot [26]. Likewise, a tendon-tensioning
method was proposed to control the stiffness of a dual-
segment, tendon-driven soft robot based on depth vision [11].

To actively regulate the exhibited robot compliance, I
propose a compliance controller by regulating robot con-
figurations based on the modelled compliance in [24]. The
robot configuration is controlled via the inverse kinematics.
To this end, I propose a model-based, multi-mode position
and orientation controller for hyper-elastic soft continuum
robots [23]. The method is based on the static Cosserat rod

model including a pressure-dependent dynamic modulus. The
kinematic model and control strategy are then expressed as
non-linear least-squares optimisation problems. Hence, various
inverse kinematics control modes can be achieved for a multi-
segment robot, e.g., tip position and orientation control of the
overall robot or tip position control of each segment.

Building on the modelled compliance [24] and inverse
kinematics control approach [23], I further devise a model-
based compliance controller. My approach enables the reg-
ulation of the exhibited robot’s compliance in the Cartesian
space, allowing for achieving both higher (softening control)
or lower (stiffening control) compliance compared to the
inherent properties of the pneumatic-driven robot. Experiments
illustrate that the exhibited robot’s compliance can be regulated
up to 49.5% higher or 34.2% lower compared to inherent
robot’s compliance, using the proposed compliance controller.
Notably, my work for the first time realises the compliance
control for the pneumatic-driven soft robot without the need
for employing stiffening mechanisms [13, 16, 7] or hybrid
actuation principles [25, 26].

III. FUTURE RESEARCH DIRECTIONS

My current research offers an analytical framework to
describe, analyse and control the compliance of pneumatic-
driven soft continuum robots. Building on the framework, I
plan to focus on three main directions for future work.

Interaction force control. There are demanding challenges
to achieve on-demand force control in desired directions,
e.g., minimally invasive surgery [6] or prescribed robot-
environment interaction [26]. In Section II-B, the interaction
compliance is regulated by controlling desired deflected robot
configurations. As the modelled compliance essentially relates
displacements and interaction forces. I will explore to achieve
on-demand force control based on the proposed compliance
control approach, in particular, when the soft robot interacts
with both rigid and soft environments.

Proprioceptive sensing and closed-loop control. Current
model-based, open-loop inverse and compliance control ap-
proaches are advantageous when e.g, applying soft robots on
applications where deploying proprioceptive sensing and ob-
taining feedback information are challenging. However, open-
loop control techniques may face limitations in robustness
when confronted with unknown disturbances or unmodelled
uncertainties. Once the feedback information becomes acces-
sible, my model-based control framework can be extended to
a closed-loop manner.

A unified statics and dynamics framework. The proposed
framework focuses on fluidic-driven continuum robots operate
in static or quasi-static scenarios. Nevertheless, compliant
materials usually exhibit non-negligible viscoelasticity, hys-
teresis, with their mechanical properties further influenced by
actuation principles. Integrating these complex behaviors into
the framework and applying it to compliant continuum robots
with diverse morphologies (such as vine robots) could not
only advance the understanding of their mechanics but also
potentially improve their practicality and versatility.
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