
EasyChair Preprint
№ 13813

SVSM-KMS: Safeguarding Keys for Cloud
Services with Encrypted Virtualization

Benshan Mei, Wenhao Wang and Dongdai Lin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 3, 2024



SVSM-KMS: Safeguarding Keys for Cloud
Services with Encrypted Virtualization

Benshan Mei1,2, Wenhao Wang1,2(�), and Dongdai Lin1,2

1 Key Laboratory of Cyberspace Security Defense, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

Abstract. In recent years, numerous instances of data breaches have
emerged due to the inadvertent or intentional disclosure of cryptographic
keys. To address this issue, this paper proposes SVSM-KMS, which uti-
lizes AMD’s latest Encrypted Virtualization technology (AMD SEV-
SNP) to deliver an efficient and seamless integrated secure key man-
agement service. We realized multilayered defense by integrating our
mechanism within a privileged layer of a confidential virtual machine
(CVM), thereby minimizing the trusted computing base (TCB) to pre-
vent key leakage from compromised CVMs. Notably, we incorporated a
zero-copy mechanism between the most privileged service module and
the least privileged user applications, eliminating redundant data copies.
To facilitate seamless integration, we propose a proxy server for existing
cloud services. A prototype of SVSM-KMS has been developed based on
the latest AMD SEV-SNP hardware platform. Evaluation results indi-
cate that the performance of the Encrypted Virtualization-empowered
SVSM-KMS is on par with Hadoop KMS, highlighting the practicality.

Keywords: Confidential Computing · Trusted Execution Environment
· Encrypted Virtualization · Secure VM Service Module · Key Manage-
ment Systems.

1 Introduction

Cloud computing transforms the way organizations store, process, and share
data, offering numerous benefits such as scalability and cost-efficiency. How-
ever, it also introduces new security challenges, and data breaches have become
a recurring threat. These breaches occur when unauthorized individuals gain
access to sensitive data stored in the cloud, potentially leading to severe conse-
quences such as financial loss, reputation damage, and privacy violations. Key
management is one of the most critical services on the cloud [21, 26]. If the
keys are leaked, all relevant data associated with the keys are at risk of leak-
ing [16,19,27]. A centralized key management system (KMS) is often deployed as
an integrated approach for generating, distributing, and managing cryptographic
keys for devices and applications [6]. However, the TCB can be significant large
in a centralized KMS, leading to a potential single point of failure [26]. Although
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a decentralized KMS may be desired, it still incurs substantial costs to maintain
coherence among multiple nodes [13,15].

Motivations. Secure key management in the cloud presents several challenges
that need to be addressed. One major concern revolves around the cloud service
provider’s extensive control over the platform, potentially leading to data in-
spection for their own business interests or due to insider threats. Furthermore,
network latency in a centralized KMS can greatly impede service efficiency. More-
over, it can lead to key exposure if the hosting system is compromised.

To tackle these challenges, we focus on a defense-in-depth design, safeguard-
ing sensitive keys in the cloud from untrusted cloud service providers (CSPs)
and guest OS. Specifically, we utilize CVM to securely host our system. The
CVM is isolated from each other and the hypervisor with hardware-based mem-
ory encryption. This ensures that the data remains confidential even if the CSP
is untrustworthy. However, it is not sufficient for secure key management due to
the large TCB introduced by the guest OS. The key still get leaked if the guest
OS gets compromised. We observe that the recently proposed Virtual Machine
Privilege Level (VMPL) hardware mechanism can be very applicable to further
secure the keys used for encryption and decryption. We safeguard the keys from
unauthorized access or tampering by integrating the system within the highest
VMPL of a CVM. This ensures that even if the guest OS is compromised, the
cryptography keys remain secure. In addition to these security measures, we de-
vote to ensuring seamless integration with existing systems on the cloud, thereby
minimizing the deployment effort.

Design. To achieve this, we place the key management service within the high-
est VMPL over the guest OS. Our design consists of the following aspects: access
control, sealed storage, attestation, configuration and seamless integration. The
majority of the components, including the access control, are contained within
the service module, which runs in the highest VMPL. This means that even if
the guest OS is compromised, the keys will remain secure. In order to facili-
tate seamless integration, we design a proxy server for Hadoop clients, which
forwards requests and responses and does not interfere with access control. It
consults the service module for token authentication, and securely persists the
in-memory storage with sealing service provided by the service module. Unlike a
decentralized KMS [13,15], we do not need to maintain distributed consistency,
reducing data synchronization overhead. The performance is further improved
by a zero-copy design between the proxy server and the service module, reducing
extra data copies between those components.

To showcase the performance of our design, we have developed a prototype
based on the latest AMD SEV-SNP platform. It consists of about 7000 lines of
codes in total, and is composed of a service module, a kernel module and a proxy
server. The evaluation consists of requesting service from KMS deployed on local
and remote machine. Our experimental results demonstrate that our approach
offers comparable performance to existing Hadoop KMS in both local and remote
service scenarios. In the local service scenario, our KMS outperforms Hadoop
KMS in term of service latency on most operations. While in serving Transparent
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Data Encryption (TDE) of Hadoop Distributed File System (HDFS), our system
performs comparably in read and write test.
Contributions. The contributions of the paper are summarized as follows.
• We introduce multilayered defense for secure key management based on the

latest feature of Encrypted Virtualization, preventing key leakage from vul-
nerable guest OS within CVM.

• We incorporate a zero-copy design in our system to improve the performance,
allowing efficient service delivery.

• We introduce a proxy server to enable seamless integration, ensuring compat-
ibility with traditional KMS.

• We implement a prototype of the design based on the latest linux-svsm
project, and evaluate the performance of our system under realistic scenarios,
showing the practical aspect of our design.

2 Background

2.1 AMD SEV

Over the past few years, establishing mutual trust between customers and Cloud
Service Providers (CSPs) has been a persistent challenge. It’s crucial to mitigate
the reliance on CSP trust within the public cloud computing market. AMD’s
Secure Encrypted Virtualization (SEV) represents a significant leap forward,
leveraging hardware-assisted virtualization technology to address this challenge
through memory-encryption enhanced isolation [23, 34]. To counter potential
threats from malicious hypervisors, AMD introduced successive advancements
like SEV-ES (Encrypted State), which encrypts memory pages and private reg-
ister contents of Virtual Machines (VMs) using distinct keys [35, 36]. However,
a lingering vulnerability persists: the hypervisor retains control over nested pag-
ing, potentially allowing SEV VM pages to be mapped to other VMs or even the
hypervisor itself [40]. Despite the encryption of VM’s private status and pages
under separate keys, SEV/SEV-ES lacks integrity protection, leaving room for
exploits such as memory replay attacks by the hypervisor.

In 2020, AMD introduced SEV-SNP (Secure Nested Paging), a technology
designed to fortify the protection of CVM against malicious hypervisor [41]. In
SEV-SNP, a malicious hypervisor cannot map an encrypted physical page to
multiple owners. This mechanism is implemented through the use of a Reverse
Mapping Table (RMP). The RMP is a metadata table controlled by the AMD
Platform Security Processor (AMD PSP). It keeps track of the ownership of
every system physical page and specifies read, write, and execution permissions
for each VMPL. Physical memory page access is restricted by configuring each
page’s VMPL in the RMP. On each nested-page table walk, the RMP is consulted
to determine permission and ownership for each system physical memory page. A
nested page fault (#NPF) is raised upon illegal access to a physical page, which
can be captured and handled by the hypervisor. The hypervisor manages the VM
Saved Areas (VMSAs) assigned to four VMPLs. With hypervisor assistance, the
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vCPU can operate in different VMPL by switching the corresponding VMSAs. A
higher VMPL context can be seen as the secure world in the ARM TrustZone [39].
SVSM. The Secure Virtual-Machine Service Module (SVSM) is a newly pro-
posed framework that aims at providing essential security services for the guest
OS [10]. Both the SVSM and the guest OS share the guest physical address
space. However, the SVSM’s address space, with a higher VMPL, is inaccessible
to a guest OS with a lower VMPL. The SVSM, operating in VMPL0, launches
before the BIOS and guest OS in VMPL1. It occupies a fixed number of con-
tiguous physical memory pages before transferring control flow to the BIOS and
guest OS. These occupied memory pages remain unused by the guest OS. A
dedicated secret page shared with the guest OS allows the guest OS to discover
and request the service from SVSM.

The transitions between the guest OS and SVSM are handled by the hy-
pervisor, while the communication protocols between the VM and hypervisor,
e.g. passing parameters, and negotiating the shared memory pages, are speci-
fied in the Guest-Host Communication Block (GHCB) protocol [11]. The GHCB
is a per-cpu guest physical page shared with the hypervisor. It is marked as
unencrypted by clearing the C-bit of the page table entry of the guest. The com-
munication between the VM and hypervisor is mediated through a new exception
called VM Communication Exception (#VC). This exception can be triggered
by Non-Automatic Exit (NAE) events.

A user application can request a service from SVSM by triggering a hypervi-
sor trap through the VMGEXIT NAE event within the VM. Subsequently, the
hypervisor schedules the SVSM. Alternatively, the guest OS can also request an
SVSM service via the Model Specific Register (MSR) protocol. By creating a
request in the GHCB MSR, the guest OS can ask the hypervisor to schedule the
SVSM. In both scenarios, the Calling Area (CA) is used to pass the protocol ver-
sion and call ID to the SVSM. The CA is a shared memory space, and its guest
physical address is established through negotiation between SVSM and guest
OS. Upon completion of the SVSM service routine, the hypervisor schedules the
guest OS once again in accordance with the GHCB protocol.

2.2 Key Management System (KMS)

The KMS is an integrated approach for generating, distributing, and managing
cryptographic keys for devices and applications [6]. It consists of various compo-
nents and plays a vital role in securely managing cryptographic keys and secrets.
It typically includes functionalities such as key’s generation, storage, rollover
and access control. The components of a KMS may include key servers, crypto-
graphic hardware modules, APIs and management interfaces. KMS is essential
for protecting sensitive information, ensuring secure communication, enabling
data encryption, and meeting compliance requirements [32]. By providing cen-
tralized and controlled management of keys, KMS helps organizations maintain
the confidentiality, integrity and availability of their data and systems, serving as
a crucial foundation for secure operations and safeguarding against unauthorized
access and data breaches.
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2.3 Threat Model

Our goal is to develop a seamlessly integrated key protection scheme that oper-
ates within the highest VMPL inside a confidential VM empowered by AMD’s
SEV-SNP technology. Our threat model follows the standard assumptions of
confidential computing, where any area outside the protected boundaries of the
confidential VM is deemed to be under the control of potential attackers. We
assume the framework’s implementation follows the GHCB protocol reliably.
However, we cannot place trust in the proxy server or kernel module. Even if
these components compromised, the protected keys remains secure and inacces-
sible to unauthorized entities.

Ensuring client authentication is crucial for secure service delivery. In the
case of SVSM-KMS, it plays a vital role in protecting the system from unautho-
rized access by malicious clients. To address this risk, SVSM-KMS only accepts
requests from authenticated clients. However, the authentication mechanism is
not included in the current design. By relying on a trusted third-party authen-
tication mechanism, we can focus on building a strong key protection system
while leveraging the security measures provided by the authentication service.

In addition, side channels and hardware attacks are out of the scope. It
is assumed that the underlying hardware operates as described in the official
documentation. The memory encryption and integrity protection are in place,
adding an extra layer of security.

3 Design

3.1 Overview

Fig. 1 illustrates the SVSM-KMS framework, comprising of the SVSM-KMS
service module, kernel module, and proxy server. The service module resides in
the highest VMPL area. Within the guest OS, the kernel module serves as an
intermediary between the user application and the service module, managing
shared memory and relaying requests from the proxy server. Consequently, user
applications can access the SVSM-KMS service through the proxy server.

The service module of SVSM-KMS is integrated into the SVSM framework.
Compared to normal KMS, it is running in an area with the highest VMPL,
guarded against the tampering of the malicious hypervisor and guest OS with
the hardware security mechanism provided from AMD SEV-SNP. Since the tran-
sition between the guest OS and SVSM is mediated by the hypervisor, the VM
trap/resume events are inevitable, incurring performance impact. It is not easy
to deliver service from the most privileged SVSM-KMS to the least privileged
user applications. Challenges present in integrating the key management service
into the SVSM framework securely and efficiently, which outlined as follows.
Security. To ensure secure key protection throughout the entire life-cycle,
the service module runs in the highest VMPL, i.e., VMPL0. The access control
should not rely too much on the untrusted guest OS as much as possible. In other
words, the authentication and authorization mechanism should be integrated
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Fig. 1. An overview of the SVSM-KMS framework.

into the highest VMPL. To prevent key leakage from untrusted guest OS, the
keys should be sealed outside of the service module as well.
Performance. Considering the underlying SVSM framework, it is crucial to
evaluate the performance impact, as each service request incurs at least two VM
trap/resume events, potentially increasing service latency. These requests can
originate from the kernel or traverse intermediary layers like the proxy server,
kernel module, and hypervisor before reaching the service module. Given these
indirect layers, we should mitigate the impact of these events and ensure efficient
service delivery for user applications.
Compatibility. To enable key management services for various clients, it is
necessary to bridge the gap between the SVSM-KMS service protocol and other
network protocols. A proxy server is critical for seamless integration of our service
with no code change, reducing the deployment effort.

The SVSM-KMS primarily serves the guest OS on the local VM. Therefore,
it is not a pressing need to manage a large number of keys. According to the
design of the Calling Area (CA) in the SVSM specification, the service request
is handled on vCPUs one by one. At most, N requests can be handled in par-
allel, where N is the number of vCPUs. Due to the lack of high concurrency
requirements, a set of shared memory regions is used for each vCPU for sim-
plicity. However, for better availability and scalability needs, we refer to existing
methods that can handle unexpected events such as power-offs and shutdowns
or managing a significant amount of keys [28,29].

To facilitate efficient and seamlessly integrated key protection, our design
consists of the following aspects: zero-copy mechanism, access control, sealed
storage, attestation and seamless integration, which are elaborated in the fol-
lowing subsections. In Section 3.2, we introduce how zero-copy design minimize
the performance impact caused by VMPL context switching. The access control
is introduced in Section 3.3. Section 3.4 introduces the sealed storage and attes-
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tation mechanisms, which establish a foundation of trust. Lastly, a proxy server
is introduced in Section 3.5 for seamless integration of existing web services.

3.2 Zero-Copy Design

Between the most privileged service module and the proxy server, user requests
go through two rounds of forwarding: first, they’re passed through the proxy
server to the kernel module, and then forwarded from the kernel to the service
module via shared memory. So reducing cross-border data replication is crucial
for boosting service efficiency.

GVAGuest OS (VMPL1)SVSM (VMPL0)

GPASVSM SHM Guest OS

×

Fig. 2. An overview of the shared and private memory access.

Our system employs a zero-copy mechanism based on shared memory, al-
lowing efficient communication between the most privileged service module and
least privileged user applications. To reduce the cost of mapping pages, the guest
OS shares memory pages with the SVSM-KMS in the full life-cycle of the ser-
vice. An overview of the shared memory mechanism is shown in Fig. 2. The SHM
is the shared memory. The dashed line with a cross indicates that the private
memory space of SVSM can not be accessed by the guest OS. The dashed line
without a cross indicates that the memory of the guest OS can be accessed by
mapping those memory pages in SVSM on demand. The solid arrow lines show
which physical memory space can be accessed by SVSM and guest OS.

The shared-memory regions allocated by the guest OS is mapped both in
service module and the guest OS by issuing a shared-memory service request to
the service module. A user application can map those shared-memory regions
continuously to his virtual memory space. The shared-memory keeps alive until
we remove the kernel module. The proxy server manages those regions for each
service request from each vCPU, enabling fully utilization of the hardware re-
sources. In this way, a zero-copy mechanism between the user application and
the secure service module is realized and the overall communication overhead
can be reduced to a minimum.

In addition to the performance benefits, our innovative design also includes
security measures for using shared memory. Since the shared memory can only
be mapped once by a user application at a time, there is no intermediary who can
intercept the communication between the proxy server and the service module.
Furthermore, the shared memory is divided into request and response pages.
The service module applies VMPL permission to the shared memory, ensuring
the confidentiality of the request payload and the integrity of the response. This
additional security layer enhances the overall security of the system.
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3.3 Authentication & Access Control

To address security concerns, the majority of security measures, including access
control, are integrated within the service module itself rather than the web proxy.
These mechanisms operate within the highest VMPL layer over the guest OS,
rendering them resistant to external circumvention. The access control mecha-
nism is referenced from the Hadoop KMS and encompasses simple token authen-
tication (STA) and access control list (ACL) mechanisms.
Authentication. A user application can request the token authentication ser-
vice with user group information. The SVSM-KMS grants a legal user an access
token signed with a secret. Then a user application can request our service with
this token. The secret used to sign the token can be the same as Hadoop KMS
for compatibility. A secret obtained inside the SVSM-KMS can also be used for
signing for security. As such, the signed token cannot be forged outside of the
service module. The algorithm used to sign the token is HMAC(SHA256) for
compatibility with Hadoop KMS. Since the token authentication is moved to
the SVSM-KMS service module, the proxy server consults the service module
for a signed token on each authentication request. The granted token is put into
the Cookie on each successful authentication for later user requests.
Access Control List. The ACL mechanism includes system-level and key-level
ACLs. Authenticated users have restricted access to specific operations and keys
based on the ACL configuration. The service module verifies user permissions
for operations or services, and also check permissions for each individual key.
The ACL are also maintained within the service module.

3.4 Sealed Storage & Attestation

The AMD PSP exposes the firmware service to the VM through the GHCB pro-
tocol. To request an AMD PSP firmware service, the VM issues an SNP Guest
Request using the GHCB protocol [12]. The hypervisor mediates the communi-
cation between the firmware and the VM, ensuring protection against malicious
attackers through AES-GCM authenticated encryption. There are two services
can be used in our system, i.e., key derivation and attestation report services. Ac-
cording to the SEV-SNP firmware ABI specification [12], the guest can request
a key from the firmware, derived from a root key. This key can be utilized by the
guest for various purposes, including sealing keys or establishing communication
with external entities. Meanwhile, the guest can request the firmware to gener-
ate an attestation report, which external entities can utilize to verify the guest’s
identity and security configuration. The guest generates attestation reports for
VMPLs that meet or exceed the current VMPL, with the desired VMPL speci-
fied in the request message. Since both the key derivation and attestation report
request parameters include the VMPL level, which must be greater than or equal
to the current VMPL. Therefore, we can generate a dedicated export key and
authentication report for SVSM-KMS running in the highest VMPL.
Sealed Storage. Concerning secure storage, we integrate a sealing service
to facilitate the transfer of sealed data between the service module and local
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storage. The data stored in memory can be secure protected outside of the
trusted service module for long-term storage. Compared to traditional KMS,
our system persistently stores key data to the external world using a sealing
key. This sealing key is obtained through a key derivation service request to
the AMD PSP firmware within the service module and remains inaccessible to
external entities, thus ensuring the confidentiality of the sealed data.

The proxy server utilizes SVSM-KMS’s sealing service to store its in-memory
data persistently. Before starting the web service, the proxy server transmits
an unsealing request to upload the sealed data to SVSM-KMS. When the web
service is about to stop, a sealing request is dispatched to locally save the sealed
data. This guarantees a secure storage of the in-memory data. By proactively
invoking the sealing service whenever there are updates to the in-memory keys,
the proxy server not only ensures performance but also improves fault tolerance.
For future improvements, it may be worth considering the implementation of an
incremental backup or synchronization mechanism.
Attestation. The security status of the initial service module image can be
measured and attested by remote attestation mechanism. The SVSM Attestation
Protocol [10] is specified as a standard way to obtain an attestation report of
the SVSM. By sending an attestation report service request to the firmware, the
report for the service module can be obtained, enabling the attestation of its
security state. As a result, a separate design for this service is unnecessary.

3.5 Seamless Integration

To enable seamless integration of our system into actual applications, we intro-
duce a proxy server tailored for Hadoop applications, such as Hadoop KMS and
DFS clients. In fact, other applications can also be supported by integrating the
Key Management Interoperability Protocol (KMIP) [7]. Its main functionality
is to redirect user requests to the secure SVSM-KMS and transmit the service
response to HTTP clients. The proxy server consists of the following components.
Protocol Exchange. Since the service module follows standard SVSM pro-
tocol, protocol exchange is require for the proxy server to request service from
the service module. The request and response of the service module are packed
into an appropriate form before forwarding, i.e., JSON. Compared to standard
JSON-RPC protocol [5], the request and response consist of message header
and body. The header is transferred through general registers, while the body is
stored in the shared memory. The user request is routed to the corresponding
service handler according to the message header. The message body are in the
form of JSON for simplicity, except for the sealing service where encrypted data
is transferred between local and in-memory storage. The status code from the
service module is mapped to the corresponding HTTP status code. In this way,
we avoid parsing the message header and simplify the protocol design.
RESTful API. The RESTful API is based on the Hadoop KMS RESTful
API3 for compatibility, allowing our SVSM-KMS to support various Hadoop ap-
3 https://hadoop.apache.org/docs/current/hadoop-kms/index.html

https://hadoop.apache.org/docs/current/hadoop-kms/index.html
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plications, especially the HDFS. The Hadoop KMS is used to assign encryption
zone keys (EZK) to encryption zones automatically for transparently encrypt-
ing/decrypting data stored in HDFS [28]. Here, we demonstrate the seamless
substitution of Hadoop-KMS with SVSM-KMS in the TDE of HDFS4, showcas-
ing the flexibility of our solution within existing Hadoop infrastructures.
Configuration. The configuration of the service module can be modified via
the configuration service, allowing for the import of various configurations. We
support the Hadoop KMS configuration format for compatibility. Presently, our
system solely permits updating ACL and log configurations, along with the abil-
ity to adjust the log level for debugging purposes. Additionally, this service also
enables the persistence of in-memory configurations, sealed locally with secure
authenticated encryption.

4 Implementation

To showcase our design, we developed a prototype based on the infrastructure
available from AMD5. Our project comprises three parts: the service module
(over 4000 lines of Rust code), the kernel module (around 1000 lines of C code),
and the proxy server (about 2000 lines of C++ code). The implementation details
are elaborated in the following sections.

4.1 SVSM-KMS Service Module

Presently, we have developed the service module based on the linux-svsm project 6.
The service module provides functionalities encompassing key management, au-
thentication, configuration, sealing, and more. Additionally, the recently open-
sourced coconut-svsm project 7 offers an alternative infrastructure for deploying
our system within CVM. Both frameworks are written in Rust, ensuring memory
safety. The Rust language ecosystem also greatly facilitates the development of
SVSM-KMS with various crates for encryption and persistent storage.
Key Management. We provide key management services for Hadoop KMS
Client and HDFS. These services primarily involve managing key metadata and
performing tasks like creating, updating, encrypting, and decrypting key ver-
sions. Each service has a status code that complies with the official SVSM spec-
ification. The requests for these services originate from the proxy server and are
indirectly derived from the HTTP clients. These core services are implemented
within the service module as service handlers, offering support for managing AES
and SM4 encryption keys. To ensure secure generation of encryption keys and
initialization vectors (IV), the rdseed instruction is utilized to retrieve hardware-
generated random values, which are then used to initialize the ChaCha Random
4 https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/
TransparentEncryption.html

5 https://github.com/AMDESE
6 https://github.com/AMDESE/linux-svsm/,commitID:2ea8eeab
7 https://github.com/coconut-svsm

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html
https://github.com/AMDESE
https://github.com/AMDESE/linux-svsm/, commit ID: 2ea8eeab
https://github.com/coconut-svsm
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Number Generator (RnG). By leveraging the hardware-provided RnG, the sys-
tem ensures robust and secure generation of cryptographic material.

Configuration & Sealing. The configuration parameters for the service mod-
ule are primarily obtained from the configuration files of Hadoop KMS. The
ACL configuration from Hadoop KMS is also utilized in our service module.
Furthermore, the sealing service within our implementation employs AES-GCM
encryption for sealing operations.

Compared to Hadoop KMS, our implementation does not require frequent
local storage access. All requests are managed using in-memory storage and
operations. As a prototype, the in-memory data is organized in a HashMap
data structure. Moreover, our service module runs directly in the VM, while
Hadoop KMS runs in a JVM (Java VM). This significantly reduces the impact
on performance. Meanwhile, we have not integrated certain important security
mechanisms into our current system, such as Kerberos Authentication and Audit
Logs supported in the Hadoop KMS. Since they are not the main focus of our
current work and have little impact on performance evaluation, they can be
integrated in the future. Furthermore, as in-memory storage space is limited, a
swap-memory mechanism can be introduced as a future enhancement.

4.2 SVSM-KMS Kernel Module

Currently, there is no official example of calling an SVSM service in user-space.
Here, we implement a custom kernel module for requesting the service. This
kernel module is a misc device driver, exposing a /dev/svsm device file in the file
system. It also provides mmap and ioctl interfaces to user applications, allowing
service request through the ioctl syscall. The kernel module then forwards these
user requests directly to the service module using the GHCB protocol. To prevent
invalid and illegal service requests from being forwarded to the service module,
a simple service filtering mechanism is introduced within the forwarding logic.

The request and response headers of the SVSM-KMS include the value of
five general registers. These registers are used by the SVSM Core Protocol as
well. The user applications wrap the value of these registers into a structure. The
kernel module then extracts those values from the structure to the corresponding
registers before issuing an GHCB Protocol request for scheduling the service
within VMPL0. After the completion of the service, the kernel module copies
those values back to the user-space so that the user application can receive a
complete response from the service module.

Following above design, the kernel module does nothing but prepare shared
memory and forward user request and service response across the whole life-
time. Such flexible design allows providing more security services for the user
applications without major changes to the kernel module, ensuring extensibility.
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4.3 SVSM-KMS Proxy Server

The proxy server is implemented with the open-sourced libhv framework8. It
maps the shared memory to the private virtual memory space with the mmap
syscall and forwards user requests to the service module with the ioctl syscall. It
is capable of uploading configurations to SVSM-KMS, supporting the Hadoop
KMS configuration format for compatibility. Prior to uploading, the configu-
ration is transformed into JSON format. Afterwards, SVSM-KMS updates the
corresponding configurations. Both configurations and sealed data are uploaded
to the service module before accepting user requests. By doing so, we ensure
the compatibility and seamless integration of a wider range of applications with
our SVSM-KMS solution. Currently, two clients have undergone testing, namely
the Hadoop KMS Client and HDFS (TDE). These clients can request services
successfully via the RESTful API offered by SVSM-KMS.

5 Evaluation

In this section, we evaluate the performance of SVSM-KMS and Hadoop KMS.
The tests are performed on a dual-socket 3rd Gen AMD EPYC processor (code-
named Milan) with 128 logical cores and 64GB RAM, supporting the SEV-
SNP security feature. The host system operates QEMU 6.1.50 on Ubuntu 22.04
(kernel version 6.1.0-rc4-snp-host), while the VM is allocated 8 vCPUs and 8GB
RAM, running Ubuntu 22.04 (kernel version 6.2.0-snp-guest). Throughout the
experiments, Hadoop-3.3.4 is deployed on both the VM and a remote machine
for evaluation. Simple Token Authentication is configured for both Hadoop KMS
and SVSM-KMS. Additionally, the ACL is identical for both KMS.

5.1 Micro-benchmarks

For the micro-benchmarks, we evaluate the service latency of SVSM-KMS and
Hadoop-KMS. Both KMS are running on the same VM, with SVSM-KMS on
VMPL0 and Hadoop KMS on VMPL1. The experiments are performed on both
local and remote scenarios. In total, we evaluate thirteen RESTful APIs, ex-
cluding Invalidate Cache, which is not supported in our system currently. We
make 150 requests to each service and record the average elapsed time for each
request. To request the service in both local and remote scenarios, we utilize the
popular requests Python package.

The latency of the service is evaluated in both local and remote situations.
When calling a service of SVSM-KMS, the support of the hypervisor is necessary,
thereby inevitably increasing the service latency. However, the service module
operates on a real machine, not a JVM like Hadoop KMS. This latency represents
the only impact that cannot be reduced through software means. In remote cases,
there is network latency. The impact of the SVSM framework can be somewhat
neglected. The evaluation is presented in Fig. 3. The terms Hadoop and SVSM
8 https://github.com/ithewei/libhv

https://github.com/ithewei/libhv
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correspond to the implementation of KMS. The L and R denote local and remote
scenarios, respectively.
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Fig. 3. The service latency of the proposed SVSM-KMS and Hadoop KMS in serving
local and remote machines.

While differences exist between SVSM-KMS and Hadoop KMS, it’s essential
to acknowledge that SVSM-KMS serves as a prototype and does not encom-
pass all the optimizations featured in Hadoop KMS. Nonetheless, our system
demonstrates comparable performance to Hadoop KMS in both local and re-
mote service scenarios. Due to implementation issues, it shows significant per-
formance degradation on specific operations, such as GenerateEncryptedKeys,
GetKeyNames, and GetKeysMetadata in the remote scenario. It is noteworthy
that these operations are infrequently utilized in a deployed cloud platform.
Therefore, their impact on cloud service performance is negligible. Conversely,
SVSM-KMS holds a notable advantage in the DecryptEncryptedKey operation,
serving as a hot function in HDFS (TDE).

The SVSM-KMS outperform Hadoop KMS in local service scenarios due to
the zero-copy design, which helps mitigate the performance impact of the SVSM
framework. While not incorporating all optimizations, SVSM-KMS show the
potential of providing efficient and secure key protection services within CVM.
By integrating key-cache and warm-up mechanisms into SVSM-KMS, further
improvements in performance can be achieved, highlighting the scalability and
extensibility of our design.

5.2 Macro-benchmarks

We perform read and write operations on an encrypted zone of HDFS ten times,
with each operation resulting in a service request to the KMS. The average
elapsed time of each operation is recorded. To evaluate the performance im-
pact on HDFS, file sizes range from 32KB to 4MB. The experiments consists
of both local and remote scenarios. In the local scenario, the HDFS and KMS
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are deployed in the same VM. Conversely, in the remote scenario, the HDFS
is deployed on another machine, sending service requests to a local or remote
deployed KMS. The evaluation on HDFS (TDE) is illustrated in Fig. 4.
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Fig. 4. The service latency (seconds) evaluation between SVSM-KMS and Hadoop-
KMS in serving HDFS (TDE) under local and remote scenarios.

Fig. 4 shows the average time consumption of read and write operations in
different scenarios. Since performing read and write operations in the encryption
zone is time-consuming, the performance impact caused by the Key Management
Service (KMS) can be largely ignored. Although each operation requires sending
a request to KMS, the average time consumption shows little difference on both
SVSM-KMS and Hadoop KMS when serving HDFS (TDE). Whether in local
or remote scenarios, as the file size increases, the performance impact on the
HDFS (TDE) can be largely ignored. Overall, these results demonstrate the
effectiveness and efficiency of our prototype, indicating its potential to provide
comparable or better performance than existing solutions, especially in local
service scenarios and TDE (HDFS).

6 Related works

Microsoft Azure KeyVault [8], AWS KMS [1], and Google Cloud KMS [2] are
cloud-based solutions for centralized management of keys, certificates, and se-
crets. Cloudera Navigator Key Trustee Server [3] offers key management for
securing data in Hadoop, while Ranger KMS provides centralized key manage-
ment for secure encryption in Apache Hadoop. HashiCorp Vault [4] offers secure
storage and dynamic management of secrets. OpenStack Barbican [9] provides
key management in cloud environments. While these systems are secure, they
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are often deployed in VM where vulnerable guest OS can compromise their se-
curity. Their TCB is still too large to hosting such services. Therefore, further
privilege separation within CVM is critical to the security of KMS on the cloud.

The Trusted Execution Environment (TEE) can effectively mitigate the risks
of key compromise and unauthorized access from the untrusted OS. One ad-
vancement in improving KMS security is the STYX framework [44], which in-
corporates Intel Software Guard Extensions (SGX) [25]. By leveraging the ca-
pabilities of Intel SGX, cloud system KMS security is greatly enhanced [20,30],
while also considering aspects such as performance and high availability. In [43],
a novel technique for key management was presented to enhance security, pri-
vacy, and confidentiality. The proposed approach, combining Intel SGX and FI-
WARE components, is scalable and suitable for safeguarding IoT data. Another
notable work proposes a key management solution based on Intel SGX for data-
centric networking [38]. MultiSGX-KMS is a decentralized system designed to
safeguard user keys during exchange and ensure fault tolerance through secret
sharing and Intel SGX [13], which can be leveraged to realize a decentralized de-
sign of the SVSM-KMS framework. Researchers also introduced RansomClave,
a ransomware family that securely manages cryptographic keys using an enclave
[18]. Similarly, TZ-KMS is introduced for joint cloud computing based on ARM
TrustZone [33]. Samsung’s Keymaster is a key management system for mobile
platforms based on ARM TrustZone [42]. In general, TEEs provide a secure and
isolated environment where sensitive operations, such as key generation, storage,
and cryptographic operations, can be performed with high assurance. However,
these Intel SGX and ARM TrustZone based proposals are not multi-layered
defense as SVSM-KMS in the realm of confidential computing.

Previous works have surveyed traditional key management across various do-
mains, including the smart grid [22], wireless sensor networks [24,45] in Internet
of Things (IoT) scenarios [17], as well as cryptographic methodologies within
cloud security contexts [14, 19, 21, 37]. A comparative analysis of cryptographic
key management systems is detailed in [31]. Recently, researchers investigated
three popular key management services that are currently in use, namely AWS
CloudHSM, Keyless SSL, and STYX [26]. However, their threat model clearly
contrasts to SVSM-KMS, where the guest OS is considered vulnerable.

7 Conclusion

SVSM-KMS is a secure key protection mechanism that leverages the latest fea-
tures from AMD SEV-SNP for cloud services. It integrates a series of mechanisms
to enhance performance and establishes a layered defense. A zero-copy mecha-
nism is introduced to optimize overall performance, utilizing shared memory
throughout the entire service life-cycle to eliminate redundant data transfers be-
tween the service module and user applications. To realize multilayered defense,
we integrate our core service into the SVSM framework, ensuring that critical
key management service operates at the highest VMPL in a CVM, shielded from
vulnerable guest OS. The system’s security is further fortified through sealed per-
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sistent storage and the capability to measure and attest the security state using
the standard SVSM Attestation Service. Meanwhile, hardware instructions are
leveraged for the secure generation of keys, effectively addressing security and
privacy concerns associated with centralized and decentralized KMS. Our solu-
tion focuses on facilitating seamless integration by introducing a proxy-server
for Hadoop clients, streamlining the deployment process in utilizing our sys-
tem. Evaluation results demonstrate the performance of our proposed system
across local and remote service scenarios, including the compatibility as a drop-
in replacement for Hadoop KMS in HDFS (TDE), demonstrating comparable
performance across various usage scenarios.

In conclusion, the SVSM framework can be leveraged to provide security crit-
ical services (i.e., key management) for a variety of applications. Future works
would be the key-cache and warm-up mechanisms for performance. A decentral-
ized design of the SVSM-KMS can be considered for security.
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