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Abstract  
Motivation: Quantitative detection of histone modifications has emerged in the recent 

years in a major means for understanding such biological processes as chromosome 

packaging, transcriptional activation, and DNA damage. However, high-throughput 

experimental techniques such as ChIP-seq are usually expensive and time-consuming, 

prohibiting the establishment of a histone modification landscape for hundreds of cell 

types across dozens of histone markers. These disadvantages have been appealing for 

computational methods to complement experimental approaches towards large-scale 

analysis of histone modifications. 

Results: We proposed a deep learning framework to integrate sequence information 

and chromatin accessibility data for the accurate prediction of modification sites 

specific to different histone markers. Our method, named DeepHistone, outperformed 

several baseline methods in a series of comprehensive validation experiments, not only 

within an epigenome but also across epigenomes. Besides, sequence signatures 

automatically extracted by our method was consistent with known transcription factor 

binding sites, thereby giving insights into regulatory signatures of histone modifications. 

As an application, our method was shown to be able to distinguish functional single 

nucleotide polymorphisms from their nearby genetic variants, thereby having the 

potential to be used for exploring functional implications of putative disease-associated 

genetic variants. 

Conclusions: DeepHistone demonstrated the possibility of using a deep learning 

framework to integrate DNA sequence and experimental data for predicting epigenomic 

signals. With the state-of-the-art performance, DeepHistone was expected to shed light 

on a variety of epigenomic studies. 
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Background  

Histone modifications, as covalent post-translational modifications (PTMs) to histone 

proteins, have been recognized as one of the major driving forces alters chromatin 

structures since the early 1960s [1]. Enabled by such innovative techniques as X-ray 

crystallography, it has been gradually clear that the modification of histone amino (N)-

terminal tails would affect inter-nucleosomal interactions, alter the overall chromatin 

structure or recruit histone modifiers, and eventually impact gene expression [2]. It has 

also been known that histone modifications, including methylation, acetylation, 

phosphorylation, ubiquitylation and sumoylation, act in a variety of biological 

processes such as chromosome packaging [3, 4], transcriptional activation and 

inactivation [5-7], as well as DNA damage and repair [8]. Therefore, quantitative 

detection of histone modifications would provide useful information for not only a 

better understanding towards epigenetic regulation of cellular processes but also the 

development of drugs targeting on histone modifying enzymes [9]. 

Histone modifications are mainly profiled by such high-throughput experimental 

techniques as chromatin immunoprecipitation followed by sequencing (ChIP-seq) [10]. 

For example, Barski et al. generated high-resolution maps for the genome-wide 

distribution of 20 histone lysine and arginine methylations and identified typical 

patterns of histone methylations exhibited at promoters, insulators, enhancers, and 

transcribed regions [11]. Whole-genome profiling of DNA regulatory elements, their 

relationship to target genes, their properties of histone modifications, and their features 

of chromatin accessibility, were conducted by the Encyclopaedia of DNA Elements 

(ENCODE) project [12]. Even larger scale global maps of regulatory elements in 111 

reference human epigenomes, together with chromatin accessibility and gene 

expression information, were established by the Roadmap Epigenomics Consortium 

[13]. These abundant resources provided new insights into the function of histone 
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modification and chromatin organization in genome, demonstrated the central role of 

epigenomic information for understanding gene regulation and cellular differentiation, 

and opened a door towards deciphering mechanisms of human disease.  

Nevertheless, it is still too expensive and time-consuming to establish a landscape 

of histone modifications purely relying on biological experiments, due to the large 

number of cell types and known histone markers. It is, therefore, reasonable to take 

advantage of computational methods to predict histone modifications, complementing 

experimental approaches and facilitating the understanding of DNA signatures and 

modifications that contribute to gene expression. Towards this objective, Benveniste et 

al. designed a logistic regression model to predict histone modifications from 

transcription factor-binding profiles and recapitulated the importance of interactions 

between transcription factors and chromatin-modifying enzymes to gene expression 

[14]. Karlic et al. elucidated the correlation between histone modification levels and 

gene expression and designed a linear regression model to predict gene expression 

relying on a small number of histone modifications [15]. 

In the recent years, deep learning has been successfully incorporated into a variety 

of bioinformatics studies. For example, Alipanahi et al. proposed a convolutional neural 

network (CNN) named DeepBind to predict binding proteins and showed higher 

prediction power than traditional classifiers [16]. Zhou and Troyanskaya designed a 

model called DeepSEA to learn DNA regulatory signatures via a CNN from 

epigenomic data [17]. Quang and Xue combined a CNN and a bi-directional long short-

term memory network to predict functions of DNA sequences and named their method 

DanQ [18]. Min et al. proposed a deep CNN model called DeepEnhancer to predict 

enhancers purely from DNA sequences [19]. Liu et al. designed a hybrid neural network 

to predict chromatin accessibility from sequence [20]. Min et al. further developed a 

representation learning formulation to embed k-mers into a low dimension space and 
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then used the resulting vectors to predict chromatin accessibility via a deep neural 

network [21]. The success of these methods suggests that deep learning is a powerful 

technique in genomic studies. However, all these methods rely purely on DNA 

sequence information, which apparently lacks the power of making predictions in a cell 

line-specific manner, because DNA sequences are identical in different cell lines. To 

overcome this limitation, hybrid deep learning methods have been proposed and shown 

visible improvement in specific research by combining sequence information and 

biological experimental data. For instance, a recently proposed method named 

DeepTACT combined DNA sequences and chromatin accessibility to predict high-

resolution chromatin contacts from promoter capture Hi-C data and achieved state-of-

the-art performance [22]. 

Motivated by the above understanding, we purposed a deep learning approach 

named DeepHistone to predict histone modification by integrating DNA sequence 

information and chromatin accessibility data. The rationale for our method is to capture 

regulatory signatures from DNA sequences, while taking advantage of the compact 

relationship between histone modifications and chromatin accessibility to further 

improve the prediction performance. Through a serial of comprehensive validation 

experiments, we demonstrated that DeepHistone is superior to several baseline methods 

in the prediction of modification sites specific to different histone markers, not only 

within an epigenome but also across epigenomes. Besides, we illustrated that sequence 

signatures automatically extracted by our deep learning model was consistent with 

known transcription factor binding sites. As a potential application, we finally showed 

the possibility of our method in distinguishing functional single nucleotide 

polymorphisms (SNPs) from their nearby genetic variants. 
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Materials and Methods 

Data sources 

We downloaded peak files of 7 histone modification markers for 21 human epigenomes 

from the Roadmap Epigenomics Project [13]. As shown in Table 1, the 7 markers, 

including H3K4me3, H3K4me1, H3K36me3, H3K27mer, H3K9me3, H3K27ac, and 

H3K9ac, are regarded as the most important markers that have been verified to be 

associated with such specific functional regions as enhancers and promoters in the 

genome [23]. The criterion for selecting an epigenome is that ChIP-seq assays should 

be performed for all the 7 markers for the tissue or cell line corresponding to the 

epigenome.  

Given a marker, an epigenome, and the peak file of the corresponding ChIP-seq 

experiment, we used a window of 200 bp to scan the whole human genome (hg19) with 

step 200bp and regarded a window that had at least 100bp overlap with a peak as a 

histone modification site. Applying this procedure to every marker and every 

epigenome and discarding epigenomes that had only a small number of modification 

sites (< 50,000) for some histone markers, we identified a total of 7,626,807 sites in the 

human genome from 15 epigenomes, as detailed in Table 1. 

For an epigenome, we further downloaded corresponding DNase-seq peak files 

from Roadmap. For a genomic position in a peak, we assigned the fold enrichment 

score of the peak, calculated by the standard pipeline of Roadmap  [13], to the position, 

as its openness score to quantify the status of chromatin accessibility. For other genomic 

positions, we regarded their openness scores as zeros. By doing this for every 

epigenome, we obtained an openness score that was specific to the epigenome for every 

genomic position.   
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Design of DeepHistone 

We designed a deep neural network model, named DeepHistone, to predict whether a 

DNA fragment in an epigenome is a site for the 7 histone markers. To achieve this 

objective, we first extended the input fragment upstream and downstream to obtain a 

region of 1000bp centred at the fragment and then fed the resulting region to our model, 

which consists of three modules: a DNA module, a DNase module, and a Joint module, 

as illustrated in Figure 1. 

The DNA module, designed as a customized densely connected convolutional 

neural network [24], extracts sequence information for the input region. For this 

purpose, a one-hot encoding strategy is used to convert the sequence of the input region 

into a binary matrix. An initial convolution layer is then adopted to scan the matrix for 

sequence patterns, i.e., motifs. The resulting patterns are further fed to two densely 

connected convolution blocks connected in a tandem way by a convolution layer and a 

pooling layer for extracting high-level features. These features, after passing through a 

convolution layer and a pooling layer, are eventually fed to the joint module for the 

classification task. A densely connected convolution block consists of three 

convolution layers. Mediated by a batch normalization operation and a ReLU activation 

function, the first two layers connect to not only the subsequent layer but also all latter 

layers. The densely connected architecture is adopted here because recent advances in 

deep learning have shown that such an architecture can effectively overcome the 

vanishing gradient problem, strengthen feature propagation, utilize parameters more 

efficiently, and avoid the overfitting problem [24]. These shortcomings are common in 

a classical convolutional neural network, especially on tasks with small dataset. 

Detailed parameter settings of the DNA module are shown in Figure 1. 
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The DNase module extracts chromatin accessibility information for an input 

region. This module has the identical architecture as the DNA module, except that an 

initial one-dimensional convolution layer is used to deal with openness scores of 

positions in the region at the beginning.  

The joint module integrates features extracted by the DNA and DNase modules to 

produce classification results. To achieve this objective, features extracted by these two 

modules are concatenated and fed to a feedforward neural network, which uses 7 

sigmoid functions to predict in parallel probabilities that a region is a site for the 7 

histone modification markers. Note that multiple sigmoid functions instead of a softmax 

function are adopted because in reality the events that a site belongs to the markers are 

not mutually exclusive. In other words, a site can belong to multiple markers 

simultaneously. 

We implemented DeepHistone in Python using Pytorch [25]. The high-

performance NVIDIA GeForce GTX 1080Ti GPU was used to accelerate the 

computation. The cross entropy loss was used as the optimal function in model training, 

measuring the similarity between a true distribution 𝑝𝑝 and the prediction probability 𝑞𝑞, 

as: 

𝐻𝐻(𝑝𝑝, 𝑞𝑞) = E𝑝𝑝[
1

log𝑞𝑞𝑥𝑥
] 

Adam [26] was used to accelerate backpropagation with default parameters, except that 

the initial learning rate is set to 0.001. An early stopping strategy was used to reduce 

the training time.  

Baseline methods 

We compared the performance of DeepHistone with three baseline methods, including 

DeepSEA [17], DanQ [18], and gkm-SVM [27], with parameters proposed by the 
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respective authors. Briefly, DeepSEA used three convolution layers, a fully connected 

layer, and a sigmoid output layer to distinguish between epigenomic sites. DanQ used 

a convolution layer, a bi-directional long short-term memory layer, a fully connected 

layer, and a sigmoid output layer to classify DNA sequences. Gkm-SVM represented a 

DNA sequence as a gapped k-mer vector and then resorts to the widely used support 

vector machine (SVM) to do binary classification. We also proposed two variations of 

our model, named “DeepHistone (DNA-only)” and “DeepHistone (DNase-only)”. The 

former discards the DNase module and predicts histone modification markers using 

only DNA sequence information, and the later discards the DNA module and makes 

predictions using only chromatin accessibility data.  

Validation method and evaluation criteria  

We adopted 5-fold cross-validation experiments to validate the performance of a 

method in predicting histone modification sites. Briefly, from ChIP-seq peak files 

regarding the 15 epigenomes and 7 histone markers, we identified a total of 7,626,807 

modification sites. Given one of the 15 epigenomes, we partitioned all these known 

sites into five parts of nearly equal size. Then, in each fold of the validation, we used 

four parts to train a model and tested its performance on the remaining part. This 

procedure was repeated five times to guarantee that each site had been tested once and 

only once. Note that gkm-SVM is very time-consuming when compared with a deep 

learning method that can be accelerated by hardware (e.g., GPU). Consequently, we 

had to sample at random only a small number (50,000) of modification sites in the 

validation experiments for gkm-SVM, in order to complete the experiments in 

reasonable time. 

Although our method can simultaneously predict whether a DNA fragment in an 

epigenome is a site for the 7 histone markers, a fragment has only two status for a 

certain marker, being a histone modification site or not. This understanding allows us 
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to evaluate the performance of our method using the traditional formulation of binary 

classification. Specifically, given a histone marker, at a certain threshold of the 

prediction probability, we calculated the sensitivity as the fraction of its modification 

sites assigned a probability higher than the threshold, and the specificity as the fraction 

of sites not relevant to the marker and assigned a probability lower than the threshold. 

Varying the threshold value from 0 to 1, we were able to draw a receiver operating 

characteristic (ROC) curve. The area under this curve was then calculated as a criterion 

called auROC. Considering that the number of none-relevant modification sites for a 

marker is typically much larger than that of true sites, we further calculated the recall 

and precision at a threshold, drew a precision-recall curve by varying the threshold 

value, and obtained the area under this curve as another criterion called auPRC.  

The rationale for our method and validation design is conceptually equivalent to 

using modification sites specific to a histone marker as positive set and those not 

relevant to the marker as negative set to train a binary classification model for the 

marker. However, our design has two advantages. First, instead of training 7 models 

for the 7 markers separately, our method can simultaneously train a model for all the 7 

markers, thereby saving computational time. Second, the selection of the negative set 

in our design is much more stringent than such strategies as selecting DNA fragments 

at random from the whole genome, because modification sites for different markers 

may have some similar properties, e.g., GC contents, the distance to a gene, etc. 

Motif visualization  

To interpret how DeepHistone captures DNA sequence patterns, we proposed the 

following strategy to demonstrate the relationship between known DNA binding motif 

and sequence patterns extracted by the first convolution layer of DNA module. 

Following the literature [18, 20], we first generated a position weighting matrix (PWM) 



 - 11 - 

for each kernel in first convolution layer of the DNA module by scanning along all the 

input sequences to find activated regions and then averaging over all the activated 

regions. Formally, a region 𝐱𝐱𝑖𝑖 of a input sequence 𝐬𝐬 was regarded as an activated, if 

𝐰𝐰𝑘𝑘𝐱𝐱𝑖𝑖 ≥ 𝛼𝛼 × 𝐸𝐸𝐸𝐸𝐸𝐸 

where wk is the weight vector of the 𝑘𝑘-th kernel, α ∈ (0,1) a control coefficient,  and 

𝐸𝐸𝐸𝐸𝐸𝐸 the extreme activation value of s defined as  

𝐸𝐸𝐸𝐸𝐸𝐸 =  max (𝐰𝐰𝑘𝑘𝐱𝐱𝑖𝑖|∀ 𝒙𝒙𝑖𝑖 ∈ 𝒔𝒔) 

We set the length of a kernel to 9 and α to 0.9. We then compared extracted PWMs to 

the JASPAR database [28] and illustrated the results by using the tool TomTom [29] 

with q-value threshold 0.05. 

Analysis of functional implications of haQTLs 

We applied DeepHistone to explore functional implications of single nucleoid 

polymorphisms (SNPs) related to histone acetylation quantitative trait loci (haQTLs) 

identified in a lymphoblastoid epigenome by the histone H3 acetylated on lysine 27 

(H3K27ac) marker [30]. Given a SNP, we identified the 1000bp DNA sequence centred 

at the SNP position and predicted two probabilities, 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 , that indicate the 

degree that the reference and alteration sequences being a histone modification site for 

the H3K27ac marker, respectively. Following the literature  [20], the absolute value of 

the different between the two predictions was then defined as the functional implication 

score, Δ𝑝𝑝 = |𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟| for the SNP. 

Results 

DeepHistone accurately predicts histone modification sites 

We first conducted 5-fold cross-validation experiments to assess the performance of 

our method (see Materials and Methods). As shown in Table 2, for a histone marker, 
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the auROC score averaging over the 15 epigenomes is close to 0.9, indicating the 

effectiveness of our method in predicting modification sites specific to a histone marker. 

From Figure 2 (A), we observe that for a histone marker, the auROC score for an 

epigenome is typically above 0.87, though different epigenomes show fluctuations, also 

supporting this conclusion. Moreover, the effectiveness of our method is further 

supported by auPRC scores shown in Table 3 and Figure 2 (B). 

We then compared the performance of our method with that of the baseline 

approaches. Considering that our method uses both sequence and chromatin 

accessibility information, while the other approaches only rely on DNA sequence, we 

discarded the DNase module and implemented a variation of our method called 

DeepHistone (DNA-only). From Table 2, we observe that the mean auROC score over 

the 15 epigenomes for a histone marker yielded by this model, though in general has a 

slight drop when compared with the that generated by the original model, i.e., 

DeepHistone (Standard), is obviously significantly higher than all the three baseline 

methods (DeepSEA, DanQ, and gkm-SVM). For example, for H3K4me1, the mean 

auROC of the 15 epigenomes for DeepHistone (Standard) is 0.9065±0.0290, while 

those for DeepHistone (DNA-only), DeepSEA, DanQ and gkm-SVM are 

0.8685±0.0550, 0.7828±0.0280, 0.7649±0.0260, 0.6361±0.0400, respectively. This 

observation suggests that our method, even when using sequence information alone, is 

still superior over the three baseline methods in predicting modification sites specific 

to a histone marker.  

From Figure 2, we further confirmed this observation. Also taking H3K4me1 as 

an example, the median auROC of the 15 epigenomes for DeepHistone (Standard) is 

0.9152 in the box plot, while those for DeepHistone (DNA-only), DeepSEA, DanQ and 

gkm-SVM are 0.8922, 0.8200, 0.8058, 0.6804, respectively. We then conducted a one-
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sided paired-sample binomial exact test to access whether the auROC scores of the 15 

epigenomes yielded by a method for a histone marker is higher than those generated by 

another. Results show that DeepHistone (Standard) is superior to DeepHistone (DNA-

only) with significant p-values for H3K4me1, H3K4me3, H3K9ac, and H3K27ac (all 

p-values are equal to 3.052E-05) and marginal significant p-values for H3K9me3 (p-

value = 3.693E-03) and H3K27me3 (p-value = 5.924E-02). For H3K36me3, there two 

methods show no apparent difference (p-value = 0.500). Furthermore, DeepHistone 

(DNA-only) is superior to all the three baseline methods for all the 7 histone markers 

(all p-values are equal to 3.052E-05). These results further support the conclusion that 

our method outperforms existing baseline approaches, even when using sequence 

information alone. 

Contributions of the DNA and DNase modules 

To evaluate contributions of the sequence information and chromatin accessibility data, 

we discarded the DNase and DNA module from our model, yielding two variations of 

our method, named DeepHistone (DNA-only) and DeepHistone (DNase-only), 

respectively. For each of the resulting model, we repeated the 5-fold cross-validation 

experiments and showed the results in Tables 2 and 3, and Figure 3.  

From Table 2, we first observe that both the sequence information and chromatin 

accessibility data have positive contributions to the final model, because the exclusion 

of either information leads to a drop in the performance. For example, for H3K4me1, 

the discard of the chromatin accessibility information results in an average auROC of 

0.8685 over the 15 epigenomes, while the exclusion of the sequence information results 

in an average auROC of 0.8335 over the 15 epigenomes. Both results are apparently 

lower than the full model, which yields an average auROC of 0.9065 over the 15 

epigenomes. 
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We also notice that the sequence information contributes more to the final 

performance than the chromatin accessibility data, because the removal of the DNA 

module, i.e., DeepHistone (DNase-only), in general results in a larger drop in 

performance. To further confirmed this observation, we again conducted the 

aforementioned one-sided paired-sample binomial exact test to access whether the 

auROC scores of the 15 epigenomes yielded by DeepHistone (DNA-only) for a histone 

marker is higher than those generated DeepHistone (DNase-only). Results show that 

the former is superior to the latter with significant p-values for H3K4me1, H3K4me3, 

H3K27me3, H3K36me3, H3K9me3 (all p-values are equal to 3.052E-05). For H3K9ac, 

the p-value is also significant as 4.883E-04. The only exception is H3K27ac, where the 

p-value (0.304) is not significant. 

On one hand, it is not supervising to see that the sequence information contributes 

to the prediction of histone modification sites. Actually, this conclusion has been 

supported by abundant studies that demonstrate the effectiveness of such sequence 

patterns as transcription factor binding sites in the prediction of histone modification 

sites [14]. On the other hand, the effectiveness of chromatin accessibility information 

can also be explained by not only the relationship between histone methylation and 

DNA accessibility [31] but also the correlation between histone acetylation and 

chromatin status [32]. Moreover, we conjecture that chromatin accessibility 

information contributes less than sequence information might be due to the fact that 

DNase-seq data for all the 7 markers are identical for an epigenome, and signatures of 

chromatin accessibility may not be so strong as those of sequence. 

DeepHistone predicts histone modification sites across epigenomes 

Although the above cross-validation experiments demonstrated the success of our 

method in the prediction of modification sites specific to a histone marker, in reality it 
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would be more meaningful to predict histone modification sites for an epigenome that 

has no biological experiment conducted. We therefore proposed the following 

collective scoring strategy to predict status (i.e., belonging to which histone markers) 

of modification sites for a novel epigenome. 

Given a novel epigenome and a genomic region, we would like to predict whether 

this region was a modification site for a histone marker, with respect to the given 

epigenome. To achieve this objective, we resorted to a model trained on a known 

epigenome to predict a probability that indicated whether this region was a modification 

site for the same histone marker, and we averaged all such probabilities over all known 

epigenomes to obtain a final prediction probability. In this procedure, the input included 

the DNA sequence of the region and the chromatin accessibility data specific to the 

novel epigenome. 

We conducted a leave-one-out experiment to evaluate the performance of our 

method with this strategy. Specifically, in each validation run, we selected one of the 

15 epigenomes and assumed that status of modification sites in this target epigenome 

is unknown. Then, we applied the collective scoring strategy to recover the status of 

these sites by making use of the remaining 14 epigenomes. Finally, we evaluated the 

performance of our method in terms of the auROC and auPRC scores by using the 

known status of the sites in the target epigenome as the gold standard. In 

implementation, we took advantage of the models trained in the aforementioned 5-fold 

cross-validation experiments and used the model in which a given genomic region 

appeared in the test set to calculate the probability with respect to a known epigenome. 

We presented the results in Figure 4, in which both auROC and auPRC scores 

were averaged over the 7 histone markers to make the presentation concise. From the 

figure, we can clearly see that the cross-epigenome prediction by DeepHistone is 
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effective, in that for the 15 epigenomes, the auROCs are typically above 0.8, and the 

auPRCs are typically above 0.6. We also notice that the cross-epigenome prediction in 

general exhibits lower performance than self- prediction by DeepHistone (5-fold cross-

validation). This is reasonable because an epigenome may have its specific sequence 

codes and chromatin accessibility patterns that might not be captured by the collective 

scoring strategy. 

When compared with the three baseline methods, DeepHistone apparently 

achieves higher performance for all the 15 epigenomes. For example, the average 

auROC for E003 (an embryonic stem cell line) is 0.8391, 0.7697, 0.7744, and 0.6711 

for DeepHistone, DeepSEA, DanQ, and gkm-SVM, respectively. Actually, 

DeepHistone achieves higher auROC scores than all the three baseline methods for all 

the 15 epigenomes. As a result, a one-sided binomial exact test against the null 

hypothesis that the performance of DeepHistone across the 15 epigenomes is not 

different from a baseline method gives significant p-values for all the three methods 

(all p-values are equal to 3.052E-05). This conclusion is further supported when using 

auPRC as the evaluation criterion.   

DeepHistone recovers TF binding motifs 

To demonstrate sequence patterns automatically extracted by our method, we used the 

strategy described in Materials and Methods to obtain sequence signatures (i.e., PWMs) 

learned from the first convolution layer of the DNA module with respect to an 

epigenome. We further identified putative sequence motifs by using the tool TomTom 

and match these PWMs to the JASPAR database. For each epigenome, we displayed 

the sequence logo of one of the matched motifs in Figure 5. 

In different carcinoma cell lines, DeepHistone recovered corresponding motifs to 

each cell line, which showed the sensitivity of DeepHistone. In the lung carcinoma cell 
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line (E114), DeepHistone recovered E2F3, TFAP2C and GRHL2. It has been verified 

that the overexpression of E2F3 transcription factor promotes the development of lung 

cancer [33, 34]. TFAP2C has been previously shown to promote lung tumorigenesis 

and aggressiveness by upregulating of TGFBR1  [35, 36]. Different from E2F3 and 

TFAP2C, GRHL2 can suppress tumor metastasis by regulating of transcriptional 

activity of RhoG in lung cancer [37].  In HeLa-S3, the cervical carcinoma cell line 

(E117), PROX1 and NR2F6 were found by DeepHistone. The commitment of PROX1 

positive cells is an early event in cervical neoplastic progression, and the expression of 

PROX1 is considered as evidence of an early lymphangiogenic switch [38]. The 

abnormal high expression of NR2F6 in early-stage cervical cancer predicts pelvic 

lymph node metastasis, tumor recurrence and poor prognosis and NR2F6 might be a 

potential therapeutic target of cervical cancer [39]. As for hepatocellular carcinoma cell 

line (E118), E2F8, GABBPA and SOX11 were recovered. It has been shown that E2F8 

contributes to human hepatocellular carcinoma via regulating cell proliferation [40] and 

is considered as a potential therapeutic target of hepatocellular cancer [41]. GABBPA 

inhibits metastasis of hepatocellular carcinoma [42] and SOX11 is important in the 

regulation of hepatocellular carcinoma cell proliferation, migration and invasion [43]. 

Besides, DeepHistone recovers SREBF2, HOXA5 and ZNF24 in human umbilical vein 

endothelial primary (HUVEC) cell line (E122) and NKX6-1 in embryonic stem cell 

line (E008). Those recovered transcription factors are verified to play an important role 

in the corresponding cell line [44-48]. To sum up, DeepHistone has the ability to 

recover potential functional transcription factor corresponding to specific cell line.  

DeepHistone explains functional implementations of SNPs 

Although genome-wide association studies (GWAS) have successfully identified 

thousands of single nucleotide polymorphisms (SNPs) associated with complex traits 
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[49], most of these SNPs locate outside coding regions. The explanation of the 

functional implications of these SNPs has thus long been a critical task in genetic 

studies [50, 51]. Recently, a new technique that combines a deep and long-read ChIP-

seq assay on H3K27ac with a powerful statistical test has successfully enabled the 

identification of histone acetylation quantitative trait loci (haQTLs) related to a 

lymphoblastoid epigenome. The identified SNPs exhibit highly predictive power in 

exploring mechanisms of autoimmune disease. We then applied DeepHistone to 

analyze these SNPs, demonstrating potential applications of our method. 

From the literature [30], we identified a positive set that includes 7,497 SNPs 

(haQTLs) specific to H3K27ac in the lymphoblastoid epigenome (E116) and appearing 

in the 1000 genomes project [52]. Meanwhile, we generated a negative control set that 

includes the same number of SNPs as the positive one by identifying for each haQTL 

a SNP that locates about 500bp away, also from the 1000 genomes project. We then 

used the formulation detailed in Materials and Methods to calculate functional 

implication scores for the identified SNPs and compared whether scores for positive 

SNPs is significantly different from those for negative ones. The results, as shown in 

Figure 6, clearly show that the haQTLs tend to have higher functional implications 

scores than the control SNPs. A one-sided Wilcoxon rank sum test against the null 

hypothesis that the median score of these two sets of SNPs are identical yield a very 

significant p-value of 1.369E-140, strongly support the conclusion that haQTLs have 

higher functional implications scores. In other words, these SNPs are more likely to 

change the function of the lymphoblastoid epigenome, and thus are more likely to be 

responsible to a phenotype. We further generated other four control sets in which a SNP 

is required to be 1000, 1500, 2000 and 2500bp away from a haQTL. The results, as 

shown in Figure 6, give us a similar conclusion. All these results suggest that our 
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method has the potential ability to discriminant SNPs responsible for a certain 

phenotype from their nearby genetic variants. 

Conclusions and Discussion  

We have proposed a deep learning framework named DeepHistone to integrate DNA 

sequence information and chromatin accessibility data for predicting histone 

modification sites. Through comprehensive validation experiments regarding 7 histone 

markers and 15 epigenomes, we have shown that our approach is superior to several 

baseline methods in discriminating among modification sites specific to different 

histone markers, capable of making predictions across epigenomes, interpretable in 

extracted sequence features, and applicable to the explanation of functional 

implications of genetic variants. 

The success of our method can be attributed to the combination of the following 

facts. First, we have designed a novel deep neural network model with the incorporation 

of state-of-the-art techniques in the deep learning community. Particularly, the densely 

connected architecture effectively overcomes such problems as the vanishing gradient 

and overfitting, and greatly improves the prediction accuracy. Second, besides 

sequence information, we have also incorporated chromatin accessibility data into our 

model. These two types of information can then complement each other in our neural 

network model to capture subtle signals towards the accurate prediction of histone 

modification sites.  

Certainly, our work can be further improved in several aspects. First, resorting to 

an embedding representation of DNA sequences instead of using the one-hot encoding 

may further improve the prediction accuracy[21]. Second, considering the sequential 

natural a DNA fragments, the incorporation of a recurrent neural network architecture, 
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especially long short-term memory units, may further improve the performance of our 

method [18, 21]. Third, instead of scanning sequence motifs from the beginning using 

convolution kernels, it is also possible to incorporate sequence patterns of known 

transcription factor binding sites and design a hybrid network architecture [18]. Fourth, 

besides chromatin accessibility data, it is also worth to consider the integration of plenty 

of gene expression data. Finally, besides our current formulation of predicting for a 

certain epigenome putative modification sites specific to different histone markers, it 

will also be beneficial to formulate the problem from the perspective of predicting for 

a fixed histone marker putative sites for different epigenomes. 
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Figures 
Figure 1 - Diagram of DeepHistone. The deep neural network model consists of 

three modules: a DNA module, a DNase module, and a joint module. The DNA module 

extracts sequence information via a densely connected convolutional neural network. 

The DNase module deals with chromatin accessibility information using the same 

architecture. The joint module combines both sequence and chromatin accessibility 

features to distinguish histone modification sites of a marker from those of other 

markers. 
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Figure 2 - Performance of different methods in terms of auROC and 
auPRC. In 5-fold cross-validation experiments, DeepHistone (Standard) achieves 

higher performance than DeepHistone (DNA-only), which in turn outperforms the three 

baseline methods (DeepSEA, DanQ and gkm-SVM). 
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Figure 3 - Contribution of different channels of DeepHistone. In 5-fold cross-

validation experiments, DeepHistone (Standard) achieves higher performance than 

DeepHistone (DNA-only) and DeepHistone (DNase-only), indicating that both 

sequence and chromatin accessibility information has a positive contribution to our 

method. 
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Figure 4 - Cross cell line prediction. Each bar indicates the mean of auROC or 

auPR of 7 histone modification markers in a certain epigenome. “Self (DeepHistone)” 

indicates the performance of an epigenome predicting by a DeepHistone model trained 

in the same epigenome. “Cross (DeepHistone)” indicates the performance of cross 

epigenomes prediction using DeepHistone model. Others have similar meaning. 
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Figure 5 - Visualization of sequence patterns learned from DeepHistone. 
PWMs were learned from the first convolution layer of the DNA module. In each 

subgraph, the upper logo is the motif from the JASPAR database, the bottom part is the 

PWM learned by DeepHistone. 
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Figure 6 - Functional implication scores (FIS) of haQTLs and there nearby 
SNPs. “Pos” indicates haQTLs. “Neg(500)” indicates a negative dataset containing 

SNPs about 500bp away from the haQTLs. Others have similar meaning. A significant 

difference of functional implication score between positive and negative datasets 

suggested that DeepHistone can distinguish haQTLs against their nearby SNPs. 
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Tables 
Table 1 - The 15 epigenomes used in this research. 7,626,807 modification 

sites specific to the 7 histone markers were identified from the 15 epigenomes. 

  

Epigenome 
ID 

(EID) 
Anatomy 

Histone marker 

H3K4me1 H3K4me3 H3K27me3 H3K36me3 H3K9me3 H3K9ac H3K27ac Total 

E003 ESC 342,503 213,546 231,823 424,644 322,656 155,558 236,273 1,460,537 

E005 ESC_DERIVED 433,887 166,189 107,589 456,459 287,790 71,753 258,471 1,349,880 

E006 ESC_DERIVED 462,960 163,290 130,314 487,545 278,273 168,264 289,090 1,547,640 

E007 ESC_DERIVED 263,177 159,076 69,494 192,670 149,941 294,433 118,545 957,424 

E008 ESC 147,743 208,835 80,768 336,585 234,898 168,324 129,238 1,050,986 

E017 LUNG 548,594 191,906 506,666 682,735 531,686 273,512 382,596 2,302,996 

E114 LUNG 651,428 362,931 483,416 585,379 216,237 381,391 430,496 1,979,536 

E117 CERVIX 593,890 285,181 406,167 347,919 95,082 260,910 347,656 1,533,734 

E118 LIVER 541,823 271,863 205,199 340,891 246,440 220,457 278,768 1,451,201 

E119 BREAST 563,758 192,740 260,776 242,863 376,845 232,169 366,810 1,566,171 

E121 MUSCLE 591,321 244,747 708,930 483,319 156,381 356,341 486,568 2,110,799 

E122 VASCULAR 582,593 211,344 404,019 317,600 252,718 260,503 360,372 1,617,712 

E124 BLOOD 839,651 431,883 597,823 1,098,084 570,919 268,232 655,859 2,981,094 

E125 BRAIN 627,409 258,248 321,184 400,306 178,567 359,857 424,867 1,629,166 

E127 SKIN 708,918 289,273 466,659 513,074 186,065 302,827 416,314 1,900,958 
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Table 2 - Performance of different methods in terms of auROC scores. 
Numbers in a cell are the mean (upper) and standard deviation (lower) of auROC scores 

over the 15 epigenomes. 

 

  

Methods H3K4me1 H3K4me3 H3K27me3 H3K36me3 H3K9me3 H3K9ac H3K27ac 

DeepHistone(Standard) 0.9065 
(0.0292) 

0.9459 
(0.0404) 

0.8896 
(0.0292) 

0.8890 
(0.0174) 

0.8969 
(0.0340) 

0.9039 
(0.0331) 

0.9137 
(0.0242) 

DeepHistone(DNA-only) 0.8685 
(0.0550) 

0.9381 
(0.0595) 

0.8766 
(0.0635) 

0.8834 
(0.0447) 

0.8744 
(0.0535) 

0.8900 
(0.1013) 

0.8834 
(0.0605) 

DeepHistone(DNase-only) 0.8335 
(0.0304) 

0.8627 
(0.0257) 

0.7132 
(0.0319) 

0.7080 
(0.0245) 

0.7639 
(0.0354) 

0.8353 
(0.0596) 

0.8690 
(0.0361) 

DeepSEA 0.7828 
(0.0276) 

0.8987 
(0.0269) 

0.7829 
(0.0296) 

0.8167 
(0.0200) 

0.8341 
(0.0306) 

0.8330 
(0.0620) 

0.7934 
(0.0335) 

DanQ 0.7649 
(0.0258) 

0.8934 
(0.0367) 

0.7722 
(0.0266) 

0.8138 
(0.0191) 

0.8272 
(0.0336) 

0.8238 
(0.0353) 

0.7726 
(0.0241) 

gkm-SVM 0.6361 
(0.0399) 

0.8092 
(0.0592) 

0.6434 
(0.0415) 

0.6666 
(0.0335) 

0.7278 
(0.0421) 

0.7167 
(0.0454) 

0.6445 
(0.0367) 
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Table 3 - Performance of different methods in terms of auPRC scores. 
Numbers in a cell are the mean (upper) and standard deviation (lower) of auPRC scores 

over the 15 epigenomes. 

  

Methods H3K4me1 H3K4me3 H3K27me3 H3K36me3 H3K9me3 H3K9ac H3K27ac 

DeepHistone(Standard) 0.8116 
(0.0751) 

0.8432 
(0.0801) 

0.6655 
(0.1032) 

0.7551 
(0.0688) 

0.6779 
(0.1329) 

0.7271 
(0.1044) 

0.7714 
(0.0822) 

DeepHistone(DNA-only) 0.7429 
(0.1268) 

0.8208 
(0.1348) 

0.6543 
(0.1382) 

0.7493 
(0.0754) 

0.6427 
(0.1424) 

0.6888 
(0.1835) 

0.6990 
(0.1535) 

DeepHistone(DNase-only) 0.6664 
(0.0985) 

0.5962 
(0.0549) 

0.3219 
(0.1459) 

0.4043 
(0.0776) 

0.3489 
(0.1401) 

0.5701 
(0.1465) 

0.6673 
(0.1179) 

DeepSEA 0.6087 
(0.0817) 

0.7371 
(0.0566) 

0.4404 
(0.1355) 

0.6164 
(0.0647) 

0.5554 
(0.1277) 

0.5629 
(0.1536) 

0.5340 
(0.1027) 

DanQ 0.5805 
(0.0783) 

0.7303 
(0.0737) 

0.4233 
(0.1046) 

0.6178 
(0.0756) 

0.5420 
(0.1379) 

0.5502 
(0.1034) 

0.5015 
(0.0859) 

gkm-SVM 0.4237 
(0.0722) 

0.5858 
(0.0981) 

0.2774 
(0.0945) 

0.4069 
(0.0898) 

0.4221 
(0.1208) 

0.3889 
(0.1187) 

0.3340 
(0.0700) 
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