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Abstract. Modern image recognition systems require a large amount of
training data. In contrast, humans can learn the concept of new classes
from only one or a few image examples. A machine learning problem
with only a few training samples is called few-shot learning and is a
key challenge in the image recognition field. In this paper, we address
one-shot learning, which is a type of few-shot learning in which there is
one training sample per class. We propose a one-shot learning method
based on metric learning that is characterized by data augmentation
of a test target along with the training samples. Experimental results
demonstrate that expanding both training samples and test target is
effective in terms of improving accuracy. On a benchmark dataset, the
accuracy improvement by the proposed method is 2.55 percent points,
while the improvement by usual data augmentation which expands the
training samples is 1.31 percent points. Although the proposed method
is very simple, it achieves accuracy that is comparable or superior to
some of existing methods.

Keywords: Image classification · One-shot learning · Test-time augmentation.

1 Introduction

Image recognition performance has significantly improved with the development
of deep learning technology. Achieving high performance with modern image
recognition systems requires a large amount of labeled data for training. How-
ever, collecting and annotating data generally incurs enormous effort and cost. In
addition, it is sometimes practically difficult to provide large amounts of training
data. In contrast, humans can learn the concept of new classes from one or a
few image examples and recognize the images of those classes. The type of ma-
chine learning problem in which there are only a few training samples is called
few-shot learning (FSL).

FSL exhibits low performance when using common supervised learning meth-
ods because the models overfit to a small number of training samples. Therefore,
FSL generally uses prior knowledge from meta-training data.

This paper addresses image classification problem, particularly one-shot learn-
ing (OSL), which is a type of FSL in which the training data (referred to as the
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support data in FSL) include only one sample per class. This paper proposes an
approach of OSL which is characterized by data augmentation of a test target
along with one training sample per class. We reveal the properties of this method
and demonstrate its performance through experiments on the miniImageNet and
tieredImageNet datasets.

2 Related Work

Basic FSL approaches include metric learning [28, 25, 15, 10], meta-learning [18,
5, 12, 21], and data augmentation [6, 16, 22, 19, 2]. These approaches are occa-
sionally combined.

In the metric-learning-based approach, an embedding space in which samples
of the same class are close together is learned from meta-training data. There
are various methods depending on how the test target is classified using the
support data in the embedding space. Examples include Matching networks [28]
and Prototypical networks [25]. Note that the proposed method is based on
metric-learning.

Data augmentation is widely used in image recognition including deep learn-
ing [23]. The standard image data augmentation techniques include flipping,
shifting, rotating, rescaling, and random cropping of the training images. Data
augmentation is also used in FSL to address the shortage of training samples [6,
16, 22, 19, 2]. However, data augmentation in previous FSL studies expands the
support data, whereas the proposed method expands both the support data and
the test target simultaneously.

Test-time augmentation is a method that expands a test target and uses the
averages of the output predictions as the final prediction results. This method
is often used in general image recognition [8, 26, 7]. We apply a type of test-time
augmentation to OSL. To the best of our knowledge, research focusing on the
use of test-time augmentation for OSL has not been reported to date.

3 Problem Definition

Three datasets are used for training and testing, including meta-training, in
FSL. They are the base set (Db), which contains the meta-training data for
obtaining prior knowledge; the support set (Ds), which contains the support
data consisting of a small number of samples for learning novel classes; and the
testing set (Dq), which contains the test targets for testing the FSL results. The
classes in datasets Ds and Dq are mutual and are both Cnovel. The class that
Db has is Cbase, and there are no mutual classes between Db and Ds. In other
words,

Db ={(xi, yi)}Nb
i=1, yi ∈ Cbase (1)

Ds ={(xi, yi)}Ns
i=1, yi ∈ Cnovel (2)

Dq ={(xi, yi)}
Nq

i=1, yi ∈ Cnovel (3)

Cbase ∩ Cnovel = ϕ, (4)
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where the label of data xi is expressed as yi. Here, xi is an image.
The FSL problem where the number of novel classes |Cnovel| is N and Ds

has K labeled samples for each class is referred to as N -way K-shot learning. K
is generally 1 to 5. This paper addresses OSL, a type of FSL in which K = 1.
In the case of OSL, Ns = N . The objective of FSL is to obtain a model f that
predicts the label yq of a test target xq in Dq when Db and Ds are given, which
is expressed as follows.

ŷq = f(xq;Db, Ds), (xq, yq) ∈ Dq. (5)

4 Proposed Method

Fig. 1 shows an overview of the proposed method for a 5-way OSL case, where
x1–x5 are the support data, and xq is the test target whose correct class is the
class of x1. An example in an actual image is shown in Fig. 3.

The learning and prediction of the proposed method are based on metric
learning. Here, we employ a convolutional neural network (CNN) as an embedded
function g(x; θ) with θ as parameter. Metric learning is performed by training the
CNN with Db as the supervised training data, and parameter θ of the embedded
function is obtained. Then, the class yq of xq is predicted with classifier h using
Ds as the supervised training data in this embedded space.

ŷq = h
(
g(xq; θ(Db));

{
(g(xi; θ(Db)), yi)

}Ns

i=1

)
,

(xq, yq) ∈ Dq, (xi, yi) ∈ Ds. (6)

We employ the nearest neighbor classifier with the cosine distance as h.
The proposed method expands both the support data xi, i = 1, ..., Ns in Ds

and the test target xq. The transformation function to expand an image x J times
is given as aj(x), j = 1, ..., J . Then, the average vector in the embedded space g of
the data where xi in Ds is expanded J times is expressed as mean{g(aj(xi))}Jj=1.
In addition, the average vector in the embedded space g of the data where the
test target xq is expanded J times is expressed as mean{g(aj(xq))}Jj=1. In the

proposed method, when a set of mean{g(aj(xi))}Jj=1 with its teacher label yi,
i = 1, ..., Ns, is given, the class of xq is predicted by determining the class of
mean{g(aj(xq))}Jj=1 using classifier h. In other words, we obtain the following:

ŷq = h
(
mean{g(aj(xq))}Jj=1;

{(
mean{g(aj(xi))}Jj=1, yi

)}Ns

i=1

)
,

(xq, yq) ∈ Dq, (xi, yi) ∈ Ds, (7)

where θ(Db) in g is omitted to keep the formula simple.

5 Experimental Methods

5.1 Datasets

The miniImageNet [28] and tieredImageNet [19] datasets, which are commonly
used as benchmarks for FSL, were used in our experiment.
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Fig. 1. Illustration of the proposed method, showing an example of 5-way OSL where
x1–x5 are the support data and xq is the test target whose correct class is the x1

class. The circle represents the embedded vector of each original image. The black
dots represent the embedded vectors of the expanded images, and the triangle mark
represents the average vector. An example in an actual image is shown in Fig. 3.
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The minilmageNet dataset, which is a subset of ImageNet [3], is a 100-class
dataset of 600 labeled images per class. Here, the image resolution was 84× 84
pixels. According to [18], 64 classes were used as the base class, 16 classes were
used as the validation class, and 20 classes were used as the novel class.

The tieredImageNet dataset is also a subset of ImageNet; however, it is
a larger dataset than miniImageNet. The classes in the tieredImageNet are
grouped according to the hierarchical structure of WordNet. Each class includes
an average of 1,282 images. According to [19], 20 superclasses (351 classes) were
used as the base class, 6 superclasses (97 classes) were used as the validation
class, and 8 superclasses (160 classes) were used as the novel class. The images
were resized to 84× 84 pixels.

5.2 Backbone

Conv-4 and ResNet-18 were used as the backbone of the embedded function.
Conv-4 is a CNN with four Conv blocks formed from a convolution layer with

3×3 filters, batch normalization, the ReLU activation function, and a 2×2 max
pooling layer. In our experiment, the number of filters for the four Conv blocks
was 64-64-64-64. Three fully connected layers were connected after the fourth
Conv block. The first two fully connected layers had 512 units with the ReLU
activation function. Dropout with a rate of 0.5 was applied between these fully
connected layers. The export from the first fully connected layer (fc1) was used
as a 512-dimension embedded vector. The results of our preliminary experiments
indicated that the accuracy of OSL was higher when using the export from fc1
as the embedded vector than when using the export from the fourth Conv block
(maxpool4), as shown in Table 1.

The structure of our ResNet-18 is essentially the same as the 18-layer resid-
ual network described in [7]. However, the first 7×7 convolution was changed to
3× 3 convolution. In addition, by removing the 3× 3 max pooling and changing
the stride of the first residual block convolution to 1, the first two down-sampling
processes were eliminated. In addition, after the global average pooling (GAP),
we added one fully connected layer of 512 units with the ReLU activation func-
tion. The export from this fully connected layer was used as a 512-dimension
embedded vector. The results of our preliminary experiments demonstrated that
the accuracy of OSL was higher when using the export from the added fully
connected layer (added fc1) as the embedded vector than when using the GAP
export, as in Table 1.

5.3 Training Methods

Conv-4 and ResNet-18 were both trained from scratch on Db using mini-batch
stochastic gradient descent with weight decay and momentum using cross-entropy
loss. Here, the batch size, weight decay, and momentum were 25, 5× 10−4, and
0.9, respectively. The learning rate of Conv-4 was 10−3 for the first 60 epochs,
followed by 10−4 for 10 epochs and 10−5 for 10 epochs. The learning rate of
ResNet-18 was 3× 10−2 for 60 epochs, followed by 10−3 for 10 epochs and 10−4
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Table 1. 5-way and 10-way OSL accuracy and 95% confidence interval on miniIm-
ageNet for different embeddings. For Conv-4, using the export from the first fully
connected layer (fc1) for the embedded vector has higher accuracy than export from
the fourth Conv block (maxpool4). For ResNet-18, using the export from the first
fully connected layer added afterward (added fc1) for the embedded vector has higher
accuracy than export from the global average pooling (GAP).

Backbone Embedding
Accuracy (%)

5-way 10-way

Conv-4
maxpool4 44.93 ± 0.51 30.69 ± 0.38
fc1 50.18 ± 0.57 34.77 ± 0.44

ResNet-18
GAP 55.90 ± 0.59 39.96 ± 0.48
added fc1 57.52 ± 0.60 41.14 ± 0.50

for 10 epochs for miniImageNet. For tieredImageNet, it was 10−2 for 80 epochs,
followed by 10−3 for 10 epochs and 10−4 for 10 epochs. During training of these
CNNs, we added general jitter of random crop, rotation, and horizontal flip.

5.4 Experimental Conditions

The transformation function aj(x) shown in Table 2 was used to expand image
data x. Here, the shift(x, dh, dv) function shifts x by dh in the horizontal direction
and dv in the vertical direction, the flip(x) function flips x horizontally, and the
rotate(x, dr) function rotates x by dr. In our experiment, a1–a5 were used when
expanding the data 5 times (5×), a1–a10 were used when expanding the data
10×, a1–a18 were used when expanding the data 18×, and a1–a22 were used
when expanding the data 22×. Note that ∆ and ∆r were fixed to 5 pixels and
5 degrees, respectively.

We compared the proposed method with the following five scenarios. When
expanding the support data Ds but not averaging the embedded vectors, and
not expanding the test target xq,

ŷq = h
(
g(xq);

{
{(g(aj(xi)), yi)}Jj=1

}Ns

i=1

)
. (8)

When expanding Ds and averaging the embedded vectors, and not expanding
xq,

ŷq = h
(
g(xq);

{
(mean{g(aj(xi))}Jj=1, yi)

}Ns

i=1

)
. (9)

When not expanding Ds, and expanding xq but not averaging the embedded
vectors,

ŷq = h
(
{g(aj(xq))}Jj=1; {(g(xi), yi)}Ns

i=1

)
. (10)

When not expandingDs, and expanding xq and averaging the embedded vectors,

ŷq = h
(
mean{g(aj(xq))}Jj=1; {(g(xi), yi)}Ns

i=1

)
. (11)
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Table 2. Transformation function aj(x) to expand image data x; a1–a5 are used when
expanding the data 5×, a1–a10 are used when expanding the data 10×, a1–a18 are used
when expanding the data 18×, and a1–a22 are used when expanding the data 22×. ∆
is 5 pixels and ∆r is 5 degrees.

a1(x) = shift(x, 0, 0)

a2(x) = shift(x,∆, 0)

a3(x) = shift(x,−∆, 0)

a4(x) = shift(x, 0,∆)

a5(x) = shift(x, 0,−∆)

a6(x) = flip(shift(x, 0, 0))

a7(x) = flip(shift(x,∆, 0))

a8(x) = flip(shift(x,−∆, 0))

a9(x) = flip(shift(x, 0,∆))

a10(x) = flip(shift(x, 0,−∆))

a11(x) = shift(x,∆,∆)

a12(x) = shift(x,∆,−∆)

a13(x) = shift(x,−∆,∆)

a14(x) = shift(x,−∆,−∆)

a15(x) = flip(shift(x,∆,∆))

a16(x) = flip(shift(x,∆,−∆))

a17(x) = flip(shift(x,−∆,∆))

a18(x) = flip(shift(x,−∆,−∆))

a19(x) = rotate(x,∆r)

a20(x) = rotate(x,−∆r)

a21(x) = flip(rotate(x,∆r))

a22(x) = flip(rotate(x,−∆r))

When expanding Ds but not averaging the embedded vectors, and expanding xq

but not averaging the embedded vectors,

ŷq = h
(
{g(aj(xq))}Jj=1;

{
{(g(aj(xi)), yi)}Jj=1

}Ns

i=1

)
. (12)

When there were multiple test elements, as in (10) and (12), the classes were
determined based on the total closest distance. The proposed method and these
comparison methods were implemented using MatConvNet [27].

6 Experimental Results

Fig. 2 shows main results. This figure presents the 5-way OSL accuracy on
miniImageNet for the cases of not expanding the data (1×) and expanding the
data by 22× when using Conv-4 as the backbone. For the latter case, the accuracy
of the comparison methods (8)–(12) and the proposed method (7) are shown. As
the figure shows, the accuracy when expanding both the support data and test
target (12)(7) was higher than when expanding only the support data (8)(9) or
only the test target (10)(11). The accuracy of the proposed method (7) was 2.55
percent points higher than when not expanding the data (1×), while the accuracy
improvement by usual data augmentation which expands only the support data
(9) was 1.31 percent points. When comparing using the averaged embedded
vector and not using it ((9) vs (8), (11) vs (10), (7) vs (12)), the accuracy of the
former was slightly higher. Furthermore, the use of the average vector has the
advantage of reducing the search cost of the nearest neighbor classifier h.

Table 3 presents the 5-way and 10-way OSL accuracy on minilmageNet for
Conv-4 when the data were expanded 5×, 10×, 18×, and 22×. In this table,



8 K. Yamada et al.

baseline (8) (9) (10) (11) (12) (7)
0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

5-
w

ay
 a

cc
ur

ac
y

1x
22x

proposed
method

baseline (8) (9) (10) (11) (12) (7)
0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

5-
w

ay
 a

cc
ur

ac
y

1x
22x

proposed
method

Fig. 2. 5-way OSL accuracy and 95% confidence interval for the cases of not expanding
the data (1×) and expanding the data by 22× on miniImageNet for Conv-4. The
accuracy of the proposed method (7) which expands both the support data and test
target is significantly higher than the cases (8)–(11) which expand either the support
data or the test target.

the accuracy of the comparison methods (8)–(12) and the proposed method (7)
are shown in order from top to bottom. Here, exp and ave in the table signify
using data expansion and average of the embedded vectors, respectively. As can
be seen, for any case, including the comparison methods, the accuracy when
expanding the data was higher than when not expanding the data (50.18% for
5-way and 34.77% for 10-way, as displayed in Table 1). Out of these methods, the
proposed method (the bottom row of the table) had the highest accuracy. When
examining the relationship between expansion rate and accuracy, the larger the
expansion rate was, the higher the accuracy was. The rightmost column in the
table displays the costs of the nearest neighbor search for each respective case.
Here, N and J are the number of the way (i.e., the number of novel classes) and
expansion rates, respectively. Since the search cost when no data expansion was
applied is N , the proposed method can improve the accuracy without increasing
the search cost.

Table 4 presents the accuracy of 5-way OSL on miniImageNet and tieredIm-
ageNet for Conv-4 and ResNet-18 when not expanding the data (1×) and when
using the proposed method of expanding the data by 22×. For any combination
of dataset and backbone, the accuracy improved by 1.3–3.3 percent points with
the proposed method of expanding the data by 22× compared to the case of not
expanding the data.
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Table 3. 5-way and 10-way OSL accuracy (%) on miniImageNet for each expansion
rate when using Conv-4 as the backbone. The bottom row is the proposed method. The
terms exp and ave signify using data expansion and the embedded vector averaging
for the support data Ds and the test target xq, respectively. The rightmost column
presents the calculation costs of the nearest neighbor search.

Ds xq 5× 10× 18× 22×
cost

exp ave exp ave 5-way 10-way 5-way 10-way 5-way 10-way 5-way 10-way

✓ - - - 50.83 35.40 51.17 35.65 51.25 35.75 51.23 35.75 NJ
✓ ✓ - - 50.87 35.40 51.24 35.73 51.40 35.87 51.49 35.97 N
- - ✓ - 50.63 35.18 50.96 35.46 51.10 35.59 51.25 35.69 NJ
- - ✓ ✓ 50.78 35.32 51.04 35.54 51.18 35.67 51.34 35.79 N
✓ - ✓ - 51.32 35.85 52.01 36.41 52.29 36.70 52.48 36.89 NJ2

✓ ✓ ✓ ✓ 51.47 35.96 52.09 36.49 52.42 36.79 52.73 37.08 N

Table 4. 5-way OSL accuracy and 95% confidence interval for no data expansion (1×),
and the proposed method when expanding the data 22×.

Dataset Backbone
5-way Accuracy (%)
1× 22×

miniImageNet
Conv-4 50.18 ± 0.57 52.73 ± 0.60
ResNet-18 57.52 ± 0.60 58.84 ± 0.61

tieredImageNet
Conv-4 56.15 ± 0.46 59.45 ± 0.47
ResNet-18 65.13 ± 0.50 67.42 ± 0.50

In Table 5, the proposed method is compared with several existing methods in
terms of accuracy. Here, regular FSL which does not use unlabeled data were the
comparative target, and semi-supervised FSL [13, 19, 11, 29] that uses external
unlabeled data and transductive FSL [13, 17, 4, 20, 29] that uses information from
test data other than the test target were excluded. As can be seen, the simple
proposed method (Ours) achieved accuracy that is comparable or superior to the
methods listed in the table. Although the accuracy of the proposed method was
lower than DSN in the miniImageNet+ResNet case, it was higher than that in the
miniImageNet+Conv-4, tieredImageNet+Conv-4, and tieredImageNet+ResNet
cases.

Fig. 3 shows the results of visualizing the distribution of the embedded vector
using t-SNE [14]. The figure shows an example of 5-way OSL when expanding
the image data by 22×. Here, x1–x5 are the support data, and xq is the test
target. The plot points indicate the embedded vectors of the original image and
the expanded images of each class. ⃝ represents the original image vector, while
△ represents the average of the expanded image vectors. The figure also shows
the original image. In this example, xq was incorrectly identified as the x4 class
when no data expansion was applied; however, xq was correctly identified as
the x1 class when using the proposed method. When examining the original
image vector ⃝ and expanded average vector △ of x1, x4, and xq, the figure
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Table 5. Proposed method (Ours) compared with several existing methods in terms
of accuracy.

Dataset Backbone Model 5-way Accuracy (%)

miniImageNet Conv-4

MatchingNet [28] 43.56 ± 0.84
MAML [5] 48.70 ± 1.84
ProtoNet [25] 49.42 ± 0.78
Baseline++ [1] 48.24 ± 0.75
TapNet [30] 50.68 ± 0.11
DSN [24] 51.78 ± 0.96
Support-based init [4] 50.69 ± 0.63
Ours (22×) 52.73 ± 0.60

miniImageNet

ResNet-18 MatchingNet [28, 1] 52.91 ± 0.88
ResNet-18 MAML [5, 1] 49.61 ± 0.92
ResNet-18 ProtoNet [25, 1] 54.16 ± 0.82
ResNet-18 Baseline++ [1] 51.87 ± 0.77
ResNet-12 TapNet [30] 61.65 ± 0.15
ResNet-12 DSN [24] 62.64 ± 0.66
WRN-28-10 Support-based init [4] 56.17 ± 0.64
ResNet-18 Ours (22×) 58.84 ± 0.61

tieredImageNet Conv-4

MAML [5, 13] 51.67 ± 1.81
ProtoNet [25, 13] 53.31 ± 0.89
MetaOptNet-SVM [9] 54.71 ± 0.67
TapNet [30] 57.11 ± 0.12
Support-based init [4] 58.42 ± 0.69
Ours (22×) 59.45 ± 0.47

tieredImageNet

ResNet-12 ProtoNet [25, 24] 61.74 ± 0.77
ResNet-12 MetaOptNet-SVM [9] 65.99 ± 0.72
ResNet-12 DSN [24] 66.22 ± 0.75
WRN-28-10 Support-based init [4] 67.45 ± 0.70
ResNet-18 Ours (22×) 67.42 ± 0.50

demonstrates that while xq was close to x4 in the original image vector, xq was
closer to x1 in the expanded average vector.

Table 6 shows the results of expanding the data by 18× when transforming
image x with a random shift amount rather than expanding the image using
transformation functions a1–a18 with a fixed shift amount ∆ of 5. This table
displays the accuracy of 5-way and 10-way OSL on miniImageNet for Conv-4.
For transformation with a random shift amount, two random values ∆1 and
∆2 that were sampled per transformation from a uniform distribution of [-10,
10] were used and transformed with shift(x,∆1,∆2). Here, the probability of
horizontal flip was 0.5 (9 out of 18). Table 6 also shows the results of expanding
with a1–a18 with the shift amount ∆ fixed at a value of 5, which was also shown
in Table 3, for the purpose of comparison. Table 6 shows that using a fixed
shift amount, as the proposed method, resulted in higher accuracy than using a
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Fig. 3. Example of visualizing the embedded vector distribution using t-SNE when
expanding image data by 22×. x1–x5 are the support data; xq is the test target. The
plot points indicate the embedded vectors of the original image and the expanded
images of each class. ⃝ represents the original image vector while △ represents the
average of the expanded image vectors.

Table 6. OSL accuracy (%) when transforming with a random shift amount instead
of fixing the shift amount when expanding the data 18× on miniImageNet for Conv-4.

Ds xq random ∆ fixed ∆
exp ave exp ave 5-way 10-way 5-way 10-way

✓ - - - 49.42 33.92 51.25 35.75
✓ ✓ - - 49.79 34.22 51.40 35.87
- - ✓ - 48.92 33.55 51.10 35.59
- - ✓ ✓ 49.07 33.71 51.18 35.67
✓ - ✓ - 51.61 36.07 52.29 36.70
✓ ✓ ✓ ✓ 52.10 36.45 52.42 36.79

random shift amount. We believe the reason for this result is that when the shift
amount is determined randomly per image, there are differences in the expansion
method between images.
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7 Conclusion

In this paper, we have proposed an OSL method for image classification that is
characterized by the data expansion of a test target along with support data.
The experimental results demonstrate that expanding both the support data
and test target is effective in terms of improving accuracy. Accuracy can be
improved without increasing the cost of nearest neighbor search using the av-
erage of the embedded vectors of the expanded images. The proposed method
achieved performance that is comparable or superior to some existing methods
on the miniImageNet and tieredImageNet datasets despite being a rather simple
method. Tasks for future research include learning the transformation function
and the parameters from meta-training data, and combining this method with
other methods.
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