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1 Linköping University, Linköping, Sweden
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Abstract

Sledgehammer, a component of the interactive proof assistant Isabelle, aims to in-
crease proof automation by automatically discharging proof goals with the help of external
provers. Among these provers are a group of satisfiability modulo theories (SMT) solvers
with support for the SMT-LIB input language. Despite existing formalizations of IEEE
floating-point arithmetic in both Isabelle/HOL and SMT-LIB, Sledgehammer employs an
abstract translation of floating-point types and constants, depriving the SMT solvers of
the opportunity to make use of their dedicated decision procedures for floating-point arith-
metic.

We show that, by extending the translation from the language of Isabelle/HOL into
SMT-LIB with an interpretation of floating-point types and constants, floating-point rea-
soning in SMT solvers can be made available to Isabelle. Our main contribution is a
description and implementation of such an extension. An evaluation of the extended trans-
lation shows a significant increase of Sledgehammer’s success rate on proof goals involving
floating-points. In particular, this enhancement enables Sledgehammer to prove more non-
trivial goals—thereby increasing proof automation for floating-point arithmetic in Isabelle.

1 Introduction

Interactive theorem proving is one of the more flexible and powerful formal verification tech-
niques available. However, finding a proof outline with intermediate proof steps just simple
enough for a proof assistant to be able to discharge automatically may require a considerable
amount of time and effort, even from a seasoned user. As an example, the seL4 micro-kernel,
the product of about two person-years and 9000 lines of code, took a total of about 20 person-
years and 200,000 lines of proof development to formally verify [27]. For this reason, increasing
proof automation in interactive proof assistants is crucial to further broaden their applicability.

As a way of tackling this issue, many interactive proof assistants have the ability of trans-
ferring the proof burden of some of the intermediate steps onto automated reasoning systems
with automatic proof methods better suited for the task. This approach has proven to be
quite successful in bringing the number of required user interactions down for many types of
problems, thus increasing productivity.

Among these proof assistants, we find Isabelle [30] and its powerful proof-delegation tool
Sledgehammer [32], which acts as an interface between Isabelle/HOL and a number of external
provers. In addition to “traditional” (resolution-based) first-order automatic theorem provers
(ATPs) such as E [36], SPASS [42], and Vampire [34], these external provers include satisfia-
bility modulo theories (SMT) solvers like Z3 [16], CVC4 [6], and veriT [12]. SMT solvers are
highly specialized in reasoning within certain logical theories (e.g., integers, real numbers, and
bit vectors), and often implement decision procedures more efficient than those found in the
automatic proof methods of Isabelle. The dedicated inference rules of the SMT solvers, how-
ever, are accessible to Isabelle only when the types and constants that appear in the delegated
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proof obligations are interpreted in the language of the SMT solver. An abstract translation
that leaves types and constants uninterpreted will deprive external solvers of the opportunity
to make use of their dedicated decision procedures for specific background theories, and will
instead have to rely on the right set of facts being passed to the solver along with the conjecture.

One of the more recent additions to the growing set of theories supported by most ma-
jor SMT solvers via the satisfiability modulo theories library (SMT-LIB) standard [5], is
that of floating-point arithmetic [13]. A formalization of IEEE floating-point arithmetic in
Isabelle/HOL has been available in the Archive of Formal Proofs for nearly a decade [43].
Sledgehammer has, however, not yet caught up to this development; its SMT component does
not implement an interpretation of floating-point types and constants. Our aim is to provide
such an interpretation, with the purpose of increasing the success rate for floating-point proof
obligations delegated to SMT solvers, and thereby to increase the degree of automation in the
interactive proof process.

Contributions. We extend the SMT solver integration in Isabelle by adding support for
floating-point arithmetic, i.e., by treating floating-point types and operations as interpreted in
the translation from the language of Isabelle/HOL to the SMT-LIB input format. In addition
to describing this extension in detail (Section 3), we provide an implementation1 aimed toward
Sledgehammer. To the best of our knowledge, this enhancement makes Isabelle the first in-
teractive proof assistant to get this kind of support. An evaluation (Section 4), performed on
a small set of floating-point conjectures, confirms the expectation that our translation exten-
sion significantly increases Sledgehammer’s success rate on proof goals involving floating-point
arithmetic.

This new part of the SMT solver integration in Isabelle functions as an oracle; proofs found
by an SMT solver are not reconstructed internally, but need to be trusted. Proof reconstruction
remains as recommended work for the future (see Section 6).

2 Background

In this section, we cover the necessary theory concerning Sledgehammer and floating-point
arithmetic.

2.1 The Sledgehammer Proof Process

When trying to prove a conjecture in Isabelle, a user may, via a simple call to Sledgehammer,
pass along the proof obligation to several external provers, which will then work on the problem
in parallel. The statement to be proven is used by a relevance filter [28] to find additional facts
(axioms and already proven statements) that may help the with the proving process. All of
these statements are then translated and compiled into a file in the input format of the external
prover (in the case of SMT solvers, an SMT-LIB input file), as illustrated in Figure 1.

After working on the problem, the prover returns to Isabelle with its findings. At this point,
if a prover reported the conjecture to be true, the user can either choose to view the prover as an
oracle and accept the conjecture as a theorem (the dashed path in Figure 1), or make Isabelle
try to automatically reconstruct the proof internally, based on the additional facts sent with
the conjecture and any proof details the prover may provide. Theorems that are only proved

1Our implementation is currently available at https://github.com/olletorstensson/floathammer. We plan
to submit a more final version to the Archive of Formal Proofs.
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Figure 1: A conjecture’s journey to become a theorem via Sledgehammer.

externally are marked with an oracle tag, meant to convey a certain amount of skepticism—
reconstructed proofs are generally preferred, as they remove the consideration of possible bugs
in the external prover, or in the translation between formats.

In Sledgehammer’s translation module, types and constants are generally declared with a
unique (freshly generated) identifier and (for constants) a sort that have no inherent meaning to
the external prover. A few Isabelle theories (e.g., those for integer arithmetic, real arithmetic,
and bit vectors) define types and constants that are treated as interpreted by the translation into
SMT-LIB [9], in which case they are mapped directly to their counterpart in the target logic—
thereby allowing the SMT solvers to use their built-in decision procedures designed specifically
to reason within the theories in question.

2.2 IEEE 754 Binary Floating-Point Arithmetic

The most common way to approximate the real numbers to a suitable finite set of numbers
in modern hardware is via floating-points. Simulating real arithmetic using floating-points is
not a straightforward task; the definitions of arithmetic operations are not always obvious,
and should ideally not vary between implementations. To this end, the IEEE developed their
technical standard IEEE 754 [24], aiming to provide clear specifications and recommendations
on all aspects of floating-point arithmetic. To meet the needs of different applications, the
standard specifies several floating-point formats, each defining a unique set of numbers.

A binary floating-point format is characterized by its exponent width w ∈ N, and its pre-
cision p ∈ N. A binary floating-point number, x, may then be represented in this format by a
triple (s, e, f) of bit vectors of length 1, w, and p− 1, respectively, such that (for finite x)

x =


(−1)s · 21−bias(w) · (0 + f

2p−1
) if e = 0

(−1)s · 2e−bias(w) · (1 + f

2p−1
) otherwise,
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where bias(w) = 2w−1 − 1. Together, the sign s, the (biased) exponent e, and the fraction f
constitute a unique representation of any finite or infinite floating-point number; in particular,
the two numbers +0, represented by (0, 0 . . . 0, 0 . . . 0), and −0, represented by (1, 0 . . . 0, 0 . . . 0),
are considered distinct. The standard also specifies two signed infinities—denoted by +∞
and −∞, and represented by (0, 1 . . . 1, 0 . . . 0) and (1, 1 . . . 1, 0 . . . 0), respectively—representing
values that are too great in magnitude for the format, together with Not-a-Number (NaN),
representing undefined values via any triple (s, 1 . . . 1, f) such that f ̸= 0 . . . 0.2

Additionally, IEEE 754 specifies various arithmetic operations on floating-point numbers.
Conceptually, floating-point arithmetic is carried out by converting floating-point numbers to
more precise values, performing the corresponding arithmetic operation, and converting the
result back to the original floating-point format, in an emulation of a rounded but infinitely
precise calculation. In a setting such as Isabelle/HOL, where theories of real arithmetic are
available, the task of carrying out calculations with infinite precision falls upon these, whereas
the floating-point operations handle the rounding and special cases (e.g., when an argument is
NaN or infinite). IEEE 754 specifies precisely how this handling should be performed.

3 A Translation of Floating-Point Arithmetic from Is-
abelle/HOL to SMT-LIB

This section describes an interpreted translation of floating-point types and operations from
Isabelle/HOL to SMT-LIB. Our translation extends a preexisting general translation [9] tar-
geting SMT solvers that is part of Sledgehammer, which treats floating-point arithmetic as
uninterpreted. It supports the formal model of IEEE floating-point arithmetic in Isabelle/HOL
(originally by Lei Yu) that is available in the Archive of Formal Proofs [43]. We aim to be
comprehensive but restrict attention to those floating-point concepts that are defined in both
theories.

3.1 SMT-LIB Logic

The first task of our translation module is to select an SMT-LIB logic within which the SMT
solver is to reason when deciding the satisfiability of the formula. For performance reasons, it is
generally a good idea to select a logic that is as specific as allowed by the contents and structure
of the formula. However, FP, the logic dedicated to floating-points, is too restrictive for many
of Isabelle’s proof obligations, which may contain types and constants that, when translated,
require support for symbols that are either free (uninterpreted) or declared in a different theory
than that of floating-points.

Sledgehammer’s SMT integration relies on callback functions to analyze the proof obliga-
tion and determine the problem’s logic. However, only one of these functions may select a
logic. In the absence of a framework allowing for a more modular approach (e.g., incremen-
tally generalizing the logic as little as necessary, whenever it is required), translations utilizing
the interpretation of floating-point concepts will have to be paired with the most general logic
available. To achieve this, whenever a floating-point specific type is detected as a subtype in a
term of the formula to be translated, our callback function selects the logic ALL, which instructs
the SMT solver to use the most general logic that it supports.

2The IEEE 754 standard defines two “types” of NaN, a quiet and a signalling NaN. Neither the Isabelle
theory nor the SMT-LIB theory make this distinction as they are formalizations based on a higher level of
abstraction.
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3.2 Types

Both theories implement binary floating-point formats of arbitrary width of the exponent and
fraction fields. In Isabelle, (m, n) float is the type of floating-points with an exponent field of
width m, and a fraction field of width n (and thus with precision n+1). In SMT-LIB, the hidden bit
of the significand (the bit preceding the fraction) is included in the format specification, making
( FloatingPoint m n+1) the corresponding sort.3 Due to the lack of support for higher-order
features in SMT-LIB, there is no sort corresponding to Isabelle’s polymorphic floating-point
type, and the interpretation has to be limited to floating-point types with arguments encoding
fixed numeric values (see recommendations for future work in Section 6).

In addition to the types/sorts implementing the floating-point data structures, the two the-
ories each contain a small enumerated type/sort for the rounding modes used by the arithmetic
operations. To make those isomorphic, the Isabelle rounding mode type has been supplemented
with an additional rounding mode (not imposed by IEEE 754, but defined in SMT-LIB) for
round to nearest, ties away from zero.

Non-isomorphism. The floating-point types in Isabelle are defined, via isomorphisms, as
sets of triples of bit vectors of certain lengths. For any k ∈ N, let BVk be the set of bit vectors
of length k. Then the type (m, n) float is isomorphic to the set

FPISA
m,n := BV1 ×BVm ×BVn.

The definition of the floating-point sorts in SMT-LIB is not quite as straightforward. For eachm
and n, the theory defines four disjoint sets:

Zm,n :=
{
(s, e, f) ∈ BV1 ×BVm ×BVn | e = 0m ∧ f = 0n

}
Sm,n :=

{
(s, e, f) ∈ BV1 ×BVm ×BVn | e = 0m ∧ f ̸= 0n

}
Nm,n :=

{
(s, e, f) ∈ BV1 ×BVm ×BVn | e ̸= 0m ∧ e ̸= 1m

}
Im,n :=

{
(s, e, f) ∈ BV1 ×BVm ×BVn | e = 1m ∧ f = 0n

}
,

where, for any k ∈ N, 0k and 1k are the bit vectors consisting of k zeros and k ones, respectively.
The union of these sets, together with a special NaN value, is the logical interpretation of the
SMT-LIB floating-point sort ( FloatingPoint m n+1):

FPSMT
m,n+1 := Zm,n ∪ Sm,n ∪Nm,n ∪ Im,n ∪ {NaN}.

In the above listing of sets making up FPSMT
m,n+1, one set of bit vector triples is notably

absent. In the Isabelle theory, all elements of the set

FPISA
m,n \ FPSMT

m,n+1 =
{
(s, e, f) ∈ BV1 ×BVm ×BVn | e = 1m ∧ f ̸= 0n

}
are considered distinct as floating-points, and they all denote NaN, whereas the SMT-LIB theory
instead introduces a single special NaN value with no bit-vector representation. As a result,
FPISA

m,n and FPSMT
m,n+1 are not isomorphic whenever m > 1 and n > 1. Although both theories

take some liberties with the IEEE 754 standard due to theorem provers not being its main target
for implementations, it seems that neither theory violates the standard in this regard. The

3The SMT-LIB sorts are only defined for formats with m > 1 and n > 0, whereas m and n are merely required
to be positive in Isabelle. Thus, any type (1, n) float lacks a corresponding sort in SMT-LIB, and has to
be left uninterpreted by the translation.
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SMT-LIB theory explicitly states that it is based on floating-point data (“specification level 2”
in IEEE 754), while the Isabelle theory is based on bit-vector representations of floating-point
data. This issue and its impact on the soundness of the translation is further discussed in
Section 3.4—and a possible remedy, in Section 6.

3.3 Constants

For the sake of brevity, we focus here on some of the more interesting aspects of the translation
of constants. For the interested reader, a more detailed description of the translation is available
elsewhere [39]. An exhaustive enumeration of the mapping is provided in Table 1.

Polymorphism. The issue regarding polymorphism, described in the previous section, affects
the translation of constants as well. A constant can only be interpreted if its type is not
polymorphic. Since Isabelle’s automatic type inference assigns constants the most general type
possible with respect to the context, variables and constants with a floating-point type will in
general need to be attached with explicit type constraints in order to trigger the interpretation.

Direct correspondence. For many floating-point related constants in Isabelle, there is a
direct semantic-preserving mapping to a function in SMT-LIB. Among these we find, e.g.,
the rounding modes and comparison operations together with many arithmetic operations and
classification predicates. The translation of these does not involve much more than simply
replacing the identifier with the corresponding one in SMT-LIB. The classification predicates
for “NaN-ity” (is nan in Isabelle, and fp.isNaN in SMT-LIB) define non-isomorphic sets (due
to the underlying sets of floating-points being non-isomorphic), but do correspond in their
definition; they both decide whether a floating-point does not belong to any other floating-
point category:{

x ∈ FPISA
m,n | is nan(x)

}
= FPISA

m,n \ (Zm,n ∪ Sm,n ∪Nm,n ∪ Im,n){
x ∈ FPSMT

m,n+1 | fp.isNaN(x)
}
= FPSMT

m,n+1 \ (Zm,n ∪ Sm,n ∪Nm,n ∪ Im,n).

Therefore, even this mapping can be applied directly.

Format parameter extraction. A few SMT-LIB functions targeted by our translation are
technically elements of an infinite set of functions generated by an index over all floating-point
formats. This holds, e.g., for the conversion operation from reals to floating-points, and for the
(nullary) functions denoting the special floating-point values +0, +∞ and NaN, as their sort is
not necessarily derivable from context. In these cases, an extra step, in which we extract the type
arguments of the type of the constant to be translated and add them explicitly as arguments
to the corresponding function symbol in SMT-LIB, is required for a correct interpretation.
For instance, the Isabelle constant some nan, acting as the canonical NaN of type float m n,
is mapped to the single NaN ( NaN m n+1) of sort ( FloatingPoint m n+1) whenever m and n

encode fixed numeric values.

Term translation. Some subtle differences in how certain constants in Isabelle and functions
in SMT-LIB are defined force us to go beyond a mere symbol-to-symbol mapping. As a first
example, fp—the function in SMT-LIB defining floating-point values from bit vectors—is the
corresponding curried version of Isabelle’s Abs float. In order to correctly translate formulas
involving Abs float, the function and its argument cannot be considered separately, but rather

6
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Table 1: Types and constants in Isabelle, together with sorts and functions in SMT-LIB covered
by the translation. m > 1 and n > 0 denote the format of the type/sort. The variables s , e ,
and f denote bit vectors of length 1, ≥ 1, and ≥ 1, respectively. Double entries in the Isabelle
column indicate that term rewriting is necessary for the latter. Square brackets denote syntactic
sugar, which is also interpreted.

Isabelle Smt-Lib
Floating-Point Type (m, n) float ( FloatingPoint m n+1)

Rounding Mode Type roundmode RoundingMode

Value Construction Abs float (s, e, f ) (fp s e f )

Positive Infinity plus infinity [∞] ( +oo m n+1)

Not-a-Number some nan ( NaN m n+1)

Positive Zero zero class.zero [0] ( +zero m n+1)

Round to Nearest1 To nearest RNE

Round to Nearest2 To nearest away3 RNA

Round Upward To pinfinity RTP

Round Downward To ninfinity RTN

Round Toward Zero float To zero RTZ

Zeroness is zero fp.isZero

Infinity is infinity fp.isInfinite

NaN-ity is nan fp.isNaN

Normality is normal fp.isNormal

Denormality is denormal fp.isSubnormal

Absolute Value abs [| |] fp.abs

Negation uminus [-] fp.neg

Addition fadd / plus [+] fp.add

Subtraction fsub / minus [-] fp.sub

Multiplication fmul / times [*] fp.mul

Division fdiv / divide [div] fp.div

Fused Mult. and Add. fmul add fp.fma

Remainder float rem / frem4 fp.rem

Square Root fsqrt / float sqrt fp.sqrt

Integral Rounding fintrnd / ROUNDFLOAT fp.roundToIntegral

Exclusive Less-Than flt [<] fp.lt

Inclusive Less-Than fle [≤] fp.leq

Exclusive Greater-Than fgt fp.gt

Inclusive Greater-Than fge fp.geq

Equality feq [
.
=] fp.eq

From Real round5 ( to fp m n+1)

To Real valof fp.to real

1 Ties to even.
2 Ties away from zero.
3 New addition.
4 Modified (error fixed).
5 Modified to accommodate new rounding mode.
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they have to be translated directly as a composite term. The constant Abs float is then inter-
preted as fp, while its argument—a triple of bit vectors in Isabelle/HOL—is split into three
separate bit-vector arguments, taken care of by the preexisting interpretation of bit vectors.

A number of arithmetic operations in the Isabelle theory have an alternate version that
adheres to IEEE’s recommendation of letting round to nearest, ties to even be “the default
rounding-direction attribute for results in binary formats” [24] by setting the rounding mode
to To nearest. All functions on the SMT-LIB side that implement these operations do however
require a rounding mode to be explicitly passed as an argument—except for the remainder
function. As noted in both the IEEE 754 standard and in the SMT-LIB theory, the remainder
function is exact, and thereby it does not require rounding to produce a floating-point result.
To be able to interpret the versions of the arithmetic operations not directly corresponding
with their SMT-LIB counterpart, the translation first performs some term rewriting, where a
rounding mode is added (or in the case of the remainder function, removed) as necessary.

Modifications to the Isabelle theory. After supplementing the rounding-mode datatype
in Isabelle with an additional element, some additional changes to the theory were required to
accommodate this new rounding mode. Isabelle’s implementation of floating-point arithmetic
relies heavily on the conversion operations to real numbers, so these modifications were lim-
ited to the two operations round and intround (the latter of which is not interpreted in our
translation), and merely amounted to adding another case for the new rounding mode in each
operation, while carefully considering the overflow thresholds and return values specified by
IEEE 754.

An error in the remainder function frem as defined in the Isabelle theory was discovered dur-
ing implementation and has been patched: the remainder of a finite x and ±∞ shall be x [24].4

3.4 (Un-)Soundness

While the definition of the rounding-mode type has been altered in order to unify the two
theories, the definition of the floating-point type in Isabelle/HOL is currently left unchanged.
As long as this discrepancy between the two theories remains, our translation is unsound, i.e.,
statements that are false in Isabelle may translate into statements that are true in SMT-LIB.
Consider, for instance, the following formula in Isabelle (where all floating-points are assumed
to have a fixed floating-point type, which we suppress for sake of readability):

is nan x ∧ is nan y =⇒ x = y.

This is not a valid theorem in Isabelle/HOL, as witnessed by, e.g., x = some nan and y = -x,
but when passing the problem along to Sledgehammer, the supported SMT solvers report the
translated statement to be true—because, according to the SMT-LIB floating-point theory
(which has only one NaN element), it is. Note that = is the regular equality of Isabelle/HOL,
comparing arguments as equal only if they have the same bit-vector representation, as opposed
to IEEE 754 equality of the floating-point numbers they represent.

We note that the problem pertains in its essence to the different semantics of NaN between
the two theories. The translation is therefore sound for certain (important) classes of formulas:
ground formulas that do not contain a term denoting NaN, and formulas that only contain
NaN-uniform operations, i.e., operations that return the same result for all NaNs regardless of

4The modified theory is currently available at https://github.com/olletorstensson/floathammer.
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their bit-vector representation (just like all functions in SMT-LIB do). Many of the floating-
point operations defined in Isabelle are in fact NaN-uniform (but sign, fraction, abs, uminus,
valof, and = are notable exceptions).

Another source of unsoundness is the direct mapping of valof, Isabelle’s conversion operation
from floating-points to real numbers, to SMT-LIB’s fp.to real. Whereas they correspond on
finite floating-points, the result of applying fp.to real to ±∞ or NaN is unspecified and may
vary between different SMT solvers.5

Evidently, the consequence of the unsoundness introduced by the interpretation of floating-
point types and constants is an oracle that cannot be trusted. This is indeed unfortunate, but it
is only a temporary state; once the Isabelle theory has undergone the necessary modifications,
trust should be restored, and once proof reconstruction has been implemented, trust is no longer
an issue (see Section 6).

4 Evaluation

To investigate the difference in the performance of Sledgehammer brought on by the translation,
and to get a clear overview of the comparative performance of the SMT solvers, we conducted
an experimental evaluation on a small set of floating-point related proof-obligations. Freely
available Isabelle formalizations of floating-point properties are scarce; only a few properties
are included in the theories accompanying the main Isabelle floating-point theory. We comple-
mented these with our own formalizations of floating-point properties taken from the IEEE 754
standard and the Handbook of Floating-point Arithmetic [29], resulting in a set of 123 formu-
las.6 The formulas in the evaluation set exhibit difficulties ranging from trivial to levels on par
with Sterbenz’ lemma [38], and they are all expressed in such a way that they have a sound
translation.

The generated proof obligations were passed along one by one to external tools via Sledge-
hammer with default settings (including a 30 second time limit). The default external tools
invoked by Sledgehammer in Isabelle2021 are the ATPs E (version 2.5.1), SPASS (version 3.8),
and Vampire (version 4.2.2), along with the SMT solvers CVC4 (version 1.8), veriT (ver-
sion 2020.10), and Z3 (version 4.4.0). Out of the three SMT solvers, only Z3 offers unrestricted
support for floating-points; veriT does not support the floating-point theory at all, and CVC4
only allows floating-point sorts denoting either the single or double precision format specified
by IEEE 754. Whereas the restrictions of CVC4 can be circumvented by enabling its “experi-
mental mode” (presumably at the cost of less reliable results), veriT is rendered useless when
faced with a problem involving interpreted floating-point types or constants.

The experiments were conducted in Isabelle2021 under macOS version 10.15, running on a
dual-core 2.5 GHz processor machine with 16 GB of RAM.

4.1 Results

The evaluation set was run for a few fixed floating-point formats, meant to give an estimate
of the performance for arbitrary (fixed) formats. The fixed formats chosen for this task were
the half, single, double, and quadruple precision formats specified by IEEE 754. As to not

5One solution to this problem could be to map valof to a new SMT-LIB function defined to produce the
same values as fp.to real on finite inputs and the same values as valof on all other inputs. This approach
requires more substantial modifications to the way SMT-LIB inputs are generated within Isabelle/HOL and is
currently not part of our implementation.

6The full evaluation set is currently available at https://github.com/olletorstensson/floathammer.
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disregard the possibility of a better performance with more general results by means of poly-
morphism, the evaluation set was run also for the polymorphic format with interpretation
disabled. This gives rise to nine different models (technically, Isabelle theories with different
type annotations) for success measurement of the provers on the evaluation set, defined for
x ∈ {(5,10), (8,23), (11,52), (15,112)} as:

• Ux: Interpretation is disabled and all floating-points are of type x float.

• Ix: Interpretation is enabled and all floating-points are of type x float.

• Upoly: Interpretation is disabled and all floating-points are of type
(’e, ’f) float.

For convenience, the four fixed formats are abbreviated by their total bit length (16, 32, 64,
and 128, respectively) in the model names.

In addition to the models above, six aggregate models, used to estimate the success for
arbitrary interpreted floating-point types, are defined for X ∈ {I,U} as:

• Xsome: A goal is successfully proven if it is so in at least one of the models
X16, X32, X64, and X128.

• Xall: A goal is successfully proven if it is so in all of the models X16, X32,
X64, and X128.

• Xmean: The average success in the models X16, X32, X64, and X128.

Table 2 shows the success rates for four different prover configurations of Sledgehammer
when run directly on the evaluation set in the models described above. In addition to the
default solver configuration ALL, an abbreviation for CVC4 + E + SPASS + Vampire + veriT
+ Z3, results are presented separately for the SMT solvers that support floating-points, namely
CVC4 and Z3, as well as for the configuration SMT, in which all of CVC4, veriT and Z3 are
used. An SMT solver is here regarded as having successfully proven a goal upon returning
unsat, and an ATP upon reporting to have found a proof; since this integration treats SMT
solvers as oracles, the provers are not required to have their proofs reconstructed internally (or
even produced).

Table 2: Success rates of four prover configurations on proof goals from the complete evaluation
set, by model.

U16 U32 U64 U128 Upoly Usome Uall Umean

CVC4 17.1% 17.1% 17.1% 17.1% 18.7% 17.1% 17.1% 17.1%
Z3 17.9% 17.9% 17.9% 17.9% 18.7% 17.9% 17.9% 17.9%
SMT 17.9% 17.9% 17.9% 17.9% 18.7% 17.9% 17.9% 17.9%
ALL 18.7% 18.7% 18.7% 18.7% 18.7% 18.7% 18.7% 18.7%

I16 I32 I64 I128 Isome Iall Imean

CVC4 85.4% 86.2% 82.1% 81.3% 86.2% 80.5% 83.7%
Z3 17.9% 17.9% 17.9% 17.9% 17.9% 17.9% 17.9%
SMT 85.4% 86.2% 82.1% 81.3% 86.2% 80.5% 83.7%
ALL 85.4% 86.2% 82.1% 81.3% 86.2% 80.5% 83.7%
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Table 3: Success rates of four prover configurations on proof goals from the reduced evaluation
set, by model.

U16 U32 U64 U128 Upoly Usome Uall Umean

CVC4 26.5% 26.5% 27.9% 27.9% 29.4% 27.9% 26.5% 27.2%
Z3 32.4% 32.4% 32.4% 32.4% 32.4% 32.4% 32.4% 32.4%
SMT 33.8% 33.8% 33.8% 33.8% 33.8% 33.8% 33.8% 33.8%
ALL 36.8% 33.8% 33.8% 33.8% 48.5% 36.8% 33.8% 34.6%

I16 I32 I64 I128 Isome Iall Imean

CVC4 83.8% 83.8% 76.5% 75.0% 83.8% 75.0% 79.8%
Z3 11.8% 11.8% 11.8% 11.8% 11.8% 11.8% 11.8%
SMT 83.8% 83.8% 76.5% 75.0% 83.8% 75.0% 79.8%
ALL 83.8% 83.8% 76.5% 76.5% 83.8% 76.5% 80.1%

When running Sledgehammer on the 123 formulas in the evaluation set, its relevancy filter
did not have access to many useful facts other than those automatically derived from definitions.
Recognizing that both ATPs and SMT solvers are heavily reliant on additional facts in an
uninterpreted setting, the same models were also applied to a reduced evaluation set, consisting
of all formulas of the original evaluation set except the first 55, which were instead made
available to Sledgehammer’s relevancy filter. These 55 formulas are partially designed to be used
as lemmas in other proofs, and would realistically have been made available to Sledgehammer
in a typical user setting. The success rates for the four prover configurations on the reduced
evaluation set are shown in Table 3.

4.2 Discussion

Based on the results of our evaluation, we put forward the following observations:

Providing Z3 with an interpreted translation does more harm than good, but this is greatly
outweighed by the vast increase in performance it brings to CVC4.

Not only does Z3 fail to contribute anything when working together with CVC4, but its
performance is actually worse compared to when the interpretation is inactive, in terms of
success rates. A big part of this can likely be attributed to the presence of bugs in Z3 (see
the discussion on crashes below). CVC4, on the other hand, performs above expectations. It
alone is the reason for the performance boost that is clearly visible regardless of evaluation
set and measuring model. On both evaluation sets, the success rate of CVC4 is increased to
around 80% when enabling the interpretation, which clearly has a strong influence over the
collective performance of the default provers.

In the absence of helpful facts available to its relevancy filter, Sledgehammer’s success rate
improves remarkably when the translation makes use of the interpretation.

On the original evaluation set, the success rate for the default provers is almost single-
handedly determined by the model applied to CVC4. Applying any of the interpreting models
to the SMT solvers results in success rates over 80%, compared to the less than 20% achieved
by the non-interpreting models, without the provers losing the ability to prove any goals. This
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performance increase demonstrates the possible gains in situations where a library of relevant
basic lemmas (other than definitions) is unavailable to Sledgehammer.

Even when Sledgehammer has access to many relevant facts, the increase in performance due
to interpreting floating-point types and constants, is significant.

On the reduced evaluation set, where Sledgehammer has access to more useful facts, the
outcome is slightly more nuanced than on the original evaluation set. For the interpreting
models, the additional facts do not seem to make much of a difference—in fact, the outcome
for CVC4 and Z3 is exactly the same on the reduced evaluation set as on the corresponding
goals on the original evaluation set (the lower success rates are merely a result of the removed
goals being, on average, easier). The performance of the SMT solvers in the uninterpreted
setting, however, is noticeably improved, as is that of the ATPs. Even so, when all provers
work together, they manage to find proofs to an additional 42.6% of the goals with the Iall
model compared to Uall, increasing the success rate from 33.8% to 76.5% without failing to
prove any goals proved in Uall. Interestingly, the ATPs seem to perform slightly better when
the floating-point types are polymorphic than when they are of a fixed format (as do the SMT
solvers if the translation is uninterpreted). As a result, the performance increase from 48.5%
achieved by the ALL prover configuration in Upoly to the 76.5% achieved in Iall on the reduced
evaluation set comes at the cost of a few unproved goals.

The SMT solvers are more prone to errors when interpretation is enabled.

In addition to being far less likely than CVC4 to prove a formula involving floating-points,
Z3 is far more unreliable; crashes are frequent, and clearly unsatisfiable formulas are sometimes
reported to be satisfiable. CVC4, however, is not without its crashes either. It is not completely
clear what causes the solvers to crash—it is difficult to discern a pattern, and no crash could
be traced back to errors in our implementation. Similar issues were present when SMT solvers
were first integrated with Sledgehammer, and were then due to bugs in the proof generation
procedures of the SMT solvers [9].

Using interpretation, the SMT solvers achieve a higher success rate on formulas that lack trivial
proofs in Isabelle.

Several of the formulas in the evaluation set are already provable via Isabelle’s automatic
methods. In a few cases, these automatic methods are simple calls without arguments, and
this translation extension does not contribute much apart from saving the user the few seconds
it may take to find the right method. More often, however, the automatic method requires
user-provided arguments, e.g., in the form of a few facts. With the enhanced translation,
Sledgehammer has a high success rate also on such formulas, eradicating the need to find (let
alone prove) the required facts. The true gains of interpreting floating-point types and constants
show on the formulas that were not previously provable via automatic methods; as an example,
the property x+ (−y)

.
= x− y (where x, y, and x− y are finite, and

.
= denotes floating-point

equality) is proved by CVC4 for all four evaluated formats within a couple of seconds when
interpretation is enabled, to be compared with its original 17-line proof, involving a number of
explicitly provided facts.
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5 Related Work

The practice of employing automatic provers as back-ends in interactive theorem provers is
not unique to Isabelle. Generic proof-delegation tools similar to Sledgehammer have also been
developed for other proof assistants, e.g., MizAR [40] for Mizar [2], and HOL(y)Hammer [25]
for HOL Light [21] and HOL4 [37]. There are also proof-delegation tools aimed specifically
toward SMT solvers, e.g., Smtlink [33] for ACL2 [26] and SMTCoq [1] for Coq [7].

Single integrations of SMT solvers have perhaps been more common than these larger-scale
tools. The interactive theorem prover PVS [31] is tightly connected with the SMT solver
Yices [17] (and its predecessor ICS), which has been available as a decision procedure for a long
time. An oracle integration of Yices in Isabelle by Erkök and Matthews [19] makes use of its
dedicated decision procedures, but refrains from translating into SMT-LIB, and instead targets
the native input format of Yices due to its expressiveness. Weber [41] proposes a similar oracle
integration of Yices into HOL4, but extends it with support for additional SMT solvers via the
SMT-LIB format. This integration has since been supplemented with proof reconstruction and
become part of HOL(y)Hammer [11].

The work presented herein is based on the original integration of SMT solvers in Isabelle by
Blanchette et al. [9]. It is dependent on all aspects of their translation into SMT-LIB, including
the interpretation of bit vector types and constants. In this sense, it also bears resemblance to
how SMTCoq was recently extended with dedicated support for the theory of bit vectors [18].

Despite readily available formalizations of IEEE 754 floating-point arithmetic, that also have
been used to verify various floating-point related properties, e.g., in HOL Light [22], ACL2 [35],
and Coq [15], no integration of SMT solvers in ITPs seems to make use of the former’s dedicated
decision procedures of floating-points at present. Superficially, the work perhaps most similar to
ours is a somewhat recent Why3 [10] formalization of floating-point arithmetic and its mapping
to the SMT-LIB floating-point theory [20]. Why3, however, is not a prover itself, but merely
a stand-alone proof-delegation tool relying completely on external provers, and thus the higher
automation of interactive theorem provers is not a shared objective.

6 Conclusions and Future Work

In the years since its introduction to Isabelle, Sledgehammer has seen a number of improve-
ments. In varying degree, they have each gradually brought us closer toward the ultimate goal
of full proof automation in interactive theorem provers. In light of this ambitious goal, our
contribution may seem small, but it is, as our evaluation in Section 4 shows, an unmistakable
step in the right direction.

By enhancing the translation from Isabelle to SMT-LIB with the interpretation of floating-
point types and constants described in Section 3, Sledgehammer (when treating SMT solvers
as oracles) sees a significant increase in success rates for proof obligations involving such types
and constants. Our integration does not require formulas to be completely interpretable in the
SMT-LIB floating-point logic for the improvements to apply; the SMT solvers are instructed
to reason within a more general logic where uninterpreted and interpreted sorts and functions
are combined freely. Most importantly, however, the improvements apply to goals that were
previously not provable by any automatic method in Isabelle, showing that enhancing the
translation with floating-point interpretation does increase proof automation. The increase
in performance now brought to Sledgehammer means that more proofs can be carried out
automatically, relieving the user of this burden and saving in on the time and effort spent
constructing proofs manually.
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There are two notable limitations on the translation of floating-point types: it is restricted
to fixed formats, and it is presently unsound. The restriction to fixed formats, stemming from
the lack of support for polymorphism in version 2 of SMT-LIB, is in many cases just a mild
inconvenience—polymorphic floating-points are left uninterpreted, and floating-point formats
of interest need to be treated separately for Sledgehammer to enable the enhanced translation.
The unsoundness, however, may result in Sledgehammer proving “false theorems” if the user is
not careful.

Although our integration does achieve an automation boost in and of itself, it is worth reit-
erating that it is only the first step in the larger project of (securely) increasing the automation
of floating-point reasoning in Isabelle. What follows is a discussion on the possible ways forward
with respect to this objective.

Redefining the Isabelle/HOL floating-point type. The perhaps most pressing matter
is to eliminate the translation’s source of unsoundness. This means that the Isabelle/HOL
definition of the floating-point type needs to be harmonized with that of the SMT-LIB sort.

The change itself is simple enough: instead of defining the type via an isomorphism from
the set BV1 ×BVm ×BVn, a set like

A := Zm,n ∪ Sm,n ∪Nm,n ∪ Im,n ∪ {(0,1m,1n)}

could be used without interfering with the overall structure of the theory. A new function
f : BV1 ×BVm ×BVn → A such that

f(s, e, f) =

{
(0,1m,1n) if e = 1m and f ̸= 0n

(s, e, f) otherwise

would then replace Abs float as the function that corresponds to the SMT-LIB function fp. The
challenge in this case lies in updating Isabelle theories whose contents depend on the present
definition of the floating-point type.

Improving SMT solver integrations in Isabelle. As evident from the evaluation in Sec-
tion 4, the integration of SMT solvers in Isabelle leaves much to be desired from the perspective
of floating-point reasoning—only CVC4 reaches acceptable success rates. The overall disap-
pointing display by Z3 is most likely due to version 4.4.0 being outdated, so to not waste the
potential of Z3, a version upgrade is necessary. Whereas Isabelle2021 includes up-to-date ver-
sions of CVC4 and veriT, the support for newer versions of Z3 is very limited; Z3 holds a special
place among the SMT solvers integrated into Isabelle, as it is the only one having its proofs
reconstructed. Relying on the proof format of the solver, the reconstruction process is version
dependent, since the decision procedures are under constant improvement [8]. Thus the upgrade
is more than just a matter of swapping out the executable. The typically superior performance
of Z3 (along with preliminary manual experiments that we performed) indicates that the payoff
could be well worth the trouble. An integration of currently unsupported SMT solvers with
dedicated support for floating-points (e.g., MathSAT [14]) should also be considered.

Adjusting for SMT-LIB 3. Led by the ambitious Matryoshka project7, there is ongoing
work in obtaining a tighter integration of automatic provers, including SMT solvers, with proof
assistants. One of the means by which to achieve this is via support for higher-order logic in

7https://matryoshka-project.github.io/
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these provers [4]. Most likely, SMT-LIB 3—the next major update to SMT-LIB—will facilitate
these changes by adding support for polymorphism [3]. In order to utilize these advancements,
the translation module for floating-points needs to be updated accordingly.

Reconstructing proofs. Integrating external provers as oracles, as done in this paper, puts
complete trust into the correctness of both the provers and the translation to their input format.
Compared to Isabelle, the trusted code base in SMT solvers is large and much more likely to
contain bugs. Proofs found by an SMT solver integrated as an oracle circumvent Isabelle’s small
inference kernel, and are therefore less trustworthy. The approach preferred by the interactive
theorem proving community is that of a skeptic [23]—external proofs should be reconstructed
internally. If successful, this approach combines the speed of the SMT solver with the reliability
of the proof assistant.

By using proof details provided by external solvers, Isabelle is already able to reconstruct
many of their proofs. This ability, however, is limited and does not handle reasoning specific to
certain SMT-LIB theories. Efficient reconstruction of proofs that use floating-point reasoning
requires both improving on the provided proof information, and translating theory-specific
inferences. Implementing efficient proof methods in Isabelle/HOL is also a part of this challenge.
A decision procedure for floating-point arithmetic implemented on top of Isabelle’s inference
kernel would both facilitate the reconstruction of proofs and increase the overall automation of
internal floating-point reasoning.

Both the implementation of proof reconstruction and a decision procedure for floating-points
in Isabelle will require substantial work. The promising results in this paper are reassuring in
that the effort would not be wasted.
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[20] C. Fumex, C. Marché, and Y. Moy. Automated verification of floating-point computations in Ada
programs. Research Report RR-9060, Inria Saclay Ile de France, 2017.

[21] J. Harrison. HOL Light: A tutorial introduction. In M. K. Srivas and A. J. Camilleri, editors,
Formal Methods in Computer-Aided Design, First International Conference – FMCAD ’96, volume
1166 of Lecture Notes in Computer Science, pages 265–269. Springer, 1996.

16



Oracle Integration of Floating-Point Solvers with Isabelle O. Torstensson and T. Weber

[22] J. Harrison. Floating-point verification using theorem proving. In M. Bernardo and A. Cimatti,
editors, Formal Methods for Hardware Verification, 6th International School on Formal Methods
for the Design of Computer, Communication, and Software Systems – SFM 2006, volume 3965 of
Lecture Notes in Computer Science, pages 211–242. Springer, 2006.
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