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Abstract

The lack of a large amount of training data has always been the constraining factor
in solving a lot of problems in machine learning, making One Shot Learning one
of the most intriguing ideas in machine learning. It aims to learn information
about object categories from one, or only a few, training examples, and for certain
image classification tasks, has successfully been able to get results comparable
to human beings. This project aims to deal with understanding the architecture
of One Shot Learning using Siamese neural networks [1] and improve on their
performance using Kafnets (kernel-based non-parametric activation functions for
neural networks) [4]. We also intend to evaluate these activation functions for
advanced one shot learning models(Matching Networks).

1 Introduction

Humans learn new things with a very small set of examples e.g. a child can generalize the concept
of a ”Dog” from a single picture but a machine learning system needs a lot of examples to learn
its features. In particular, when presented with stimuli, people seem to be able to understand new
concepts quickly and then recognize variations on these concepts in future percepts [7]. Machine
learning as a field has been highly successful at a variety of tasks such as classification, web search,
image and speech recognition. Often times however, these models do not do very well in the regime
of low data. This is the primary motivation behind One Shot Learning; to train a model with fewer
examples but generalize to unfamiliar categories without extensive retraining.

Deep learning has played an important role in the advancement of machine learning, but it also
requires large datasets. Different techniques such as regularization reduces overfitting in low data
regimes, but do not solve the inherent problem that comes with fewer training examples. Further-
more, the large size of datasets leads to slow learning, requiring many weight updates using stochas-
tic gradient descent. This is mostly due to the parametric aspect of the model, in which training
examples need to be slowly learned by the model into its parameters. In contrast, many known non-
parametric models like nearest neighbors do not require any training but performance depends on a
sometimes arbitrarily chosen distance metric like the L2 distance[1].

One-shot learning is an object categorization problem in computer vision. Whereas most machine
learning based object categorization algorithms require training on hundreds or thousands of images
and very large datasets, one-shot learning aims to learn information about object categories from
one, or only a few, training images [10]. This is called one-shot learning and forms the basis of our
work in this project.

One way of addressing problems in One Shot learning is to develop specific features relevant to the
domain of the problem; features that possess discriminative properties particular to a given target
task. However, the problem with this approach is the lack of generalization that comes along with
making assumptions about the structure of the input data. In this project, we make use of an approach
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similar to [1] while simultaneously evaluating different activation functions that may be better suited
to this task. The overall strategy we apply is two fold; train a discriminative deep learning model on
a collection of data with similar/dissimilar pairs. Then, using the learned feature mappings, we can
evaluate new categories.

Since One Shot Learning focuses on models which have a nonparametric approach of evaluation, we
came across Kafnets [4] (kernel based non-parametric activation functions) that have shown initial
promise in this domain of training neural networks using different forms of activation functions; so
as to increase non-linearity, therefore decreasing the number of layers, and increasing the accuracy
in a lot of cases. This paper has proposed two activation functions KAF and KAF2D, and focuses
on their nature of continuity and differentiability. We have implemented these activations and
compared their effectiveness against traditional ones when used in the context of One Shot learning.

2 Related Work

The research in one shot learning has not yet caught much attention of the machine learning com-
munity. The work resulting in the best accuracy for the image classification problem dates back to
the 2000’s by Li Fei-Fei et al. The authors have developed a variational bayesian framework [10] for
one shot image classification using the premise that a previously learned class can help in forecasting
a future one.

Lake et al. [8] tackled the problem of character recognition by proposing a method called Hierar-
chical Bayesian Program Learning. In [7] and [8], the authors present an approach where an image
is deconstructed into several smaller pieces to ascertain an explanation for the structure of pixels.
However, the joint parameter space being very large lead to inference becoming intractable.

There have also been other methods that approach the problem of One Shot Learning. [16] tackle
path planning as a one shot learning problem for robotic actuation. [15] use Bayesian networks
on the Ellis Island passenger data to infer attributes. [9] use a generative Hidden Markov Model
along with a Bayesian inference algorithm to try and identify unseen words in a speech recognition
paradigm. [14] predicts the parameters of a neural network from a single exemplar image. The
network that effectively learns to learn, generalizing across tasks defined by different exemplars.

A different approach to one-shot learning is to learn an embedding space, which is typically done
with a siamese network [5]. Given an exemplar of a novel category, classification is performed in
the embedding space by a simple rule such as nearest-neighbor. Training is usually performed by
classifying pairs according to distance [6].

Another technique that looks at the problem of One Shot Learning is by use of matching networks or
bi-directional LSTMs [2]. As mentioned before, non parametric alternatives like the Nearest Neigh-
bours model choose an arbitrary distance function. The authors solve this problem by formulating a
loss function that encompasses in training a nearest neighbour like model end to end. In the image
classification task, the generated output label ŷ for a test example x̂ is computed very similar to
what you might see in Nearest Neighbors algorithm. The method progresses by embedding both
the training examples as well as given test example x̂, compute a cosine similarity based metric as
the ”match”, and then pass that through a softmax to get normalized mixing weights to generate a
label. The embedding process for the training examples make use of a bidirectional LSTM over the
examples. For the test examples, is a an LSTM that processes for a fixed amount (K time steps) and
at each point also attends over the examples in the training set. The encoding is the last hidden state
of the LSTM. The paper also benchmarks various approaches to one shot learning could be used a
reference for our results.

The approach that has been recently explored is the use of Deep Siamese Networks which we borrow
from heavily [1]. Convolutional neural networks have achieved exceptional results in many large-
scale computer vision applications, particularly in image recognition tasks. Several factors make
convolutional networks especially appealing. Local connectivity can greatly reduce the number of
parameters in the model, which inherently provides some form of built-in regularization, although
convolutional layers are computationally more expensive than standard nonlinearities. Also, the
convolution operation used in these networks has a direct filtering interpretation, where each feature
map is convolved against input features to identify patterns as groupings of pixels. Thus, the outputs
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of each convolutional layer correspond to important spatial features in the original input space and
offer some robustness to simple transforms. Further we use a contrastive loss function as defined
in [3]. The objective of the siamese architecture is not to classify input images, but to differentiate
between them. So, a classification loss function (such as cross entropy) would not be the best fit.
Instead, this architecture is better suited to use a contrastive function. Intuitively, this function just
evaluates how well the network is distinguishing a given pair of images.

As One Shot Learning focuses on models which have a non parametric approach of evaluation, we
came across a recent paper [4] on Kafnets (kernel based non-parametric activation functions) that
has worked in this domain of training neural networks using different forms of activation functions.
[4] introduce a novel family of flexible activation functions that are based on an inexpensive kernel
expansion at every neuron. Leveraging over several properties of kernel-based models, the authors
propose multiple variations for designing and initializing these kernel activation functions (KAFs),
including a multidimensional scheme allowing to non linearly combine information from different
paths in the network. The resulting KAFs can approximate any mapping defined over a subset of the
real line, either convex or nonconvex. Furthermore, they are smooth over their entire domain, linear
in their parameters, and they can be regularized using any known scheme. In this project, we focus
on two activation functions, KAF and KAF2D and the effects of implementing them in a siamese
architecture for One Shot Learning.

3 Data-Sets

For this project, We have used two main datasets: MNIST [11] and the AT&T Database of Faces
[12] (formerly ’The ORL Database of Faces’). Further we also use the Omniglot dataset [13]. All
of the above datasets are available freely online and did not require any form of preprocessing.

We chose MNIST because we first wanted to test our models with images with less information.
Then we thought it would be appropriate to pick a dataset with more features to extract from images
and decided to work with the AT&T Database of Faces.

The MNIST dataset consists of handwritten digits, has a training set of 60,000 examples, and a test
set of 10,000 examples. It is a subset of a larger set available from NIST. The digits have been
size-normalized and centered in a fixed-size image.

Figure 1: Sample MNIST Dataset

The AT&T Database of Faces consists of ten different images of each of 40 distinct subjects. For
some subjects, the images were taken at different times, varying the lighting, facial expressions
(open / closed eyes, smiling / not smiling) and facial details (glasses / no glasses). All the images
were taken against a dark homogeneous background with the subjects in an upright, frontal position
(with tolerance for some side movement).

Omniglot is a dataset by (Lake et al., 2015) that is specially designed to compare and contrast
the learning abilities of humans and machines. The dataset contains handwritten characters of 50
languages (alphabets) with 1623 total characters. The dataset is divided into a background set and
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Figure 2: Sample At&T Face Dataset

an evaluation set. Background set contains 30 alphabets (964 characters) and only this set should
be used to perform all learning (e.g. hyper-parameter inference or feature learning). The remaining
20 alphabets are for pure evaluation purposes only. Each character is a 105 x 105 greyscale image.
There are only 20 samples for each character, each drawn by a distinct individual.

4 Methodology

In this project, our first step was to train siamese networks to recognize similar and different forms
of images with one or two examples of each form. Later we replace the the loss function layer, and
instead use the last layer output as embeddings in a fixed dimensional space. Finally we check for
the nearest data point and assign the appropriate category. We have used pytorch library for the im-
plementation of Siamese Networks for Image classification. To maintain context, we take cues from
the implementation of Matching Networks which use an LSTM architecture. One challenging task
involved the implementation of activation functions. We implemented two Activation Functions,
called KAF and KAF2D. KAF(Kernel Activation Function) Specifically, each activation function is
modelled in terms of a kernel expansion over D terms as:

g(s) =

D∑
i=1

αiκ(s, di)

where, {αi}i=1:D are the mixing coefficients, {di}i=1:D are the called the dictionary elements, and
κ (., .) : R→ R is 1D kernel function.

In kernel methods, the dictionary elements are generally selected from the training data. In a stochas-
tic optimization setting, this means that D would grow linearly with the number of training iterations,
unless some proper strategy for the selection of the dictionary is implemented. To simplify our treat-
ment, a simplified case where the dictionary elements are fixed has been considered, where we only
adapt the mixing coefficients. This has the additional benefit that the resulting model is linear in
its adaptable parameters, and can be efficiently implemented for a mini-batch of training data using
highly-vectorized linear algebra routines. Note that there is a vast literature on kernel methods with
fixed dictionary elements, particularly in the field of Gaussian processes.

The kernel function need only respect the positive semi-definiteness property, i.e., for any possible
choice of αi and di we have that:

D∑
i=1

D∑
j=1

αiαjκ(di, dj) ≥ 0

In this paper, they have used 1D Gaussian kernel defined as:

κ(s, di) = exp
{
−γ(s− di)2

}
where γεR is called the kernel bandwidth. This model has very straightforward derivatives for
back-propagation as seen below:

∂g(s)

∂αi
= κ(s, di)

∂g(s)

∂s
=

D∑
i=1

αi
∂κ(s, di)

∂s
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[4] also considers a two-dimensional variant of the proposed KAF, denoted as 2D-KAF. Roughly
speaking, the 2D-KAF acts on a pair of activation values, instead of a single one, and learns a two
dimensional function to combine them. It can be seen as a generalization of a two-dimensional
max-out neuron, which is instead constrained to output the maximum value among the two inputs.
The equation is given as:

g(s) =

D2∑
i=1

αiκ(s, di)

here, κ(s, di) = exp
{
−γ ‖s− di‖22

}
is a 2D Gaussian Kernel.

After implementing Activation Functions, the next step was to implement Siamese Networks for
Classification. The architecure is detailed in the next sections.

4.1 Architecture of Siamese Networks

For MNIST, we have coded a very simple 2 convolutional layer architecture:
Layer 1 : Conv1 and Conv2
Conv1: 1X20 followed by maxpooling
Conv2: 20X50 followed by maxpooling
Layer 2 : Fully Connected network with Activation Function. (50X500)
Layer 3 : Linear Layer (500X2)

For AT&T Face Dataset, we have implemented dense layered Architecture:

Layer 1 : Conv1, Conv2, and Conv3
Conv1: 1X4 followed by Activation Function and Max Pooling.
Conv2: 4X4 followed by Activation Function and Max Pooling.
Conv3: 8X8 followed by Activation Function and Max Pooling.
Layer 2 : Fully Connected network with Activation Function (100X100X8).
Layer 3 : Linear Layer with Activation Function. (500X250).
Layer 4 : Linear Layer with Activation Function. (250X5).
We have used Contrastive Loss function in both cases:

(1− Y )
1

2
D2

w + (Y )
1

2
{max(0,m−Dw)}2 , and

Dw =

√
{Gw(X1)−Gw(X2)}2

where Gw is the output of one of the sister networks. X1 and X2 is the input data pair.
We have set learning rate to 0.0005, and used the Adam Optimizer.

We have also changed the architecture for matching networks a bit so as to adapt the KAF2D Activa-
tion Function, but mostly used what was suggested in [2]. It consists of 4 convoluted layers, followed
by 3 Fully connected linear layers and then Bidirectional LSTMs. This also uses the contrastive loss
function.

5 Experiments and Results

We ran Siamese Network Architecture on the MNIST Dataset, with different activation functions,
each for 10 and 50 epochs. We have observed that the clustering score (silhouette score) in KAF2D
was best, followed by KAF and RELU as displayed in Table 1. Silhouette Score ranges from (-1 to
1), where close to 1 proves that the clusters obtained are good. The reason, it is working better could
be about the Activation function. Firstly, for one shot we need non-paramteric activation functions
only, as we have less amount of data. RELU is simple traditional non-paramteric function, whereas
KAF, and KAF2D were kernel based, so they could have contributed in capturing features of images
in better way.
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Figure 3: Embeddings with different Activation Function for different Epochs [MNIST Dataset]
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Figure 4: Training Loss for MNIST dataset with different Epochs and Activation Functions.

We have also observed the training loss curve for all the cases, and see that with KAF, and KAF2D
there were more fluctuations than RELU.

We also experimented with the same architecture on the At&T Face Similarity dataset. As the output
from the Siamese network, we obtained five dimensional embeddings of the images in a plane; we
then calculated pairwise distance which was used the metric to measure similarity. Similar to the
MNIST experiment, we ran it with KAF, KAF2D, and RELU activation function, and observed that
we were able to increase the closeness of it, using KAF and KAF2D. We also observed the behavior
of training loss curve with different functions. What we observed is, that for RELU, it converged
much faster, which could be reason of its efficiency. Whereas KAF, and KAF2D were fluctuating in
the beginning, but converged to a lower value of loss at the end.
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Figure 5: Similarity Scores for Faces with RELU Activation Function [At&T Dataset]

Figure 6: Similarity Scores for Faces with KAF Activation Function [At&T Dataset]
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Figure 7: Similarity Scores for Faces with KAF2D Activation Function [At&T Dataset]
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Figure 8: Training Loss for Different Epochs AT&T Dataset
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Table 1: Silhouette Scores obtained for clusters in test set, 50 Epochs [MNIST Dataset]

Activation Function Silhouette Score

RELU 0.7766
KAF 0.8052
KAF2D 0.81641

Table 2: Accuracies for Matching Networks on Omniglot Dataset

Activation Function Accuracy

RELU 91.18%
KAF 92.06%
KAF2D 89.27% Intermediate

5.1 Accuracies obtained on Matching Networks

As a final experiment, we replicated the architecture of Matching Networks as in [2] with the KAF
and KAF2D activation functions on the Omniglot Dataset. It ran for 1600 Epochs with the results
summarized in Table 2.

6 Discussion and Conclusions

In this project, we present kernel based activation functions [4] to improve the performance of one-
shot classification by applying it to learn deep convolutional siamese neural networks for image
classification. We have outlined our results comparing the performance of our networks to existing
RELU based Architectures.

After running some experiments, we observe certain behavior related to activation functions as ap-
plied to the One Shot learning task:

1. KAF takes around twice the training time of RELU activation functions.
2. KAF2D takes around five times the training time of RELU activation functions.
3. We obtained better clusters (closely aligned) with KAF2D, followed by KAF and RELU,

for MNIST Dataset.
4. The Training Loss Curve for At&T Face Dataset converged faster when using RELU. When

using KAF and KAF2D as activation functions, the loss fluctuated a bit in the beginning
but provided a lower loss value at the end.

5. The Results for Matching Networks Architecture proved to be promising using KAF based
activation functions, but we weren’t able to completely calculate the accuracy for KAF2D,
as we ran out of AWS credits. For 1000 epochs we obtained 89.27% max.

We conclude that the new Activation Functions did giving better accuracy in matching networks,
better similarity distance in AT&T dataset, and better intra cluster scores for MNIST, they took a lot
more time to converge as compared to RELU.
In the future, we can test this approach for Neural Turning Machines Algorithm of One Shot Learn-
ing, but as mentioned it will require more resources. For now, we can conclude, that these activation
functions show promise, but if used in complex and large architectures, it will cost a lot of resources
and time. We can use them for small architectures, just like with MNIST’s (2 convolutional Layer)
and AT&T’s (3 convolutional Layer). But when it comes to Matching Networks Architecture( which
involves LSTMs) we can trade off accuracy for flexibility in time and resources.
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