
EasyChair Preprint
№ 8084

GBLNet: Detecting Intrusion Traffic with
Multi-Granularity BiLSTM

Li Wenhao and Xiao-Yu Zhang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 24, 2022

GBLNet: Detecting Intrusion Traffic with
Multi-granularity BiLSTM

Wenhao Li1,2 and Xiao-Yu Zhang1,2(�)

1 Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China

{liwenhao,zhangxiaoyu}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing

100093, China

Abstract. Detecting and intercepting malicious requests are some of
the most widely used ways against attacks in the network security, espe-
cially in the severe COVID-19 environment. Most existing detecting ap-
proaches, including matching blacklist characters and machine learning
algorithms have all shown to be vulnerable to sophisticated attacks. To
address the above issues, a more general and rigorous detection method is
required. In this paper, we formulate the problem of detecting malicious
requests as a temporal sequence classification problem, and propose a
novel deep learning model namely GBLNet, girdling bidirectional LSTM
with multi-granularity CNNs. By connecting the shadow and deep fea-
ture maps of the convolutional layers, the malicious feature extracting
ability is improved on more detailed functionality. Experimental results
on HTTP dataset CSIC 2010 demonstrate that GBLNet can efficiently
detect intrusion traffic with superior accuracy and evaluating speed, com-
pared with the state-of-the-arts.

Keywords: Intrusion Detection · Network Security · Model Optimiza-
tion.

1 Introduction

It has been a seesaw battle between intrusion traffic utilization and detection for
decades. With the rapid development of network technology, many commercial
applications are now transiting to a lightweight browser/server model (B/S).
With such model, information is transported from a directory service via Hyper
Text Transport Protocol (HTTP) or HTTP via HTTP over TLS (HTTPS),
where TLS is an encryption protocol on transport layer. Although encryption
technology has been popularized in recent years, it is argued that HTTP, with
plaintext transmission, still dominates the intrusion traffic [9]. Most attackers
who launch attacks on web applications pass the HTTP request method. As
announced in [2], 80% of the Open Web Application Security Project (OWASP)
top 10 network attacks are based on the HTTP, which lead to the vulnerability
of servers and the leakage of user privacy data. It is more efficient to deploy a

2 W. Li et al.

HTTP based intrusion detection system than to repair a large number of web
application vulnerabilities.

Motivated by the sensitive advantages of Bidirectional Long Short-Term
Memory (BiLSTM) in temporal text processing and Convolutional Neural Net-
works in feature extracting, we take the temporal sequence classification problem
into account to propose a novel deep learning model by girdling BiLSTM with
multi-granularity convolutional features to detect malicious requests. It is worth
mentioning that the model has greatly improved the convergence speed and con-
vergence speed, which promotes the deployment of real-time updating dynamic
intrusion detection systems. The main contributions of our work are as follows:

– A novel intrusion detector, namly GBLNet, is proposed to detect malicious
HTTP request. GBLNet considers multi-granularity features extracted by
Convolutional Nets to enhance the power of bidirectional LSTM.

– Encouraged by the enhanced CNNs-girdled BiLSTM, GBLNet shows supe-
rior efficiency when detecting malicious network traffic, compared with the
existing detectors.

2 Detection with Convolution-Girdled BiLSTM

Fig. 1. Structure of GBLNet.

2.1 Detail of Model

We apply the Embedding layer as the first layer of our model. The Embedding
layer can be divided into two parts. In equation 1, the first part projects each
word in the sentence to a real-valued vector, and construct a model as follow:

Intrusion Detection with GBLNet 3

f(wt, ..., wt−n+1) = p̂(wt|wt−11) (1)

where f(wt, ..., wt−n+1) is the trained model that represents the probability
p̂(wt|wt−11). The second part uses the word vector to construct a probability
function instead of the previous function. The raw data input of the model is a
vector processed by each word vector, as shown in equation 2:

f(wt−1, ..., wt−n+1) = g(C(wt−1), ..., C(wt−n+1)) (2)

where function C maps sequence of feature vectors to a conditional probability
distribution function g. Each word vector Xw computed by the Embedding layer
can be expressed as:

Xw = We
d×|V |vn (3)

X1:L = [x1, x2, x3,xL] (4)

where v is the original input word and We is the trained embedding vectors.
Containing all Xw, X1:L is the output of the Embedding layer.

One-dimensional convolutional layers are connected behind the Embedding
layer. The input to the BiLSTM-prefixed CNN layer is an array of word vectors
after Embedding. In the convolutional layer, the filter we used is v ∈ R3×100.
The filter performs convolution on three word vectors of length 100. We apply
128 filters in convolutional layer with kernel size of 3:

f ιj = h(
∑
i∈Mj

Xι−1
i:i+2v

ι
i:i+2 + bιj) (5)

F = [f1, f2, f3,fn−2] (6)

where Xi:i+2 is embedded word vector and bιj is the bias. The output of each
filter is fi, which is calculated by the filter moving through the set of word
vectors. The step size for each move is 1, ensuring that each vector window
{X1:3, X2:4,Xn−2:n} can be scanned. F refers to the output of convolution
layer.

We perform the BatchNormalization (BN) layer after the 1D convolution
layer. BN layer fixes the size structure of F , and solves the gradient problem
in the backward propagation process (gradient disappears and explosions) by
normalizing activation to a uniform mean and variance, meanwhile, it maintains
that different scale parameters should be more consistent in the overall update
pace.

Fi is the linear transformation result of the normalize result. The values of
γ and β are obtained by the BackPropagation (BP) algorithm.

The Max Pooling layer is connected behind the BN layer. The array after
BN goes through a layer of neurons with ReLU activation function.

The output F̃ is a 349 × 128 two-dimensional array, which is performed by
MaxPooling operation.

4 W. Li et al.

F̃ = MaxPooling{ReLU(F1)} (7)

The BiLSTM layer is connected behind the CNN layer. The return sequences
parameter is set to True, indicating that the output of each BiLSTM unit is valid
and the output will be used as the input to the post-CNN. The BiLSTM layer
has a internal structure can be expressed as:

ctk = itk ◦ ztk + f tk ◦ ct−1k , k ∈ {f, b} (8)

where the state of memory cell ctk can be affected by the previous state ct−1k and
the input gate itk. otk is the output gate, computed by the input vector xt and
yt−1k , the output of the previous time step:

otk = tanh(W k
o x

t +Rkoy
t−1
k + bko), k ∈ {f, b} (9)

where W k
o and Rko are the weight vectors. ytk is the output of BiLSTM layer, of

which calculated by otk and the activation funcion (tanh):

ytk = otk ◦ tanh(ctl), k ∈ {f, b} (10)

At the same time, in order to prevent over-fitting, dropout rate of 0.3 and
recurrent dropout rate of 0.3 are added. The output of the BiLSTM layer is a
349× 128 two-dimensional array.

The CNN that connected after BiLSTM is similar to the previous CNN layer
structure. The number of filters in the convolutional layer is set to 128, the kernel
size is 3, and the ReLU activation function is also used. We apply a BN layer
before the pooling layer prevents gradient dispersion. The input of CNN is a
two-dimensional array of 349 × 128 and the output is a two-dimensional array
of 86× 128.

Before accessing the output layer, we set up a Flatten layer to expand the two-
dimensional array into a one-dimensional array and a hidden layer containing
64 neurons. An one-dimensional array obtained by Flatten is connected to this
layer in a fully connected manner.

The output layer contains only one neuron activited by Sigmoid. Since de-
tecting a malicious request is a binary problem, we chose Binary Crossentropy
as the loss function of the model.

The output is a value between 0 and 1. The closer the output value is to 1, the
greater the probability that the model will judge the input equest as a malicious
attack. Conversely, the closer the value of the output is to 0, the greater the
probability that the model will judge the input request as a normal request.

3 EXPERIMENTS AND RESULTS

3.1 Dataset And Training

We evaluate GBLNet using the HTTP data set CSIC 2010. We randomly pick
80% (82416) of the whole dataset as the training dataset, including 57600 normal

Intrusion Detection with GBLNet 5

request and 24816 exception requests, and 20% (20604, 14400 normal request and
6204 exception requests) as the testing dataset. Each request contains up to 1400
words. For requests with less than 1400 words, we fill it to 1400.

In our experiment, four GTX 1080Ti graphics cards are used for training
under the Ubuntu 16.04 operating system. The batch size during training is
64 ×N (N is 4, the number of GPU). Meanwhile, we used Keras API to build
models based on TensorFlow and train the models for 5 epochs.

3.2 Results and Discussion

We evaluate with 4 commonly used metrics, including Accuracy (Acc), Precision
(Pre), Recall (Re) and F1-score (F1).

Table 1. Accuracy, F1-score, Precision and Recall of different models include proposed
deep learning methods and improved machine learning methods.

Model Acc F1 Pre Re

RNN-IDS [7] 0.6967 0.8210 0.6967 1.0000
HAST-I [11] 0.9886 0.9919 0.9880 0.9958
HAST-II [11] 0.8177 0.8753 0.8301 0.9263
BiLSTM [6] 0.8314 0.8924 0.8083 0.9959
SAE [10] 0.8832 0.8412 0.8029 0.8834
PL-RNN [5] 0.9613 0.9607 0.9441 0.9779
BL-IDS [3] 0.9835 0.9858 0.9900 0.9817
DBN-ALF [1] 0.9657 0.9400 0.9648 0.93200
SVM [8] 0.9512 0.9371 0.9447 0.9296
LR [8] 0.9768 0.9414 0.9236 0.9598
SOM [4] 0.9281 0.7997 0.6977 0.9367

GBLNet 0.9954 0.9967 0.9958 0.9977

As shown in Table 1, first, we compare with the deep learning models and
the optimized machine learning methods. The accuracy of our proposed model
has achieved state of the art (99.54%), which is 29.87% higher than RNN-IDS
(69.67%) and 17.77% higher than HAST-II (81.77%). It is also 0.68% higher
than that of HAST-I (98.86%). Compared with the optimized machine learning
methods, our model performs much better. The accuracy of our method is 6.73%
higher than that of SOM, as well as slightly higher than that of SVM (0.95%)
and LR (0.97%).

Secondly, we compare the performance among traditional machine learn-
ing approaches, including KNN, decision tree, naive bayes and random forest,
demonstrated as table 2. Although most traditional machine learning can achieve
high accuracy, around 95%, our model is superior to them in all indicators.

Moreover, we also evaluate the models with convergence speed and training
speed. Since the dynamic intrusion detection system, as an application type of
firewall, needs to defense the malicious attack in real time, and the detection

6 W. Li et al.

Table 2. Comparison of proposed model and original machine learning methods.

Model Acc Pre Re F1

KNN 0.9317 0.9305 0.9760 0.9527
DecisionTree 0.9393 0.9579 0.9559 0.9569
NaiveBayes 0.7432 0.7787 0.8882 0.8298
RandomForest 0.9506 0.9627 0.9673 0.9650

GBLNet 0.9954 0.9967 0.9958 0.9977

model should be continuously trained and updated, which emphasizes the cost
on convergence speed and training speed should be smaller, the better.

Table 3. Consumed time compared with deep models

Model Time Consumption

RNN-IDS [7] 14m 22s
HAST-I [11] 37m 78s
HAST-II [11] 7m 9s
BiLSTM [6] 2h 15m
SAE [10] 2h 47m
PL-RNN [5] 28m 17s
BL-RNN [3] 31m 74s
DBN-ALF [1] 1h 27m

GBLNet 30m 30s

Table 3 presents the training time of differnt models mainly among the RNN-
based and LSTM-Based models. GBLNet costs the least training time among
LSTM-based models. It can be seen that the BiLSTM requires more than 2.25
hours to train 5 rounds, while the GBLNet model uses 30m 30s. RNN-IDS,
HAST-II reach shorter training time compared with GBLNet, however, RNN-
IDS and HAST-II are far worse than our model in terms of accuracy. The results
show the advantages of connecting the shadow and deep features maps of the
convolutional layers, which plays an important role in speeding up the training
by non-linear feature extractors.

4 CONCLUSION

This paper presents a novel strategy to detect malicious requests, and proposes a
deep learning model named GBLNet, which girdles the bidirectional LSTM with
multi-granularity convolutional features to fully consider the non-linear features
of the malicious requests. Applying CNNs before BiLSTM to extract query fea-
tures successfully maximizes the malicious features of the request queries, leading
to much more accurate features representation than that of using BiLSTM to
process the queries simply. By connecting the shadow and deep features map

Intrusion Detection with GBLNet 7

of the convolutional layers, GBLNet can guarantee better feature representa-
tions than other temporal models. Evaluations on real-world scenario prove that
GBLNet can achieve superior detection rate and faster convergence speed, which
promotes the application in the actual dynamic intrusion detection system.

5 Acknowledgment

This work was supported by the National Natural Science Foundation of China
(Grant U2003111, 61871378).

References

1. Alrawashdeh, K., Purdy, C.: Fast activation function approach for deep learning
based online anomaly intrusion detection. In: 2018 IEEE 4th International Con-
ference on Big Data Security on Cloud (BigDataSecurity), IEEE International
Conference on High Performance and Smart Computing,(HPSC) and IEEE Inter-
national Conference on Intelligent Data and Security (IDS) (2018)

2. Fredj, O.B., Cheikhrouhou, O., Krichen, M., Hamam, H., Derhab, A.: An OWASP
top ten driven survey on web application protection methods. In: International
Conference on Risks and Security of Internet and Systems (2020)

3. Hao, S., Long, J., Yang, Y.: BL-IDS: Detecting web attacks using bi-lstm model
based on deep learning. In: International Conference on Security and Privacy in
New Computing Environments (2019)

4. Le, D.C., Zincir-Heywood, A.N., Heywood, M.I.: Unsupervised monitoring of net-
work and service behaviour using self organizing maps. Journal of Cyber Security
and Mobility (2019)

5. Liu, H., Lang, B., Liu, M., Yan, H.: CNN and RNN based payload classification
methods for attack detection. Knowledge-Based Systems (2019)

6. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans-
actions on Signal Processing (1997)

7. Shone, N., Ngoc, T.N., Phai, V.D., Shi, Q.: A deep learning approach to network
intrusion detection. IEEE Transactions on Emerging Topics in Computational In-
telligence (2018)

8. Smitha, R., Hareesha, K., Kundapur, P.P.: A machine learning approach for web
intrusion detection: Mamls perspective. In: Soft Computing and Signal Processing
(2019)

9. Tang, Z., Wang, Q., Li, W., Bao, H., Liu, F., Wang, W.: HSLF: HTTP header se-
quence based lsh fingerprints for application traffic classification. In: International
Conference on Computational Science (2021)

10. Vartouni, A.M., Kashi, S.S., Teshnehlab, M.: An anomaly detection method to de-
tect web attacks using Stacked Auto-Encoder. In: 2018 6th Iranian Joint Congress
on Fuzzy and Intelligent Systems (CFIS) (2018)

11. Wang, W., Sheng, Y., Wang, J., Zeng, X., Ye, X., Huang, Y., Zhu, M.: HAST-
IDS: learning hierarchical spatial-temporal features using deep neural networks to
improve intrusion detection. IEEE Access (2018)

