
EasyChair Preprint
№ 4922

Implementation of B.I.S.T Technique in an Aes
for a Cryptocore

Sai Tarun Teja Surapaneni, Bindu Priya Makala and
K V Ratna Prabha

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 22, 2021

ABSTRACT:

The main motive of this project is to design a

crypto device with low complexity and high

security by using “ADVANCED ES”

Algorithm along with BIST technique. The

selective application of technological and

related procedural safeguards is an important

responsibility of every Federal organization in

providing adequate security to its electronic

data systems and coming to BIST concept there

are two main functions that must be performed

on-chip in order to implement built-in self-test

(BIST): test pattern generation and output

response analysis. The most common BIST

schemes are based on pseudorandom test

pattern generation using linear feedback shift

registers (LFSR’S) and output response

compaction using signature analyzers. To

accomplish high security for a system we are

using the crypto devices technique in our

project.

INTRODUCTION:

Most of the user now a day’s using wireless

communication for fast sending and receiving

the mails in less time and in less cost. When this

way of communication is going on, the

unauthorized people who have the intension to

know about our conversion will hack the

information within that frequency. After

hacking the information the hacker can know

about what we are discussing. This leads to

leakage of information. Nowadays, secure

circuits are commonly used for applications

such as e-banking, pay tv, cell phone... Because

they hold personal data and must process secure

operations, security requirements such as

source/sink authentication, data integrity,

confidentiality, or tamper resistance are

maintained by means of several dedicated

components. Confidentiality is ensured

through cryptographic mechanisms generally

implemented on co-processors.

PROPOSED MODEL:

The AES algorithm is capable of

using cryptographic keys of 128, 192, and

256 bits to encrypt and decrypt data in blocks

of 128 bits. Rijndael was designed to handle

additional block sizes and key lengths;

however they are not adopted in this standard.

Throughout the remainder of this standard,

the algorithm specified here in will be

referred to as “the AES algorithm.” The

algorithm may be used with the three

different key lengths indicated above, and

therefore these different “flavours” may be

referred to as “AES-128”, “AES-192”, and

“AES-256”.

This specification includes the following

sections:

1. Definitions of terms, acronyms, and

algorithm parameters, symbols, and

functions.

2. Notation and conventions used in the

algorithm specification, including the

ordering and numbering of bits, bytes, and

words.

3. Mathematical properties that is useful in

understanding the algorithm.

IMPLEMENTATION OF B.I.S.T TECHNIQUE IN AN AES FOR A

CRYPTOCORE

4. Algorithm specification, covering the key

expansion, encryption, and decryption

routines.

5. Implementation issues, such as key

length support, keying restrictions, and

additional block/key/round sizes.

The standard concludes with several

appendices that include step-by-step

examples for Key. At the start of the Cipher,

the input is copied to the State array using the

conventions. After an initial Round Key

addition, the State array is transformed by

implementing a round function 10, 12, or 14

times (depending on the key length), with the

final round differing slightly from the first Nr

-1 rounds. The final State is then copied to

the output.

The round function is parameterized

using a key schedule that consists of a one-

dimensional array of four-byte words derived

using the Key Expansion routine.

The Cipher is described in the pseudo code.

The individual transformations -

Sub Bytes (), Shift Rows (), Mix Columns

(), and AddRoundKey () – process the State

and are described in the following

subsections…

It is very important to know that the cipher

input bytes are mapped onto the state bytes in

the order a0,0, a1,0, a2,0, a3,0, a0,1, a1,1,

a2,1, a3,1 ... and the bytes of the cipher key

are mapped onto the array in the order k0,0,

k1,0, k2,0, k3,0, k0,1, k1,1, k2,1, k3,1 ... At

the end of the cipher operation, the cipher

output is extracted from the state by taking

the state bytes in the same order. AES uses a

variable number of rounds, which are fixed:

A key of size 128 has 10 rounds. A key of

size 192 has 12 rounds. A key of size 256 has

14 rounds.

During each round, the following operations

are applied on the state:

1. Sub Bytes: every byte in the state is

replaced by another one, using the

Rijndael S-Box

2. Shift Row: every row in the 4x4

array is shifted a certain amount to

the left

3. Mix Column: a linear transformation

on the columns of the state.

4. AddRoundKey: each byte of the

state is combined with a round key,

which is a different key for each

round and derived from the Rijndael

key schedule.

Fig: Self-Test Technique for Crypto

Devices

overall architecture of LBIST with AES.

Starting block linear feedback shift register is

used for Test pattern Generator. In computing,

a linear-feedback shift register (LFSR) is a

shift register whose input bit is a linear

function of its previous state. The most

commonly used linear function of single bits

is exclusive-or (XOR). Thus, an LFSR is most

often a shift register whose input bit is driven

by the XOR of some bits of the overall shift

register value.It is used to generate all type of

test patterns for Circuit under Test. Here, in

this concept 128 bit LFSR is used as test

pattern generator. 2128 – 1 patterns are

generated by using above LFSR. Since, XOR

gate is used to construct LFSR, all zeros

combination is can’t be generated.

Output Response Analyzer is last and vital

device. Final output checking is done by this

component. If any error occurred in whole

process or not is checked by this ORA. ORA

takes input from AES practical circuit and

theoretical circuit, it compares both inputs

using XOR gates, yields final output. 128 xor

gates are used to compare produced outputs.

Fig : Key Generation Diagram

Symmetric-key algorithms use a single

shared key; keeping data secret requires

keeping this key secret. Public-key

algorithms use a public key and a private key.

The public key is made available to anyone

(often by means of a digital certificate). A

sender encrypts data with the public key; only

the holder of the private key can decrypt this

data. Since public-key algorithms tend to be

much slower than symmetric-key algorithms,

modern systems such as TLS and SSH use a

combination of the two: one party receives

the other's public key, and encrypts a small

piece of data (either a symmetric key or some

data used to generate it). The remainder of

the conversation uses a (typically faster)

symmetric-key algorithm for encryption.

Computer cryptography uses integers for

keys. In some cases keys are randomly

generated using a random number generator

(RNG) or pseudorandom number generator

(PRNG). A PRNG is a computer algorithm

that produces data that appears random under

analysis.

PRNGs that use system entropy to seed data

generally produce better results, since this

makes the initial conditions of the PRNG

much more difficult for an attacker to guess.

In other situations, the key is derived

deterministically using a passphrase and a

key derivation function. The simplest method

to read encrypted data is a brute force

attack—simply attempting every number, up

to the maximum length of the key. Therefore,

it is important to use a sufficiently long key

length; longer keys take exponentially longer

to attack, rendering a brute force attack

impractical. Currently, key lengths of 128

bits (for symmetric key algorithms) and 1024

bits (for public-key algorithms) are common.

Fig : Self- Test for Encryption Side

Diagram

A built in self test or built in test is a

mechanism that permits a machine to test

itself. We design BISTs to meet the

requirements such as:

The main purpose of BIST is to reduce

complexity of test/probe setup, by reducing

the number of I/O signals that must be

drives/Examined under tetser control, reduce

the size. Both lead to reduce in hourly

charges for automated test equipment(ATE)

service. Similar to encryption, decryption

block diagram looks similar only change is

instead of encryption we use decryption.

LFSR PESUDORANDOM TEST

GENERATION: To develop a battery of

statistical tests to detect non randomness in

binary m sequences constructed using

random number generators and

pseudorandom no generators utilized in

cryptographic applications, To produce

documentation and software implementation

of these tests, and To provide guidance in the

use and application of these tests.

Pseudorandom- generate patterns that appear

to be random but are in fact deterministic

(repeatable).Linear Feedback Shift Register

(LFSR) Weighted pseudo-random test

generation Adaptive pseudo-random test

generation

Algorithmic Test Generation: List primary

inputs controlling location where a fault

should be detected.

Determine primary input conditions to

activate a fault and to sensitize the primary

outputs such that the fault can be observed.

Pseudo-Random Test Generation

• Large set of patterns is generated by simple

HW or SW pseudo-random generator

• The set is used to stimulate a system with

fault simulator

• Fault coverage is analyzed and algorithmic

approach is used to cove r remain faults.

Fig : Complex Pseudo-Random test

generator

 Fig: Bitswapping LFSR

LFSR with bit swapping technology. From

this BIT SWAPPING technology we are going

to reduce the peak power. By connecting

multiplexers on the LFSR register as shown in

above arrangement the number of transitions

are decreased for that cell which are under bit

swapping.

The below table shows the number of

transitions in each register in LFSR without

applying BIT SWAPPING technology, after

applying bit swapping technology.

Table: The Number of Transitions in

Each Register in LFSR

From the above fig. if ctrl=1 then it perform

encryption operation. So now it can perform

the encryption operation i.e., Add round key,

Shift Row, Substitution Byte and mixed mul

operation. Already discussed inabove sections

about these operations. After that we get the

output as cyper text.

From the above fig. if ctrl=0 then it perform

decryption operation. So now it can perform

the decryption operation ie.,Inv Add round

key, Inv Shift Row, Inv Substitution Byte and

Inv mixed mul operations . Already discussed

in above sections about these operations. After

that we get the output as plain text.

FIG: ASM CHARTS FOR ENCRYPTION AND

DECRYPTION

RESULTS:

Fig : Final simulation report of our

project

The above fig. is the final simulation report

of the project. Which contains various signals

that are used in this project.

CONCLUSION:-

In this project a solution is presented that

consists in using an AES-based

cryptographic core commonly embedded in

secure system. Three addition modes are

added to the current mission of the AES

crypto core. One for pseudo- random test

pattern generation & one for signature

analysis. Efficiency of these three modes has

been demonstrated. Extra cost in terms of

area is very low compared to other

techniques. Because only one AES core will

be originally embedded in the system. This

reduces the reduction of test cost will lead to

the reduction of overall production cost &

100% security of data.

REFERENCES

[1] Sudhir Rao Rupanagudi, Varsha G. Bhat,

Abhiram Srisai, M. Harshavardhan, S.

Namitha, S. Durgaprasad, Y. Harshitha, K.

R. Kavya, Feba Chellappan, B. A. Harshitha,

V. Vathsala, M. H. Surekha, G. N. Vachana,

Vasanthi Satyananda, "Optimized area and

speed architectures for the mix column

operation of the advanced encryption

standard", Robotics Automation and

Sciences (ICORAS) 2017 International

Conference on, pp. 1-5, 2017.

[2] Takahiro Suzuki, Sang-Yuep Kim, Jun-

ichi Kani, Ken-Ichi Suzuki and Akihiro

Otaka ―Real- time Demonstration of PHY

Processing on CPU for Programmable

Optical Access Systems‖,

Cisco Vis. Netw. Index, San Jose, CA, USA,

Cisco White Paper, Feb. 3, 2016

[3] Mayada E. Mohamed, Sharief F.

Babiker―An Efficient Implementation of a

Fully Combinational Pipelined S-Box on

FPGA‖ 2017 International Conference on

Innovations in Green Energy and Healthcare

Technologies (IGEHT), Coimbatore, India,

2017, pp. 1-9.

[4]A. Hafsa, N. Alimi, A. Sghaier, M. Zeghid

and M. Machhout, "A hardware-software co-

designed AES-ECC cryptosystem," 2017

International Conference on Advanced

Systems and Electric Technologies

(IC_ASET), Hammamet, 2017, pp. 50-54.

[5] D. Minoli, K. Sohraby and B.

Occhiogrosso, "IoT Security (IoTSec)

Mechanisms for e- Health and Ambient

Assisted Living Applications," 2017

IEEE/ACM International Conference on

Connected Health: Applications, Systems

and Engineering Technologies (CHASE),

Philadelphia, PA, 2017, pp. 13-18..

[6]A. Kumar and A. Agarwal, "Research

issues related to cryptography algorithms

and key generation for smart grid: A survey,"

2016 7th India International Conference on

Power Electronics (IICPE), Patiala, India,

2016, pp. 1-5.

[7]W. Nowakowski, P. Bojarczak and Z.

ukasik, "Performance analysis of data

security algorithms used in the railway traffic

control systems," 2017 International

Conference on Information and Digital

Technologies (IDT), Zilina, 2017, pp. 281-

287.

[8]B. Bhat, A. W. Ali and A. Gupta, "DES

and AES performance evaluation,"

International Conference on Computing,

Communication & Automation, Noida,

2015, pp. 887-890.

[9]B. Indrani and M. K. Veni, "An efficient

algorithm for key generation in advance

encryption standard using sudoku solving

method," 2017 International Conference on

Inventive Systems and Control (ICISC),

Coimbatore, 2017, pp. 1-8.

[10]N. D. Vaidya, Y. A. Suryawanshi and M.

Chavan, "Design for enhancing the

performance of Advance Encryption

Standard algorithm VHDL," 2016 Online

International Conference on Green

Engineering and Technologies (IC-GET),

Coimbatore, 2016, pp. 1-5.

