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Abstract— This paper presents an innovative approach for 

detecting inter-turn short circuit (ISF) faults in Permanent 

Magnet Synchronous Machines (PMSMs). By using zero-

sequence voltage signals, identified as the most effective for ISF 

detection, Fast Fourier Transform (FFT) analysis is applied to 

extract relevant signal characteristics. Additionally, the 

integration of Artificial Intelligence (AI) techniques, such as 

SVM, KNN, and decision trees, allows for the automation of fault 

detection and classification, enhancing the accuracy and 

reliability of machine monitoring. The results show that the SVM 

and KNN models are particularly effective in fault detection, 

achieving perfect precision and recall. The combined use of these 

techniques not only optimizes fault detection efficiency but also 

enhances overall PMSM performance by reducing failure risks 

and enabling predictive maintenance. This work represents a 

significant advancement toward smarter and more responsive 

maintenance solutions for electrical machines. 

Keywords—Inter-turn short circuit (ISF); Permanent Magnet 

Synchronous Machines (PMSM); zero-sequence voltage; Fast 

Fourier Transform (FFT); Artificial Intelligence. 

I.  INTRODUCTION  

   Electric motors, particularly Permanent Magnet 

Synchronous Machines (PMSMs) [1], play a crucial role in 

many modern applications, especially in electric vehicles 

(EVs), due to their high efficiency, power density, and 

compact design. These motors are essential for systems where 

performance, reliability, and durability are critical. However, 

real-time monitoring of their operating status and the 

implementation of preventive maintenance strategies remain 

significant challenges, especially when these motors are 

installed in hard-to-reach environments. A substantial portion 

of operational costs in the electric vehicle industry are 

dedicated to maintenance, highlighting the need for advanced 

fault detection solutions to optimize performance and extend 

the lifespan of these machines. 

Faults in PMSMs, especially inter-turn short circuits (ISF), 

can lead to catastrophic failures if not detected early. 

Therefore, early and accurate fault detection is essential to 

prevent unexpected downtime and irreversible damage. 

Numerous studies have proposed methods for diagnosing 

these faults and improving maintenance in electric machines. 

For example, [8] presents a method combining parameter 

estimation and machine learning to diagnose faults in electric 

motors, enabling precise classification of healthy and faulty 

states. The study in [7] focuses on diagnostic algorithms for an 

automotive power generation system, aiming to detect faults in 

critical components such as the alternator and voltage 

regulator. 

Several studies have also focused specifically on fault 

detection in PMSMs. For instance, [11] uses rotor speed 

signature analysis and Vold-Kalman filtering to monitor 

insulation degradation in PMSMs, providing a fault-tolerant 

method for detecting anomalies. Further, studies like [6] and 

[13] have proposed fault-tolerant control strategies for PMSM 

motors in critical applications, demonstrating how these 

strategies can improve motor reliability in the event of faults 

while maintaining optimal performance. 

In this context, [9] explores a fault diagnosis approach based 

on an artificial neural network (ANN) to detect and classify 

three types of faults in the stator of a Permanent Magnet 

Synchronous Machine (PMSM) using simulation data. This 

approach enables faster and more accurate identification of 

stator faults, a key component for the proper functioning of the 

motor. Moreover, [10] examines the use of transfer learning 

with a convolutional neural network (CNN) to diagnose 
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PMSM faults, comparing various diagnostic techniques based 

on model data. These AI-driven approaches pave the way for 

more efficient and adaptive diagnostic systems capable of 

learning and improving with new data.  

This paper presents an innovative method for detecting inter-

turn short circuit (ISF) faults in Permanent Magnet 

Synchronous Machines (PMSMs). The main steps of this 

approach are as follows: 

• Utilizing zero-sequence voltage signals, identified as 

the most effective for ISF detection. 

• Applying Fast Fourier Transform (FFT) analysis to 

extract relevant signal characteristics. 

• Integrating Artificial Intelligence (AI) techniques 

such as SVM, KNN, and decision trees to automate 

fault detection and classification. 

• Evaluating the performance of AI models, where the 

results show that SVM and KNN are particularly 

effective, achieving perfect precision and recall. 

• Optimizing fault detection efficiency, improving 

PMSM performance, and reducing failure risks 

through predictive maintenance. 

This approach represents a significant advancement 

toward smarter and more responsive maintenance 

solutions for electrical machines. 

This article is structured as follows: Section II presents the 

electrical model, while Section III describes the fault detection 

method. Section IV is dedicated to simulation validation. 

Finally, the article concludes with Section V.  

II. ELECTRICAL MODEL 

A. Mathematical Model in Healthy State 

In the healthy state, the stator voltages in the abc coordinate 
system can be expressed in matrix form as follows: 

[

𝑣𝑎
𝑣𝑏
𝑣𝑐
] = [

𝑅 0 0
0 𝑅 0
0 0 𝑅

] [

𝑖𝑎
𝑖𝑏
𝑖𝑐

] + [
𝐿 𝑀 𝑀
𝑀 𝐿 𝑀
𝑀 𝑀 𝐿

]
𝑑

𝑑𝑡
[

𝑖𝑎
𝑖𝑏
𝑖𝑐

] + [

𝜀𝑎
𝜀𝑏
𝜀𝑐
] (1) 

 

 

 

 

 

Fig.1. Electrical schematic of the healthy motor model 

The stator voltages in the phases a, b, c are denoted as 𝑣𝑎, 
𝑣𝑏, 𝑣𝑐 respectively. The phase currents in these phases are 𝑖𝑎, 
𝑖𝑏, 𝑖𝑐 . R represents the phase resistance, L is the self-
inductance, and M is the mutual inductance between the 

phases. The back electromotive forces (EMFs) of phases a, b, 
and c are denoted as 𝜀𝑎, 𝜀𝑏, 𝜀𝑐, et which depend on the 
magnetic flux and the electrical angle 𝜃𝑒. 

The back EMFs in the phases are given by: 

{
 
 

 
 𝜀𝑎 =

𝑑

𝑑𝑡
(𝜙𝑓 cos 𝜃𝑒)

𝜀𝑏 =
𝑑

𝑑𝑡
(𝜙𝑓(cos 𝜃𝑒 −

2𝜋

3
))

𝜀𝑐 =
𝑑

𝑑𝑡
(𝜙𝑓 cos(𝜃𝑒 +

2𝜋

3
))

           (2) 

Figure 1 shows the electrical diagram of the healthy motor 
model, where the induced voltages 𝜀𝑎, 𝜀𝑏 and 𝜀𝑐 in each phase 
are associated with the stator resistances and inductances, along 
with the phase currents 𝑖𝑎, 𝑖𝑏, and 𝑖𝑐 under normal operating 
conditions. 

B. Mathematical Model in Faulty State (ISF) 

In Figure 2, when an ISF (Inter-Turn Short Circuit) fault 
occurs, a short circuit is introduced in the stator windings of 
phase C, which alters the system's behavior. The system then 
becomes unbalanced. Considering this short circuit, the system 
can be represented by a modified matrix equation. 

Assuming that phase C is affected by the short circuit, the 
voltage relationship in the phases becomes: 

[

𝑣𝑎
𝑣𝑏
𝑣𝑐
0

] = [

𝑣0
𝑣0
𝑣0
0

] + [

𝑅 0 0 −𝜎𝑅
0 𝑅 0 0
0 0 𝑅 0
𝜎𝑅 0 0 −𝜎𝑅 − 𝑅𝑓𝑐

] [

𝑖𝑎
𝑖𝑏
𝑖𝑐
𝑖𝑓𝑐

] +

[

𝐿 𝑀 𝑀 −𝜎𝐿
𝑀 𝐿 𝑀 −𝜎𝑀
𝑀 𝑀 𝐿 −𝜎𝑀

𝜎𝐿 𝜎𝑀 𝜎𝑀 −𝜎2𝐿

]
𝑑

𝑑𝑡
[

𝑖𝑎
𝑖𝑏
𝑖𝑐
𝑖𝑓𝑐

] + [

𝜀𝑎
𝜀𝑏
𝜀𝑐
𝜎𝜀𝑓𝑐

]    (3) 

When the ISF fault develops, the short-circuit turn ratio 𝜎 
influences the dynamics of the current 𝑖𝑓𝑐, which is related to 

the variation of the magnetic flux 𝜙 and the angular speed 𝜔𝑒. 
Considering that 𝜎 is a small variable and the back 
electromotive force (EMF) is much larger than the voltage 
drops, the expression for 𝑖𝑓𝑐 can be simplified to:  

𝑖𝑓𝑐 = −
𝜎

𝑅𝑓𝑐
𝜙𝑓𝜔𝑒 sin 𝜃𝑒    (4) 

This shows that increasing 𝜇 or decreasing 𝑅𝑓𝑐 causes an 

increase in the amplitude of 𝑖𝑓𝑐, and that as 𝜔𝑒increases, 𝑖𝑓𝑐 
also increases. 

 

 

 

 

 

Fig.2. Insulation Fault (ISF) in Phase C 

C. Zero-Sequence Voltage Detection 

The zero-sequence voltage signal (𝑣0) in a Permanent 
Magnet Synchronous Motor (PMSM) with star-connected 
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stator windings can be measured between the neutral point of a 
resistance network and the stator windings, as shown in Figure 
2. The zero-sequence voltage, 𝑣0𝑚, is defined by an equation 
that includes terms related to resistance (𝑅𝑖), inductance (L), 
mutual inductance (M), and the rate of change of the back 
electromotive force (𝜀𝑎, 𝜀𝑏 , 𝜀𝑐) in the stator windings [2]. 

 

 

 

 

 

 

 

 

Fig.3. Measurement of the Zero-Sequence Voltage 

 

It is noteworthy that the zero-sequence current could be 
measured if delta-connected stator windings are used in the 
PMSM [9]. 

In the case of a PMSM without an insulation fault (HS), 
where 𝜎 and 𝑖𝑓𝑐 are both zero, the zero-sequence voltage is 

solely determined by the variations in the sum of the stator 
winding voltages (𝜀𝑎, 𝜀𝑏, 𝜀𝑐). 

𝑣0𝑚 = −
1

3

𝑑(𝜀𝑎+𝜀𝑏+𝜀𝑐)

𝑑𝑡
     (5) 

According to [12], when an Insulation Fault (ISF) occurs in 
the PMSM, additional harmonic components are introduced 
into 𝑣0𝑚, mainly the fundamental components as well as the 
third, fifth, and seventh harmonics. 

The fundamental component of 𝑣0𝑚 is typically used for 
insulation fault detection, and it is directly influenced by the 
insulation fault current (𝑖𝑓𝑐). An expression for the zero-

sequence voltage under the ISF condition (𝑣0𝑚𝑓𝑜𝑛) shows that 

it is related to the fundamental component of 𝑣0𝑚 [3], 𝑣0𝑚1, 
which depends on both the resistance parameters and the rate 
of change of the insulation current (𝑖𝑓𝑐). 

𝑣0𝑚1=𝑣0𝑚𝑓𝑜𝑛 =
1

3
𝜎𝑅𝑖𝑓𝑐1 +

1

3
𝜎(𝐿 + 2𝑀)

𝑑𝑖𝑓𝑐1

𝑑𝑡
  (6) 

Where 𝑢0𝑚𝑓𝑜𝑛 is the zero-sequence voltage under the ISF 

(Interference or Stator Fault) condition, and 𝑣0𝑚1 is the 
fundamental component of 𝑣0𝑚𝑓𝑜𝑛 . 

In this study, the analysis of the mathematical models of the 
Permanent Magnet Synchronous Machine (PMSM) in two 
states healthy (HS) and inter-turn short-circuit fault (ISF) 
highlights significant differences as shown in equations (5) and 
(6). Specifically, the zero-sequence voltage signal in the ISF 
state contains new fundamental components that are absent in 
the healthy state. This suggests that the fault induces changes in 
the voltage signal, and these variations can be used to detect 
the presence of an inter-turn short-circuit fault. 

 

 

 

 

 

 

 

 

 

Fig.4. Algorithm for ISF Detection in PMSM 

III. METHOD FOR FAULT DETECTION 

In this study, I developed a method for fault detection in 
PMSM machines. As shown in Figure 4, the process includes 
several key steps, from signal acquisition to classification of 
the states using Artificial Intelligence (AI). 

A. Discrete Fourier Transform (FFT)  

 
Dans le cadre de la détection de défauts ISF, la FFT permet 

une détection rapide des fréquences dominantes, telles que la 
fréquence fondamentale et ses harmoniques. Cependant, elle 
présente certaines limites. En raison de l'intégration globale du 
signal, la FFT peut générer des artefacts qui faussent 
l'interprétation de l'amplitude, la rendant moins réaliste. De 
plus, la FFT ne permet pas de localiser précisément les 
variations temporelles des fréquences, ce qui limite sa capacité 
à analyser des défauts complexes. Bien que la FFT soit efficace 
pour détecter les composants de fréquence généraux, elle a du 
mal à identifier précisément le moment des défauts transitoires 
ou localisés. Par conséquent, cette méthode est plus adaptée à 
la détection de problèmes en régime permanent, mais moins 
efficace pour détecter des défauts dynamiques et évolutifs. 

The extracted features, such as fundamental amplitude and 
harmonic amplitudes, are used to detect faults. These features 
are intentionally perturbed with noise to simulate data 
variability, which helps test the robustness of fault detection 
under real-world conditions. 

B. Intelligent Diagnosis 

Artificial Intelligence (AI) [8] enables machines to simulate 
human capabilities such as learning and decision-making. In 
fault detection, especially for electric vehicles, AI automates 
the analysis of complex data from sensors and embedded 
systems, providing faster and more accurate solutions than 
traditional methods. Using supervised learning algorithms, it 
allows for signal classification, rapid anomaly detection, and 
proactive failure prediction, which is crucial for ensuring the 
long-term reliability and performance of electric vehicles [9]. 

In the context of ISF fault detection, Artificial Intelligence 
(AI) is used to improve the accuracy and automation of the 
classification process. I used a dataset of 2000 samples, evenly 
distributed between the healthy state (1000 samples) and the 
ISF fault state (1000 samples). These samples were divided 
into 1602 samples for training (about 80% of the data) and 400 
samples for testing (about 20% of the data). This separation 
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allows testing the robustness and generalization ability of the 
model on data it has not yet seen. 

The features extracted from the signals, such as the 
fundamental amplitude and harmonic amplitudes, are perturbed 
by noise to simulate data variability. These features serve as 
input vectors for different supervised learning models. I used 
several AI algorithms for classification : Support Vector 
Machine (SVM), Decision Tree, and k-Nearest Neighbors 
(KNN). These models are capable of classifying the samples 
based on their membership in the healthy or defective (ISF) 
state. 

The training of these models is done on the 1602 samples, 
and their performance is then evaluated on the remaining 400 
samples, allowing the efficiency and accuracy of each 
algorithm to be measured. The use of AI enables automatic 
fault detection by providing more precise analysis and reducing 
human errors. Moreover, these models, being capable of 
processing perturbed signals and handling complex variations, 
offer the robustness essential for reliable ISF fault detection in 
Permanent Magnet Synchronous Machines.  

IV. SIMULATION VALIDATION 

To test the proposed ITF diagnosis method, simulation 
validation is performed using MATLAB code. 

In Figure 5, Figure 5(a) shows that the amplitude of ifc 

remains constant at 0 during the HS phase of the PMSM. When 
the ISF occurs in the PMSM, ifc takes the form of a periodic 
sine wave. In Figure 5(b), under normal operation, the currents 
in a three-phase motor are balanced and sinusoidal. During a 
short circuit in one phase (phase C), the current in that phase 
increases significantly, while the currents in phases A and B 
increase slightly to compensate. At t = 1 s, a short circuit in 
phase C causes a sharp increase in the current in that phase and 
a slight rise in the currents of phases A and B. These variations 
allow for the rapid and accurate detection of inter-turn short-
circuit faults (ISF) in Permanent Magnet Synchronous 
Machines (PMSM). 

In Figure 6, the analysis of amplitudes at 50 Hz 
(fundamental) and 100 Hz (second-order harmonic) reveals 
notable differences using the FFT method. At 50 Hz, the FFT 
method gives a high amplitude, which is an artifact resulting 
from the global integration of the magnitude over the entire 
duration of the signal. Regarding the amplitude at 100 Hz, it is 
lower. This shows that the second-order harmonic at 100 Hz is 
present, but its influence on the signal is relatively minor, 
without significant harmonic distortion. Thus, the fault in the 
system generates a fault current with a dominant component at 
50 Hz, which is the fundamental frequency, while the second-
order harmonic at 100 Hz is detectable but with negligible 
amplitude. The FFT proves useful for identifying the frequency 
components of the fault current, but it can overestimate the 
amplitude of the fundamental frequency, leading to potential 
misinterpretations. 

 

 

 

 

Times(s) 

(a) 

 

 

(b) 

Fig.5. Fault simulation results for Phase C. (a) Fault current ifc. (b) Stator 
current. 

Frequency 

Fig.6. FFT Spectrum of Fault Current 
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Fig.7. Simulation of v0m Signal. (a) Healthy State; (b) ISF Fault  
 

In Figure 7(a), the zero-sequence voltage v0m under normal 
conditions shows values very close to zero, indicating the 
absence of faults or disturbances during normal operation. In 
contrast, in Figure 7(b), the zero-sequence voltage v0m1 under 
ISF fault (fundamental component) exhibits significant 
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variations. The measured values at 5 seconds are 0.7796 V, at 
10 seconds -0.0817 V, and at 15 seconds -0.7796 V, illustrating 
the notable fluctuations caused by the fault and confirming its 
impact on the machine. 

 

Frequency (Hz) 

(a) 

 

 

 

 

 

(b) 

Fig.8. Frequency Spectrum v0m. (a) Healthy state, (b) ISF fault 

 
The analysis of the fundamental frequency and amplitude 

under normal conditions and with an ISF fault reveals notable 
differences. In Figure 8(a), under normal conditions, the 
fundamental frequency is relatively low, with an extremely low 
amplitude, indicating normal operation without any faults. In 
contrast, in Figure 8(b), under the ISF fault condition, the 
fundamental frequency increases, and the amplitude reaches a 
very high value, suggesting a significant disturbance caused by 
the fault. The analysis of the harmonics and their amplitudes 
further shows that fault detection is much easier under the ISF 
condition, particularly for harmonic 3, which has an amplitude 
much higher than the values observed under normal conditions. 
In comparison, the harmonics under normal conditions are too 
weak to be easily detected. Thus, harmonic 3 under the ISF 
fault is the most detectable, as it has the highest amplitude 
among all harmonics, making it much easier to distinguish 
from noise or the healthy state. 

   

Table I Algorithm Comparison 

Model Accuracy Precision Recall F1-
score 

SVM 100% 100% 100% 100% 

KNN 100% 100% 100% 100% 

Decision 
Tree 

99.5% 99.5% 99.5% 0.99485 

 

Table I presents the performance of the three classification 
models (SVM, KNN, and Decision Tree) in terms of accuracy, 

precision, recall, and F1-score. It is interesting to note that the 
SVM and KNN models achieved exceptional performance, 
with 100% accuracy, precision, recall, and F1-score. This 
means they perfectly classified all samples into the correct 
categories, whether for the healthy state of the ISF defect. 
These results demonstrate their high efficiency in ideal 
conditions, where the data is clean, well-labeled, and 
sufficiently representative of both classes. 

However, such performance is often achieved on well-
prepared and balanced data. As shown by the analysis of the 
results, SVM and KNN are highly sensitive to the quality of the 
input data. Indeed, if the data is noisy, poorly labeled, or 
contains anomalies, these models risk losing precision, as they 
rely directly on the relationships between data points to 
determine classification boundaries (SVM) or neighbors 
(KNN). 

The Decision Tree model, on the other hand, shows a slight 
difference with an accuracy of 99.5%, but its F1-score remains 
very close to the other models, at 0.99485. This indicates that 
even though the Decision Tree didn't reach the perfection of the 
other models in terms of accuracy, it remains highly effective 
and capable of handling data robustly. Decision trees have the 
advantage of being less sensitive to noisy data and can be more 
easily interpreted, making them an attractive option when 
model interpretability is important. However, they can suffer 
from overfitting in the tree is too deep. 

While SVM and KNN are extremely powerful for ideal 
data, the Decision Tree offers an excellent alternative, being 
slightly less accurate but still highly competitive in terms of 
F1-score. This is especially useful when there is a need to 
balance precision and recall, particularly in situations where the 
data may be imperfect. All three models are effective, but the 
choice of model will largely depend on the quality of the data 
and the priorities in terms of performance, model 
understanding, and tolerance to noise. 

V. CONCLUSIONS 

In this work, this paper presents an innovative and effective 
method for detecting inter-turn short circuit (ISF) faults in 
Permanent Magnet Synchronous Machines (PMSMs). The use 
of zero-sequence voltage signals and Fast Fourier Transform 
(FFT) analysis, combined with Artificial Intelligence 
techniques such as SVM, KNN, and decision trees, improves 
the accuracy and reliability of fault detection. The results show 
that the SVM and KNN models are particularly effective, 
achieving perfect precision and recall. This combined approach 
not only allows for faster and more precise detection but also 
optimizes the overall performance of PMSMs by reducing 
failure risks and promoting predictive maintenance. This work 
represents a significant advancement in the field of intelligent 
maintenance for electrical machines, with potential applications 
in industry. 

Therefore, future research could extend the current fault 
detection method to other machines and fault types, integrating 
advanced AI techniques like deep learning. Real-time 
monitoring and predictive maintenance systems would further 
improve performance and reliability, making industrial 
operations more efficient and cost-effective. 
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