ﬁ EasyChair Preprint

Ne 5458

|dentifying Legal Party Members from Legal
Opinion Texts Using Natural Language Processing

Chamodi Samarawickrama, Melonie de Almeida,
Amal Shehan Perera, Nisansa de Silva and Gathika Ratnayaka

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 4, 2021



Identifying Legal Party Members from Legal
Opinion Texts using Natural Language
Processing

Anonymous submission

Abstract. Law and order is a field that can highly benefit from the con-
tribution of Natural Language Processing (NLP) to its betterment. An
area in which NLP can be of immense help is for information retrieval
from legal documents which function as legal databases. The extraction
of legal parties from the aforementioned legal documents can be iden-
tified as a task of high importance since it has a significant impact on
the proceeding contemporary legal cases. This study proposes a novel
deep learning methodology that can be effectively used to find a solution
to the problem of identifying legal party members in legal documents.
In addition to that, in this paper, we introduce a novel dataset which
was created by an expert in the legal domain. Evaluations for the solu-
tion presented in the paper show that our system has 90.89% precision
and 91.69% recall for an unseen paragraph from a legal document, thus
conforming the success of our attempt.

Keywords: Legal party identification, Recurrent Neural Networks, Co-
reference resolution, NER

1 Introduction

Law and order is undoubtedly crucial for the proper functioning of society for
without law there would be chaos, failing to offer equality to everyone. The legal
domain being such a vital field, the incorporation of artificial intelligence into its
work has drawn attention in many research works. This study is also one such
endeavor taken towards building an automated legal system that eventually will
be capable of extracting information from court cases and providing analysis and
insights. The necessity of an automated legal system can be elaborated with a few
major arguments, the first being the existence of case law. Case law by definition
is the collection of previous judicial decisions that can be brought forth to clear
the ambiguities in current cases. Therefore, the legal officials involved with a
certain case are required to be knowledgeable about similar cases that have taken
place before the ongoing one. This task is made tedious by the abundance of
documents and records in the legal domain and the unavailability of a mechanism
to perform intelligent queries on the said records. With a setting as such, it
is apparent that an information extraction system for legal documents can be
quite beneficial since it would help the legal officials in the course of gathering
relevant information. In the process of extracting information, we observed that
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the identification of legal parties in a case is crucial since a legal document is
usually structured basing the said parties where the arguments and counter-
arguments are presented concerning them. For this study, we have considered
using legal opinion texts in terms of the dataset creation and testing. An opinion
text is a statement written explaining the prevailing conditions of a case, which
also contains background information at times where it is felt as required. By
looking at an opinion text, one can get a sufficient understanding of the case
and also of the factors leading to the decision of the case. Therefore, we believe
opinion texts suits well in the attempt we take to reach a system that intelligently
extracts information.

A legal party is any individual, a group of individuals or a body that can
be held accountable(i.e. organization) for law and they are usually affected by
or have an interest in the outcome of the legal case. Two major parties are
identified in a legal case as the petitioner, that is the entity filing the case,
and the defendant, the entity who is being prosecuted. Nevertheless, there are
many complications when identifying legal parties in a document. As pointed out
by Krass et al. in the Challenges Facing NLP in Legal Context[1], the unique
hierarchical structure of the outcome, the linguistic quirk of legal adversarial,
and the challenge of using acontextually trained embeddings are some of them.
On top of that, we identify the ambiguity in the deciding of an entity to belong
to a legal party or not also as an added hindrance to achieve our goal.

Example 1

— Sentence 1.1: Petitioner Jae Lee moved to the United States from South
Korea with his parents when he was 13.

— Sentence 1.2: During the plea process, Lee repeatedly asked his attorney
whether he would face deportation; his attorney assured him that he would
not be deported as a result of pleading guilty.

Example 1 demonstrates the ambiguity of identifying the legal parties in a legal
document. his attorney in Sentence 1.1 is identified to belong to a legal party
in this case of Jae Lee v. United States[2] but his parents in Sentence 1.1 is
not. This can only be understood after going through the entire document(or a
sufficient portion of it) and comprehensively grasping the nature of the states.
An intelligent way of processing the text is therefore needed and it is obvious
that there is more intrinsic work that goes into identifying legal parties than the
mere identification of people from a text.
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2 Related Work

2.1 NLP in Legal Domain

Law and order is a domain that has drawn constant attention in the research
areas of Natural Language Processing. Specific traits in the language used in
this field have challenged the researchers and developers working on NLP tools
to tackle the already existing defects in them and has constantly pushed them to
level up their work. Ontology population|3, 4], discourse[5, 6] and semantic simi-
larity[7, 8] are some areas where extensive work has been carried out concerning
the legal domain.

Identifying Participant Mentions and Resolving Their Coreferences in Legal
Court Judgements [9] is a work that is quite similar to our study where Gupta
et al. have worked on resolving coreference for entities that belong to a party
in legal texts. They have tried to address the issue of terms like petitioner,
defendant, appellant not getting included in the coreference resolution by the
already existing tools.

2.2 Coreference Resolution

Identifying mentions of the same entity in different forms and different positions
in a text can be defined as coreference resolution in simple terms.

Example 2

— Sentence 2.1: During the plea process, Lee repeatedly asked his attorney
whether he would face deportation.

— Sentence 2.2: His attorney assured him that he would not be deported as a
result of pleading guilty.

The two sentences in Example 2 are taken out from the Lee v. United States|2]

where the two sentences appear consecutively. The words Lee, his, he in Sen-
tence 2.1 and the words His, him, he refer to Jae Lee, who is the petitioner
in this case; and the term his attorney in both of the sentences is a different
entity who appears as a defendant in this case. A mapping between these words
is required to identify them as the same entity, rather referred to as tokens in
Natural Language Processing(NLP) and coreference resolution delivers to that
task.
Stanford and Spacy are two widely available and popular tools that offer corefer-
ence resolution, where both of the systems are built upon the following of Clark
and Manning[10]. With an initial evaluation we conducted for both the systems
for cases taken out from the domain we work on, we decided to carry our work
with the Stanford system due to the better performance it showed[11].
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2.3 Named Entity Recognition

The task of segregating entities into predefined categories is simply known as
Named Entity Recognition(NER). These categories could be anything defined
by the user, but in generic NLP tools that offer NER, the available common
categories include classes such as PERSON, ORG, LOCATION, etc.

Spacy[12] and Stanford NER system[13] can be named as the two most popular
tools for NER, and as similar to how we evaluated the coreference resolution,
we evaluated these two systems with our cases and observed better performance
in the Stanford system. Therefore, we have used the Stanford NER system for
NER in this study.

2.4 Legal Entity Identification

Party Identification of Legal Documents using Co-reference Resolution and Named
Entity Recognition[11] has conducted similar research on the same research prob-
lem where a rule-based approach to do the legal entity identification is presented.
In this rule-based approach, coreference resolution is first performed and clus-
ters of entities are identified in the document. Then, the identified clusters are
filtered out where only the entities which are either a person or an organization
are picked. Afterward, the number of times each entity is appearing as subjects
in the text is taken into consideration when calculating the probability of each
entity to be an actual legal entity.

2.5 Sequence to Sequence Learning for Legal Party Identification

This is a similar attempt to the Party Identification of Legal Documents using
Co-reference Resolution and Named Entity Recognition[14] but with deep learn-
ing, approach to identifying the legal parties. A Recurrent Neural Network(RNN)
encoder-decoder model with Long Short Term Memory(LSTM) cells is used in
this study where masked sentences(a mask is applied to person/organization en-
tities) are used as the input and gives an output sequence of 1s and 0s, 1 denoting
the token is referred to a legal party in the document and 0 if otherwise. This
model uses character-wise encoding to represent the words, that is assigning a
real value to each unique character to form the word. We have further improved
this approach by introducing word embeddings since we believe the vectors help
to carry more meaning with the higher dimensionality it offers.

2.6 Recurrent Neural Networks

Recurrent Neural Network (RNN) is a class of artificial neural networks that
are best suited for dealing with sequential data. RNN’s ability to process inputs
of variable length has helped it to show excellent performance in NLP related
tasks [15]. Gated Recurrent Unit(GRU) [16] or Long Term Short Term Mem-
ory(LSTM) [17] cells can be used to retain the previous hidden state and the
current input in RNNs and this study experiments with both of these approaches
to find the best-suited architecture for its intended task. The obtained results
for this are presented in the Experiments section.
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2.7 Bidirectional Recurrent Neural Networks

Future input information is also important for prediction. This can be solved
with RNN by delaying the output by a certain number of time steps to use
future information for current prediction. But all future information cannot be
captured. Bidirectional recurrent neural network (BRNN) that can be trained
using all available input information in the past and future of a specific time
frame has been proposed by Schuster et al.[18] to overcome the limitations of a
regular RNN. The state neurons of a regular RNN are divided into two parts.
One is responsible for the positive time direction and the other is for the negative
time direction. Outputs from positive time direction and inputs of negative time
direction are not connected, and vice versa. So that the BRNN can be trained
with the same algorithms as a normal RNN.

2.8 Word Embedding

Word embedding is a technique used to represent words in the form of vectors
while preserving their meaning. Many research studies in the field of law and
order as well as other domains have been conducted with the incorporation of
word embedding due to the fine performance this technology offers.

In this study, we have incorporated a pre-trained Word2Vec[19-21] model to
create vector embedding of the tokens in the text we use to train our model. We
use pre-trained vectors trained on part of Google News dataset where each word
is represented by a vector of dimension 300!.

3 Methodology

We discuss a novel method to accurately identify the members of the legal parties
involved in a given legal case using deep learning. From here onward the members
of the legal parties involved in the case are referred to as party members. Our
method consists of four main steps as Tokenizing, Embedding, Masking, and
Neural Network Model as shown in Figure 1.

Legal Opinion . - - 4.Neural Token-wise
Document 4,{ 1.Tokenizing H 2.Embeding H 3.Masking HNetwork Model}_. labels

Fig. 1. Methodology

! https://code.google.com/archive/p/word2vec/
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3.1 Tokenizing

First, the given court case paragraph is passed onto the Stanford annotator to
split the text into a sequence of tokens and to get the Coreference Resolution and
NER results of each token. Tokens can be either words, numbers, or punctuation
marks. Out of these tokens, the entities that are either a PERSON, ORGANIZA-
TION, or a LOCATION are identified with the use of Named Entity Recognition
because only those entities can be a party member. Afterward, coreference reso-
lution is performed on thus identified person/organization/location entities, and
their corresponding mentions are identified to form groupings of the tokens to
which in this paper we refer to as coref clusters. The NER value of the headword
of each coref cluster is then passed down to the other tokens of the coref clus-
ter and mapping is created to store the information token-wise (the fact that a
certain token refers back to a person/organization/location entity) to generate
masks later.

3.2 Embedding

In this step, a vector for each token that is of dimension 300 is generated with the
use of a pre-trained model proposed by Google?. Before generating the vector, we
also make sure to pass the token through a stemmer to increase the probability
of the model containing the word. In a scenario where the model does not have
an already trained vector for the token(This may happen for tokens such as
numbers, punctuation marks, proper nouns etc.), a zero vector with the same
dimension is returned as the corresponding vector for the token. We decided
to use word2vec because we needed to get word-wise embedding by considering
each word as an atomic entity.

3.3 Masking

In this step, an additional value (v) is generated for tokens that are identified
as either a person or an organization, or a location. The logic that goes into
deciding this value is explained with the Algorithm 1. The mask value (v) takes
a value between 0 and 1 where the range is further divided into smaller ranges
for PERSON, ORGANIZATION, and LOCATION classes. A PERSON entity
gets a mask value v of range 0 < v < 0.5, an ORGANIZATION entity gets a
mask value v of range 0.5 < v < 0.75 and a LOCATION entity gets a mask
value v of range 0.75 < v < 1.0. The reason we assigned a wider range to
the PERSON entities in comparison with the other two is that we observed in
opinion texts PERSON entities appear in higher frequencies than the other two.
All the tokens of the same coref cluster identified in the tokenizing step are given
the same value. The vector of each token given by the previous step are masked
or extended with values generated for each token by Algorithm 1.

% https://code.google.com/archive/p/word2vec/
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Example 3

— The Federal Trade Commission (FTC) filed an administrative complaint,
alleging that the Board’s concerted action to exclude non dentists from
the market for teeth whitening services in North Carolina constituted an
anti competitive and unfair method of competition under the Federal Trade
Commission Act.

In the Example 3 " The Federal Trade Commission (FTC)” and ”the Board”
are ORGANIZATION entities and ”"North Carolina” is a LOCATION entity. So
that the tokens: " The”, ”Federal”, ” Trade”, ” Commission”,” (", "FTC” and ”)”
are masked with a value v1(0.5 < v1 < 0.75) , the tokens: "the” and ”Board” are
masked with a value v2(0.5 < vo < 0.75) and the tokens: ”North” and ” Carolina”
are masked with a value v3(0.75 < vz < 1.0).

Algorithm 1 Mask Value Generator

Input: corefs, NERvaluesofheadwordsofclusters
OUtPUt: DiaskValues

1: procedure VALGENERATOR(corefs)

2 for each cluster, in corefs do

3 heady. <— clustery.headword

4: if heady,. NER == PERSON then

5: valk +— v1(0 < v1 < 0.5)

6: end if

7 if heady. NER == ORGANIZATION then
8: valp +— v2(0.5 < v < 7.5

9: end if

10: if heady. NER == LOCATION then

11: valp «— v2(0.5 < v < 1.0
12: end if
13: if heady. NER! = PERSONorORGANIZATIONorLOCATION then
14: val <— 0
15: end if

16: end for
17: Draskvaiues <— setO f(heady : valy)
return DmaskValues

18: end procedure

3.4 Neural Network Model

The input of this model is the sequence of masked vectors {Xi, ..., X7} of the
given paragraph and the output is a sequence of probabilities {y1, ..., yr }, where



8 Anonymous submission

Yoy

Dense Dense Dense Dense

i 1 f

Lu | [ | [ Y |
g/ RNN RNN RNN
T cell cell cell

RNN RNN RNN RNN
@ cell cell cel  [|TTTTTTTTT cell @

[ x | [ | [ x |

Fig. 2. Architecture of the Neural Network Model

T is the number of tokens in the paragraph. If a token (token;) of the given
paragraph is referred to as a party member then the output value (y;) corre-
sponding to that token must be close to 1 and otherwise it must be close to
0. Figure 2 depicts the architecture of the model we designed for this task. We
feed the sequence of masked vectors { X, ..., X7} into a sequence of BRNN cells
(BRNN layer). We use BRNN instead of regular RNN because the model needs
all the information about the given text to decide whether any token is referred
to a party member or not. The sequence of output vectors generated by the
BRNN layer {Uy,...,Ur} is fed into dense layers to generate the probability of
each token to be referred to a party member. We perform a token-wise binary
classification at the output layer of the model using the sigmoid activation func-
tion.

In Example 3, ”The Federal Trade Commission (FTC)” and ”the Board” are
two party members involved in the case. So that the tokens: ”The”, ”Federal”,
"Trade”, ”Commission”,”(”, "FTC”, ”)?, ”the” and ”"Board” are referred to
party members. Therefore outputs corresponding to those tokens need to be 1,
and outputs corresponding to all the other tokens need to be O.

Training Phase In this phase, Neural Network Model is trained to minimize
the Binary Cross-Entropy using a dataset that consists of a 3D input array of
size (m,n,T) and a 2D expected output array of size (m,T). 3D input array
contains a set of sequences of vectors. 2D expected output array contains the
corresponding set of sequence of binary values (1s and 0Os). In this phase, the
model basically learns parameters of BRNN and Dense layers to identify tokens
of a text sample that are referred to a party member.

m = number of sample paragraphs
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n = dimension of a token vector after masking(301)

T = maximum possible number of tokens in a given sample paragraph

If the number of tokens in a given sample paragraph is less than T, zero vectors
of size n are added to fill the 3D array.

Inference Phase In this phase, the trained Neural Network Model takes the
masked word embedding of the given paragraph which is an array of size (n,T),
and gives the corresponding result vector of size T. Each value of the result vector
is between 0.0 and 1.0 which is the probability of each token to be referred to a
legal party of the given paragraph. In this phase also, if the number of tokens in
a given paragraph is less than T, zero vectors of size n are added to fill the array.
In this phase, the model uses learned parameters of BRNN and Dense layers to
identify tokens of a text sample that are referred to as a party member.

4 Experiments

4.1 Setup

Natural Language Software: Stanford CoreNLP tools were used to perform
NER and coreference resolution and for stemming purposes, the Porter stemmer
by nltk[22, 23] was used.

Deep Learning Software: We used Keras[24] open source library which runs
on top of Tensorflow python library to implement the Neural Network Model
Word Embedding Software: We used a pretrained word2vec model by
Google to generate vectors in the Embedding step.

4.2 Dataset

We created a list of 1000 sample paragraphs (samples) that are picked from
legal opinion texts and tokenized each sample using the tokenizing method we
explained in the methodology. Then we manually labeled each token of each
sample as a party member mentioned in each sample or not with the help of
an expert of the legal domain. Then we generated masked word embedding of
each sample by following the embedding and masking steps. The statistics of our
dataset is as mentioned in the Table 1. The number of tokens that are referred
to as party members are just about 3.46% of the total number of tokens of a
paragraph.

Table 1. Statistics of the Dataset

Attribute Train |Val |Test |Fullset
Cases 810 90 100 |1000
Tokens 351K |39K [43K [433k
Party member tokens|12.16K]|1.21K|1.62K|14.99K
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4.3 Performance of the Neural Network Model

This model was trained for 100 epochs with a learning rate of 0.01 separately
with Gated Recurrent Units (GRU) and Long short-term memory (LSTM) with
alterations done to the number of output units of the BRNN layer. We used
Binary Cross Entropy as the loss function with Adam Optimizer. We used Pre-
cision at the given Recall as the metric to train the model because according
to Table 1, the number of expected positives is much less than the number of
expected negatives. Performance of the model according to accuracy, precision,
recall, fl score, and the average training time per step is shown in Table 2.
Equations 1 2, 3 are the definitions of Accuracy, Precision, Recall and F1 score.

TP - True Positives, TN - True Negatives, FP - False Positives, FN - False
Negatives

A=(TP+TN)/(TP+TN+ FP+FN) (1)
P =TP/(TP + FP) 2)
R=TP/(TP + FN) (3)

Flscore =2% P R/(P+ R) (4)

Training times shown in this table 2 are according to the performance of the
Intel Xeon Processor with two cores @ 2.30 GHz and 13GB RAM. We can see
that as the number of output units increases, the Accuracy, Precision, Recall,
and F1 score of models with both GRU and LSTM has increased. The model
with GRU cells of 512 output units has shown the best performance. Also, the
time consumption of GRU is much less than LSTM when the complexity of
the model increases. These results are a clear indication of the accuracy of our
methodology to identify legal party members.

Table 2. Performance of the Neural Network Model

Performance
BRNN .. |Accuracy |Precision|Recall|F'1 score|Training time per step
cell type| P Moy | o) | (%) | (%) (5
GRU 8 97.74 70.38 |44.78 | 54.73 0.42
32 98.41 78.95 [58.15| 66.97 0.63
64 98.95 79.80 |73.06| 76.28 1.00
128 99.10 79.49 |79.21| 79.35 2.00
256 99.56 86.46 |86.56 | 86.51 4.00
512 99.88 90.89 [91.69| 91.29 15.0
LSTM 8 97.58 67.77 |34.58| 45.79 0.43
32 98.37 74.77 |58.99| 65.95 0.73
64 98.72 81.28 [63.90| 71.55 2.00
128 99.34 85.02 |79.71| 82.28 3.00
256 99.52 87.50 |84.30| 85.87 7.00
512 99.82 89.70 |92.16| 90.91 20.0
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5 Conclusion

We propose a natural language processing method to accurately predict the
members of legal parties, given a paragraph of a legal opinion text. First, We
identify the entities that are either a person or an organization or a location and
spot their mentions in the paragraphs. Our model then proceeds to evaluate the
likelihood of each such mention to be referred to as a legal party member by
inspecting the meaning of the paragraph using BRNN. The meaning is grasped
by the model with the help of word embedding and learned with the training
process. Also, we introduced a dataset that can be used to train our model.
We show that our system has 90.89% precision and 91.69% recall for an unseen
paragraph from a legal document. So this method can be used to identify the
entities that are most likely to be a legal party.
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