
EasyChair Preprint
№ 15842

In-Situ Defect Detection and Material Property
Evaluation in Additive Manufacturing Using
Acoustic Signal and Machine Learning

Abdullah Bin Zainal, Zheng Jie Tan, Saritha Samudrala,
Zi Wen Tham, Lei Zhang and Santhakumar Sampath

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 18, 2025



5th Singapore International Non-destructive Testing Conference and Exhibition (SINCE2025) 

  1 

In-situ defect detection and material property evaluation in additive manufacturing using 

acoustic signal and machine learning  

Abdullah Bin Zainal1, Zheng Jie Tan2, Saritha Samudrala2, Zi Wen Tham3, Lei Zhang3, Santhakumar Sampath3† 

 

1School of mechanical Engineering, Singapore Polytechnic, 500 Dover Rd, Singapore 139651, Republic of Singapore 

2Advanced Remanufacturing and Technology Centre (ARTC), Agency for Science, Technology and Research (A*STAR), 2 

Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore 

3Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 

Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore 

†E-mail: santhas@imre.a-star.edu.sg 

 

Abstract 

In-situ monitoring is crucial for detecting defects and estimating material properties to ensure the quality 

of printed parts in additive manufacturing. Acoustic signals produced during the interaction between 

the laser and material contain critical information about complex physical mechanisms such as crack 

formation. However, acoustic-based monitoring in laser powder bed fusion (L-PBF) has received little 

attention due to the noisy environment. This study presents an acoustic-based real time process 

monitoring method integrated with machine learning for L-PBF process. The key contribution lies in 

developing a feature extraction approach that utilize machine learning models such as random forests 

and k-nearest neighbors (KNN), and wavelet transform for defect detection and material property 

classification. Microphone data collected during L-PBF experiments capture both laser-material 

interaction signals and environmental noise, including contributions from the laser, fan, and powder 

flow. A bandpass filter is applied to isolate relevant signals, followed by wavelet transform in time- and 

frequency-domains to obtain representation of the laser-material interaction. The results show that the 

machine learning models achieve an average material property estimation accuracy of 94%, 

highlighting its effectiveness in enhancing the monitoring process parameters. 
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Introduction 

 Laser powder bed fusion (L-PBF) is an increasingly popular metal additive manufacturing (AM) 

process due to its ability to produce geometrically complex parts [1]. This technique offers unique 

advantages in fabricating irregular and, with promising applications across biomedicine, aerospace, and 

other industrial sectors [2]. However, printed parts frequently exhibit defects such as cracks owing to 

material discontinuities, affecting reproducibility and part performance [3]. Thus, it is crucial to monitor 

part quality during the manufacturing process to promptly address any issues that may arise.  

 The real-time monitoring of the L-PBF process poses a significant challenge due to the intricate 

interactions between the laser and matter. While various sensing methods, including pyrometers, high-

speed cameras, photodiodes, and thermography cameras, have been integrated into L-PBF. Acoustic 

Emission (AE) analysis has emerged as a particularly promising technique for process monitoring in 

AM [4]. AE arises from the release of elastic waves generated by localized stress changes within a 

material, e.g., crack formation [5]. This method is particularly effective in detecting cracks and is widely 

utilized in materials science and industrial monitoring, including AM operations [6]. Researchers 

typically employ AE sensors, such as microphones, to detect defects within a frequency range of 0 –

100 kHz [7]. Numerous studies have demonstrated the feasibility of in-situ defect detection using low-

frequency microphones across various materials such as stainless steel and titanium alloys [8] [8-9]. 

 The aim of this research is to evaluate material properties and identify defects within the acoustic 

spectrum of L-PBF. Although some studies have explored the use of acoustic sensors to identify defects 

and evaluate process parameter quality, there is still limited literature on L-PBF acoustic data analysis, 

its relationship with process parameters, and the identification of defects and material property 

assessment during part production. This study investigates the basic features of the AE signal associated 

with laser melting using machine learning.  

Materials and methods 

 The experiments were conducted on an EOS M290 machine. This system utilizes a Continuous 

Wave (CW) fiber laser with a wavelength of 1064 nm. The laser powers investigated were 196 W, 280 

W, and 364 W. The laser spot size in the processing zone was 80 μm. A C45 steel base plate was 

selected as the substrate material for building the parts. Ti64 powder was employed for the experiments, 

with a particle size distribution of 15–45 μm. The continuous energy release during the AM process 

generates stress waves, which are the underlying cause of AE. An acoustic sensor can record acoustic 

energy and couple with a data acquisition system to convert that energy into an electrical signal suitable 

for further analysis. The amplitude and other characteristics of the emitted acoustic waves change 

depending on process conditions and any defects forming during operation. So by using signal 

processing techniques like a bandpass filter, we can extract useful information about process quality. 
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Figure 1. In-situ monitoring of L-PBF. 

Table 1. L-PBF process parameters. 

Coupon Laser power (W) Laser speed (mm/s) Energy density (%) 

1 280 1200 100 

2 196 1200 70 

3 280 840 142 

4 364 1020 153 

 

Figure 2. Schematic of the proposed defect detection flowchart through signal processing and 

machine learning. 

Figure 2 presents an overview for acoustic-based evaluation of material properties and defect detection. 

The workflow comprises data collection during the printing process, signal denoising, feature 

extraction, and material property classification. Initially, a bandpass filter is utilized on the noisy L-

PBF sound to decrease noise. Afterward, key acoustic signatures in the time and frequency domains are 

extricated from the denoised acoustic signal. Finally, various traditional machine learning models are 

trained to classify the L-PBF sound into two categories, including crack and material property samples. 
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Results and discussion 

Acoustic signals can be greatly affected by environmental factors such as background noise, 

fan noise etc., thus noise emitted by the machinery can markedly influence acoustic data acquisition. 

Therefore, before conducting the analysis of the AE signals, we first eliminated the noise and examined 

the AE signals within the time- and frequency-domain using filtering approach. AE signals recorded 

during the three experiments belonged to background  noise, fan noise and printing signals (including 

laser noise and laser-material integration) ( Figure 3). The AE signals amplitude is very low when 

background noise alone exist, around ±1 mV. Although significant changes in processing conditions 

may lead to visible differences in the AE signature, identifying variations in material properties can be 

challenging due to external noise in the AE signal. Therefore, this study employs filters to examine the 

AE signals in both the time-domain and frequency-domain. The amplitude near zero in the denoised 

AE signals signifies the “background noise and fan noise” phase during the L-PBF process. 

      

                               Printing signals                                                           Background noise 

 

                                    Fan noise                                                          Filter printing signals 

Figure 3. AE signals captured when laser printing on and off. 
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                          (a)                                                                               (b) 

Figure 4. Visualization of AE signal. (a) raw signal and (b) denoised signal. 

In Figure 5, the AE signals from different cube coupons are analyzed using Fast Fourier Transform 

(FFT), revealing that ambient noise predominantly occupies the low-frequency spectrum. Interestingly, 

frequencies exceeding 17.5kHz are observed in the AE signals from varying coupons, indicating the 

impact of material properties on the signal. Notably, a noticeable high amplitude below 200 Hz may be 

attributed to background and fan noise interference. 

 

Figure 5. Frequency spectra for various coupon AE signals. 

 

Figure 6. Performance evaluation for acoustic-based material property evaluation in L-PBF. 

 

272.0 272.8 273.6 274.4 275.2 276.0

-0.6

-0.3

0.0

0.3

0.6
A

m
p

lit
u

d
e

 (
V

)

Time (s)

272.0 272.8 273.6 274.4 275.2 276.0

-0.6

-0.3

0.0

0.3

0.6

A
m

p
lit

u
d
e
 (

V
)

Time (s)

0 5 10 15 20

0.00

0.05

0.10

0.15

0.20

0.25

M
a
g

n
it
u

d
e

 (
a

.u
.)

Frequency (kHz)

 Coupon1 

 Coupon2 

 Coupon3 

 Coupon4 



5th Singapore International Non-destructive Testing Conference and Exhibition (SINCE2025) 

  6 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 7. Confusion matrix for the classification task for ‘Decision Tree', ‘Gradient Boosting’, ‘K 

Nearest Neighbour’, ‘Gradient Boosting’, 'Support Vector Machine’, and 'Random Forest' trained on 

the denoised AE dataset. 

Figure 6 shows the classification accuracy of various evaluation parameters such as RMS, 

spectral centroid, spectral bandwidth, Skewness, zero crossing rate and Kurtosis. Overall, there is a 

noticeable enhancement in accuracy following each denoising step. The confusion matrix generated 

from training a K-Nearest Neighbour model on denoised data displays remarkably high classification 

accuracy across multiple classes (Figure 7). Specifically, the accuracy for 'cube coupon 1' was 94%, 

'cube coupon 2' was 95%, 'cube coupon 3' was 95%, and 'cube coupon 4' was 92%. Overall, the model 

achieved an impressive accuracy rate of 92.8%. 

Conclusion 

In this study, acoustic measurements were utilized during the Laser Powder Bed Fusion (LPBF) process 

to detect cracks and evaluate material properties in real-time. Ti64 powder was the material of choice 

for the experiments. The recorded acoustic signals were analyzed to correlate them with process 

parameters and assess the quality of the samples. Results showed statistically significant differences in 

the acoustic signatures between different material properties. Various machine learning models 

including Decision Tree, Gradient Boosting, K-Nearest Neighbor, Support Vector Machine, and 

Random Forest were employed to classify the sound produced during LPBF and predict material 

properties with an average accuracy of 94%. Notably, filtering the Acoustic Emission (AE) signals led 
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to improved accuracy and reduced false positive rates in classifying the sounds. This research suggests 

that acoustic-based crack detection and material property evaluation have the potential to optimize 

additive manufacturing processes. 
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