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Abstract—Preserving the privacy of digital biometric data (e.g., 
face images) stored in a central database has become of paramount 
importance. This work explores the possibility of using visual cryp- 
tography for imparting privacy to biometric data such as finger- 
print images, iris codes, and face images. In the case of faces, a 
private face image is dithered into two host face images (known as 
sheets) that are stored in two separate database servers such that 
the private image can be revealed only when both sheets are 
simultaneously available; at the same time, the individual sheet im- 
ages do not reveal the identity of the private image. A series of ex- 
periments on the XM2VTS and IMM face databases confirm the 
following: 1) the possibility of hiding a private face image in two 
host face images; 2) the successful matching of face images recon- 
structed from the sheets; 3) the inability of sheets to reveal the iden- 
tity of the private face image; 4) using different pairs of host images to 
encrypt different samples of the same private face; and 5) the 
difficulty of cross-database matching for determining identities. A 
similar process is used to de-identify fingerprint images and iris 
codes prior to storing them in a central database. 

Index Terms—De-identification, face, fingerprint, IrisCodes, pri- 
vacy, visual cryptography. 

 
 

I. INTRODUCTION 

 
IOMETRICS is the science of establishing the identity of 

an individual based on physical or behavioral traits such 

as face, fingerprints, iris, gait, and voice [1]. A biometric authen- 

tication system operates by acquiring raw biometric data from a 

subject (e.g., face image), extracting a feature set from the data 

(e.g., eigen-coefficients), and comparing the feature set against 

the templates stored in a database in order to identify the sub- 

ject or to verify a claimed identity. The template of a person in 

the database is generated during enrollment and is often stored 

along with the original raw data. This has heightened the need 

to accord privacy1 to the subject by adequately protecting the 

contents of the database. 

For protecting the privacy of an individual enrolled in a bio- 

metric database, Davida et al. [2] and Ratha et al. [3] proposed 

storing a transformed biometric template instead of the original 

biometric template in the database. This was referred to as a 
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1The term “privacy” as used in this paper refers to the de-identification of 

biometric data. 

private template [2] or a cancelable biometric [3]. Feng et al. 

[4] proposed a three-step hybrid approach that combined the 

advantages of cryptosystems and cancelable biometrics. Apart 

from these methods, various image hiding approaches [5]–[7] 

have been suggested by researchers to provide anonymity to the 

stored biometric data. 

For according privacy to face images present in surveillance 

videos, Newton et al. [8] and Gross et al. [9] introduced a face 

de-identification algorithm that minimized the chances of per- 

forming automatic face recognition while preserving details of 

the face such as expression, gender, and age. Bitouk et al. [10] 

proposed a face swapping technique which protected the iden- 

tity of a face image by automatically substituting it with replace- 

ments taken from a large library of public face images. However, 

in the case of face swapping and aggressive de-identification, 

the original face image can be lost. Recently, Moskovich and 

Osadchy [11] proposed a method to perform secure face identi- 

fication by representing a private face image with indexed facial 

components extracted from a public face database. 

In this paper, the use of visual cryptography is explored to 

preserve the privacy of biometric data (viz., raw images) by de- 

composing the original image into two images in such a way 

that the original image can be revealed only when both images 

are simultaneously available; further, the individual component 

images do not reveal any information about the original image. 

Figs. 1 and 2 show block diagrams of the proposed approach for 

three biometric modalities. During the enrollment process, the 

private biometric data is sent to a trusted third-party entity. Once 

the trusted entity receives it, the biometric data is decomposed 

into two images and the original data is discarded. The decom- 

posed components are then transmitted and stored in two dif- 

ferent database servers such that the identity of the private data is 

not revealed to either server. During the authentication process, 

the trusted entity sends a request to each server and the corre- 

sponding sheets are transmitted to it. Sheets are overlaid (i.e., 

superimposed) in order to reconstruct the private image thereby 

avoiding any complicated decryption and decoding computa- 

tions that are used in watermarking [5], [6], steganography [7], 

or cryptosystem [12] approaches. Once the matching score is 

computed, the reconstructed image is discarded. Further, coop- 

eration between the two servers is essential in order to recon- 

struct the original biometric image. 

For irides and fingerprints, as shown in Fig. 1, the biometric 

image is decomposed by the visual cryptography scheme and 

two noise-like images known as sheets are produced. In the case 

of securing an iris template, the iris code is encrypted instead of 

the iris image. 

For faces, as shown in Fig. 2, each private face image is de- 

composed into two independent public host images. In this sce- 

nario, the private image can be viewed as being encrypted into 

two host face images. 
 

http://ieeexplore.ieee.org/


  

 

 

 

 
 

Fig. 1. Proposed approach for de-identifying and storing a fingerprint image. 

A similar technique is used for iris codes. 

 
 

 

Fig. 2. Proposed approach for de-identifying and storing a face image. 

 

 

The use of face images as hosts for a private face image (as 

opposed to using random noise or other natural images) has sev- 

eral benefits in the context of biometric applications. First, the 

demographic attributes of the private face images such as age, 

gender, ethnicity, etc. can be retained in the host images thereby 

preserving the demographic aspects of the face while perturbing 

its identity. Alternately, these demographic attributes, as mani- 

fested in an individual’s face, can also be deliberately distorted 

by selecting host images with opposite attributes as that of the 

private image. Second, a set of public face images (e.g., those 

of celebrities) may be used to host the private face database. In 

essence, a small set of public images can be used to encrypt the 

entire set of private face images. Third, using nonface images 

as hosts may result in visually revealing the existence of a se- 

cret face as can be seen in Fig. 4. Finally, while decomposing 

the face image into random noise structures may be preferable, 

it can pique the interest of an eavesdropper by suggesting the 

existence of secret data. 

Additionally, the proposed approach addresses the following 

template protection requirements [12]–[14]. 1) Diversity: Since 

different applications can adopt different sets of host images 

for encrypting the same private face image, cross-matching 

across applications to reveal the identity of a private face 

image will be difficult. For iris codes and fingerprints, the 

sheets appear as random noise making it difficult to match 

them across databases. 2) Revocability: If the private data is 

deemed to be compromised, then it can be decomposed again 

into two new sheets based on new host images. However, in 

reality, break-ins to a server are very hard to detect when the 

attacker simply steals certain information without modifying 

the stored data. To strengthen security, the decomposing op- 

eration can be periodically invoked at regular time intervals. 

3) Security: It is computationally hard to obtain the private 

biometric image from the individual stored sheets due to the 

use of visual cryptography. Furthermore, the private image is 

revealed only when both sheets are simultaneously available. 

By using distributed servers to store the sheets, the possibility 

of obtaining the original private image is minimized. There 

have been numerous efforts in the literature to guarantee that 

the data stored in distributed databases are protected from 

unauthorized modification and inaccurate updates (e.g., [15]) 

4) Performance: As will be shown in the experiments section, 

the recognition performance due to the reconstructed image is 

not degraded after decryption. 

The rest of the paper is organized as follows. In Section II a 

basic introduction to visual cryptography and its extensions are 

presented. Sections III and IV discuss the proposed approach 

for securing iris, fingerprint, and face images. Section V reports 

the experimental results and Section VI concludes the paper. 

 
II. VISUAL CRYPTOGRAPHY 

One of the best known techniques to protect data such as bio- 

metric templates [16] is cryptography. It is the art of sending 

and receiving encrypted messages that can be decrypted only 

by the sender or the receiver. Encryption and decryption are 

accomplished by using mathematical algorithms in such a way 

that no one but the intended recipient can decrypt and read the 

message. Naor and Shamir [17] introduced the visual cryptog- 

raphy scheme (VCS) as a simple and secure way to allow the 

secret sharing of images without any cryptographic computa- 

tions. VCS is a cryptographic technique that allows for the en- 

cryption of visual information such that decryption can be per- 

formed using the human visual system. The basic scheme is re- 

ferred to as the   -out-of-   VCS which is denoted as  VCS 

[17]. Given an original binary image , it is encrypted in im- 

ages, such that 

  (1) 
 

where is a Boolean operation, ,              is an 

image which appears as white noise,   , and is the number 

of noisy images. It is difficult to decipher the secret image 

using individual  ’s [17]. The encryption is undertaken in 

such a way that or more out of the  generated images are 

necessary for reconstructing the original image . 

In the case of (2, 2) VCS, each pixel   in the original image 

is encrypted into two subpixels called shares. Fig. 3 denotes the 

shares of a white pixel and a black pixel. Note that the choice 

of shares for a white and black pixel is randomly determined 

(there are two choices available for each pixel). Neither shares 

provide any clue about the original pixel since different pixels 

in the secret image will be encrypted using independent random 

choices. When the two shares are superimposed, the value of 

the original pixel can be determined. If is a black pixel, we 

get two black subpixels; if it is a white pixel, we get one black 

subpixel and one white subpixel. Therefore, the reconstructed 

image will be twice the width of the original secret image and 



  
 

 

 

 

Fig. 3. Illustration of a 2-out-of-2 VCS scheme with 2 subpixel construction. 

 

Fig. 4. Encryption of a private face image in two standard host images. 
(a) Host 1: Cameraman image. (b) Host 2: Lena image. (c) A private face 
image. (e) and (f) The two host images after visual encryption (two sheets). 

(g) Result of superimposing (e) and (f). 

 

Fig. 5. Encryption of a private face image in two prealigned and cropped face 
images. (a) and (b) are two host images. (c) is a private face image. (e) and 
(f) are the host images after visual encryption (two sheets). (g) is the result of 
overlaying (e) and (f). 

 

 

there will be a 50% loss in contrast [17]. However, the original 

image will become visible. 

In 2002, Nakajima and Yamaguchi [18] presented a 2-out-

of-2 extended VCS for natural images. They suggested a 

theoretical framework for encoding a natural image in in- 

nocuous images as illustrated in Figs. 4 and 5. This is known as 

the gray-level extended visual cryptography scheme (GEVCS). 

In this work, the basic VCS is used to secure iris codes and 

fingerprint images and the extended VCS for grayscale images 

is used to secure face images. The basic VCS and its extension 

(GEVCS) are discussed in detail below. 

A. Visual Cryptography Scheme (VCS) 

There are a few basic definitions which need to be provided 

before formally defining the VCS model and its extensions. 

1) Secret image    : The original image that has to be hidden. 

In our application, this is the private biometric image. 2) Hosts 

: These are the face images used to encrypt the secret 

image using the GEVCS. In our application, these correspond 

to the face images in the public dataset. 3) Sheets    : The 

secret image is encrypted into sheet images which appear as 

random noise images (in the case of    VCS) or as a nat- 

ural host image (in the case of GEVCS). 4) Target : The 

image reconstructed by stacking or superimposing the sheets. 

5) Subpixel: Each pixel is divided into a certain number of 

subpixels during the encryption process. 6) Pixel Expansion 

: The number of subpixels used by the sheet images to en- 

code each pixel of the original image. 7) Shares: Each pixel 

is encrypted by collections of black-and-white subpixels. 

These collections of subpixels are known as shares. 8) Rela- 

tive Contrast : The difference in intensity measure between 

a black pixel and a white pixel in the target image. 9) OR-ed 

-vector       : An matrix is transformed to an -dimen- 

sional vector by applying the Boolean OR operation across each 

of the     columns. 10) Hamming weight : The number 

of “1” bits in a binary vector . 

The -out-of- VCS deals with binary images. Each pixel is 

reproduced as shares with each share consisting of sub- 

pixels. This can be represented and described by an 

Boolean matrix    where                   if and only if the 

th subpixel in the th share is black. The matrix is selected 

randomly from one of two collections of  Boolean ma- 

trices  and ; the size of each collection is . If the pixel 

in the secret image is a white pixel, one of the matrices in  is 

randomly chosen; if it is a black pixel, a matrix from  is ran- 

domly chosen. Upon overlaying these shares, a gray level for 

the pixel of the target image becomes visible and it is propor- 

tional to the Hamming weight, , of the OR-ed -vector 

for a given matrix . It is interpreted visually as black if 

      and as white if for some fixed 

threshold                  and relative difference  . The con- 

trast of the target is the difference between the minimum 

value of a black pixel and the maximum allowed  value for 

a white pixel, which is proportional to the relative contrast  
and the pixel expansion  . The scheme is considered valid 

if the following three conditions are satisfied. Condition 1: For 

any matrix in   , the OR operation on any   of the   rows 

satisfies   . Condition 2: For any matrix     in 

, the OR operation on any  of the  rows satisfies      . 

Condition 3: Consider extracting   rows, , from two ma- 

trices,           and    resulting in new matrices  

and . Then,       and       are indistinguishable in that there 

exists a permutation of columns of       which would result in 

. In other words, any matrix  and       are iden- 

tical up to a column permutation. 

Conditions 1 and 2 define the image contrast due to VCS. 

Condition 3 imparts the security property of a VCS which 

states that the careful examination of fewer than shares will not 

provide information about the original pixel . Therefore, the 

important parameters of the scheme are the following. First, the 

number of subpixels in a share     ; this parameter represents 

the loss in resolution from the original image to the resultant 

target image and it needs to be as small as possible such that the 



  

 

 

 

 
 

Fig. 6. Illustration of a 2-out-of-2 scheme with 4 subpixel construction. 

 
 

target image is still visible. In addition, the      subpixels need 

to be in the form of a matrix where in order 

to preserve the aspect ratio of the original image. Second, , 

which is the relative difference in the Hamming weight of the 

combined shares corresponding to a white pixel and that of a 

black pixel in the original image; this parameter represents the 

loss in contrast and it needs to be as large as possible to ensure 

visibility of the target pixel. Finally, the size of the collection 

of       and  , , which represents the number of possibilities 

for . This parameter does not directly affect the quality of the 

target image. 

The scheme can be illustrated by a (2, 2) VCS example which 

is shown in Fig. 6. One pixel of the original image corresponds 

to four pixels in each share. Therefore, six patterns of shares are 

possible. Based on this, the following collection of matrices are 

defined: 

 
 

 
 

 

 
 

 
 

    
 

 

 
 

 

 

This 2-out-of-2 VCS has the parameters , , 

and . A secret image is encrypted by selecting shares in 

the following manner. If the pixel of the secret binary image is 

white, the same pattern of four pixels for both shares is randomly 

selected which is equivalent to randomly selecting a Boolean 

matrix      from the collection . If the pixel of the original 

image is black, a complementary pair of patterns is randomly 

picked which is equivalent to selecting a Boolean matrix from 

the collection . Conditions 1 and 2 can be easily tested to 

validate this (2, 2) VCS. The last condition which is related to 

the security of the scheme can be verified by taking any row 

from and and observing that they have the 

same frequency of black and white values. 

B. Gray-Level Extended Visual Cryptography Scheme 

(GEVCS) 

VCS allows one to encode a secret image into sheet im- 

ages, each revealing no information about the original. Since 

these sheets appear as a random set of pixels, they may pique 

the curiosity of an interceptor by suggesting the existence of 

a secret image. To mitigate this concern, the sheets could be 

reformulated as natural images as stated by Naor and Shamir 

[17]. Ateniese et al. [19] introduced such a framework known 

as the extended VCS. Nakajima and Yamaguchi [18] proposed 

a theoretical framework to apply extended visual cryptography 

on grayscale images (GEVCS) and also introduced a method 

to enhance the contrast of the target images. The GEVCSop- 

erates by changing the dynamic range of the original and host 

images, transforming the gray-level images into meaningful bi- 

nary images (also known as halftoned images) and then applying 

a Boolean operation on the halftoned pixels of the two hosts and 

the original image. However, some of these pixels (in the host 

and the original) have to be further modified. This is explained 

in more detail below. 

1) Digital Halftoning and Pixel Expansion: Digital 

halftoning is a technique for transforming a digital gray-scale 

image to an array of binary values represented as dots in the 

printing process [20]. Error diffusion is a type of halftoning 

technique in which the quantization error of a pixel is distributed 

to neighboring pixels which have not yet been processed. Floyd 

and Steinberg [21] described a system for performing error 

diffusion on digital images based on a simple kernel. Their 

algorithm could also be used to produce output images with 

more than two levels. So, rather than using a single threshold 

to produce a binary output, the closest permitted level is deter- 

mined and the error, if any, is diffused to the neighboring pixels 

according to the chosen kernel. Therefore, grayscale images 

are quantized to a number of levels equalling the number of 

subpixels per share,    . During the dithering process at the 

pixel level, any continuous tone pixel is expanded to a matrix 

of black and white subpixels defined by the gray level of the 

original pixel. The proportion of white subpixels in this matrix 

is referred to as pixel transparency. In our application, the host 

images used for encrypting a private face image and the private 

image itself are converted to halftoned images. 

2) Encryption: The encryption process is applied on a 

pixel-by-pixel basis using the three halftoned images (the two 

hosts and the original image). The arrangement of the subpixels 

in the shares of both the hosts has to be controlled such that the 

required transparency (the number of white subpixels) of the 

target pixel is obtained. The arrangement is determined based 

on the pixel transparencies triplet . , , and are 

transparencies of the entire subpixel region for share 1, share 

2, and the target, respectively. 

The security of the scheme is also important. Therefore, 

during encryption, a Boolean matrix is randomly selected 

from a set of Boolean matrices for every pixel 

in the original image. This is the primary difference between 

this scheme and Naor-Shamir’s scheme: in the latter, only a 



  
 

 

 

Fig. 7. Example of an impossible arrangement. 

 

single collection of matrices is required which depends on 

the number of hosts and the pixel expansion . Nakajima 

and Yamaguchi describe in detail the method to compute this 

collection of Boolean matrices [18]. 

However, as shown in Fig. 7, there are cases when the re- 

quired transparency for the corresponding pixel in the target 

image cannot be obtained, no matter how the shared subpixels 

are rearranged. Therefore, to determine if it is possible to obtain 

the target transparency by rearranging the transparent (white) 

subpixels in the shares, the target transparency must be within 

the following range [condition (T1)] [18]: 

 

 
Fig. 8. Examples of subpixel arrangements. 

             (2) 

where  ,  , and      are the transparencies of the entire 

pixel region for share 1, share 2, and the target, respectively. The 

range of each of these transparencies for the entire image cor- 

responds to the dynamic range of the pixel intensities of the re- 

spective images. Assuming that the dynamic ranges of the trans- 

parencies of the two sheets are the same, , all the 

triplets, , would satisfy condition (T1) if and only if 

the dynamic range of the target fulfils condition (T2) [18] 

  (3) 

Nakajima and Yamaguchi [18] described a method to enhance 

the image quality (contrast) and decrease the number of vio- 

lated triplets by performing an adaptive dynamic range com- 

pression. In their method, the dynamic range of the sheets and 

the target are modified as    ,          , and 

, respectively, where denotes the lower 

bound of the sheets’ dynamic range and is a fixed value. It is 

clear that 0 is the most appropriate value for the lower bound of 

the target to ensure that the target is darker than both sheets [18]. 

However, after enhancing the contrast, it is necessary to consider 

condition (T1) again before encryption. Thus, if a triplet vio- 

lates condition (T1), the gray levels of the conflicting triplets are 

adjusted and the resulting errors diffused to the nearby pixels. 

Consequently, both halftoning and encryption are done simulta- 

neously to facilitate this adjustment. 

To perform this adjustment, a 3-D space is defined using the 

transparencies of the pixels in the three images: the -axis repre- 

sents the transparencies of the pixels in share 1, the -axis repre- 

sents the transparencies of the pixels in share 2, and the -axis 

represents the transparencies of the pixels in the target image. 

Any point in this space is characterized by a triplet representing 

transparencies in the three images. The volume corresponding 

to the points for which reconstruction is possible (Fig. 8) is de- 

termined. Every point outside this volume is adjusted. Assume a 

point   outside the determined volume. To encrypt 

this triplet without degrading the images,  will be replaced 

with  where   is the closest point to  in the con- 

structed volume. Thus, the transparencies of the corresponding 

pixels in share 1, share 2, and target will become , , and 

 
 
 
 
 
 

 
 

Fig. 9. Flowchart for illustrating GEVCS at the pixel-level. 

 

 

, respectively. If condition (T1) is violated, the errors are cal- 

culated and diffused using an error-diffusion algorithm to the 

nearby pixels. These steps are summarized in Fig. 9. 
 

III. SECURING IRIS AND FINGERPRINT TEMPLATES 

The use of basic visual cryptography for securing fingerprint 

and iris templates was suggested in [22] and [23], respectively; 

however, no experimental results were reported to demonstrate 

its efficacy. Moreover, basic VCS leads to the degradation in 

the quality of the decoded images, which makes it unsuitable 

for matching process, as shown in Fig. 10(a), where the white 

background of the original image becomes gray in the decrypted 

(target) image. The overlaying or superimposing operation in vi- 

sual cryptography is computationally modeled as the binary OR 

operation which causes the contrast level of the target image to 

be lowered. Loss in contrast in target images could be addressed 

by simply substituting the OR operator with the XOR operator 

[24]. Furthermore, the target image can be down-sampled by 

reconstructing just one pixel from every block. Thus, the 

reconstructed image will be visually appealing while requiring 

less storage space. Fig. 10 shows the difference in quality be- 

tween the secret images recovered using the OR and XOR opera- 

tions. It is clearly evident that the contrast of the original image 

is restored in the latter. 
 

IV. SECURING PRIVATE FACE IMAGES 

Let be the public dataset containing 

a set of candidate host images that can hide the assigned private 

face image   . The first task is to select two host images  and 

,         and ,                      from . Note that due to 

variations in face geometry and texture between the images in 

the public dataset and the private face image, the impact of the 



  

 

 

 

 
 

Fig. 10.  Reconstructed fingerprint image when using the (a) OR and (b) XOR 

operators. 

 

Fig. 11. Block diagram of the proposed approach for storing and matching face 
images. 

 

Fig. 12. Example of an annotated face. 

 

 
target image on the sheet images and vice versa may become 

perceptible. This issue can be mitigated if the host images for 

a particular private image are carefully chosen. Fig. 11 shows 

the block diagram that illustrates the key steps of the proposed 

approach. These steps will be explained in more detail in the 

following subsections. 
 

A. Active Appearance Model 

The proposed approach essentially selects host images that 

are most likely to be compatible with the private image based 

on geometry and appearance. Therefore, an active appearance 

model (AAM) [25] that characterizes the shape and texture of 

the face is utilized to determine the similarity between the pri- 

vate face image and candidate host images (Fig. 11). The steps 

for building the AAM and using it for locating predefined land- 

marks on face features, as shown in Fig. 12, is discussed in detail 

in [26] and [25] and is summarized below. 

1) Building the AAM: Four steps are needed for building a 

basic AAM from a set of training images. 

a) Annotate the Training Set: First, for each face image 

in the training dataset, its face features are annotated manually 

by landmarks of a predefined shape. Each shape  is stored 

in a vector format, where         and is the number of 

training images. This representation does not include any infor- 

mation about the connection between landmarks. Thus, 

 

            (4) 

 

where is the number of landmarks used to locate and annotate 

face features. 

b) Building the Shape Model: A shape alignment process 

is performed to remove the effects of affine transformations 

(translation, scaling, and rotation). Then the principle compo- 

nent analysis (PCA) is used to construct a simple linear model 

of shape variability across the training images 

 

(5) 

 

Here,     is the mean shape vector,  is a matrix describing 

the modes of variation derived from the training set, and  is 

the shape model parameters vector. 

c) Building the Texture Model: All images in the training 

set are warped to the mean shape by utilizing the annotated land- 

marks. Next, the pixel values in each warped image is consoli- 

dated to create a texture vector. Then, a photometric normaliza- 

tion is used to minimize the effects of lighting changes on the 

texture vector. The normalized texture vector is 

 

                           (6) 

 

where    is the number of pixels within the image. Then, PCA 

is used to linearly model the texture vectors as in (7) 

 

(7) 

 
Here,    is the mean texture vector,  is the modes of varia- 

tion matrix, and  is the texture model parameter vector. 

d) Building the Combined AAM: Shape and texture are 

often correlated [26] and, so, PCA is once again used to con- 

struct a compact model from and resulting in a set of com- 

bined parameters . This helps in synthesizing an image with a 

given shape and texture using one set of parameters   as 

shown below 

 

(8) 

(9) 

 

2) Annotating an Image: A randomly selected template 

model is initially generated and an image based on the corre- 

sponding model parameters is synthesized. The error between 

the input image ( , that has to be annotated) and the 

synthesized image needs to be minimized. The 

solution is found by varying two sets of parameters: the com- 

bined model parameters and the pose parameters (translation, 

scaling, and rotation). 



  
 

 

 

 
 

Fig. 13. Shape-free image of annotated face image in Fig. 12. 

 
 

B. Selection of Hosts 

For selecting compatible hosts, the cost of registering 

(aligning) each image in the public dataset with the private 

image is computed as . These costs are sorted in order to 

locate two host images,  and , which have the smallest 

registration cost. However, as will be shown in the experiments 

section, this cost alone is not sufficient. So the texture is used 

as an additional criteria and the cost associated with this is 

denoted as . Therefore, the final cost , which is associated 

with each host image, is the sum of the normalized transfor- 

mation cost    and the normalized appearance cost . The 

simple minimum–maximum normalization technique is used to 

normalize both costs. 

1) Transformation Cost : This cost measures the amount 

of geometric transformation necessary to align two images 

based on the annotated landmarks generated by the AAM. 

Given the set of correspondences between these finite sets of 

points on two face images, a transformation                  

can be estimated to map any point from one set to the other. 

While there are several choices for modeling this geometric 

transformation, the thin plate spline (TPS) model is used [27]. 

The transformation cost  is the measure of how much trans- 

formation is needed to align the two face images by utilizing the 

thin plate spline model, which is the bending energy necessary 

to perform the transformation. 

2) Appearance Cost     : First, the private face image 

and the host image are normalized by warping them to the 

mean shape, , resulting in shape-free texture images and 

. Fig. 13 shows an example of a shape-free image for a private 

face image. This normalization step uses the mean shape com- 

puted during the AAM training phase. Each shape-free image is 

represented as a texture vector (6). 

Both  and  can be expressed by the texture model param- 

eter vector, . In order to get these basis vectors, each image 

is projected onto the texture space by using the stored modes of 

variation  

 

        (10) 

The appearance cost    is defined as the Manhattan distance 

between the basis vectors corresponding to and . 

 

C. Image Registration and Cropping 

In this step, the global affine transformation component of the 

thin plate spline model is used to align the two selected host im- 

ages with the secret image . Next, the aligned 

hosts and the secret image are cropped to capture only the fa- 

cial features which have been located by AAM as illustrated in 

Fig. 12. 

D. Secret Encryption and Reconstruction 

GEVCS is used to hide the secret image in the two host 

images  and        resulting in two sheets denoted as  and 

, respectively.      and  are superimposed in order to reveal 

the secret private image. The final target image is obtained by 

the reconstruction process that reverses the pixel expansion step 

to retain the original image size. 

V. EXPERIMENTS AND RESULTS 

A. Securing Iris and Fingerprint Images 

In the case of iris, the performance of the proposed tech- 

nique was tested on a subset of the MBGC database containing 

NIR-iris videos. The left iris videos of 110 subjects were used in 

the experiments. Five frames were manually selected from each 

of these videos. Every frame was manually segmented and nor- 

malized to separate the iris region from the eye image. An open 

source Matlab implementation [28] based on Daugman’s ap- 

proach [29] was used to encode and match the normalized irides. 

There were five iris codes per subject: one of these was used as 

a probe and the rest were added to the gallery. The probe iris 

codes were encrypted and reconstructed using the (2, 2) VCS. 

The experiment consisted of matching the probes against the 

gallery entries. The equal error rate (EER) was used to observe 

the matching performance of the original as well as the recon- 

structed probes. In both cases, the EER was the same ( 6.3%). 

Next, the possibility of exposing the identity by using the sheet 

images as probes and the original iris codes as gallery was in- 

vestigated. However, this resulted in an EER of 50% suggesting 

the difficulty in using individual sheets to reveal the original iris 

code. 

In the case of fingerprints, the performance of the proposed 

technique was tested on the NIST-4 fingerprint database2 con- 

taining inked fingerprints exhibiting large variations in quality. 

The database consists of the grayscale images of 2000 fingers 

with two impressions per finger. One of these impressions was 

used as a probe image and the other was added to the gallery. 

Since the proposed technique was devised for binary finger- 

print images, a threshold value was used to generate the binary 

image for each probe. Each binary image was then decomposed 

into two sheets using (2, 2) VCS. The sheets were superim- 

posed to get the target image, as shown in Fig. 1. The recon- 

structed as well as the original grayscale fingerprint probes were 

matched against the impressions in the gallery. Using the orig- 

inal fingerprint images as probes resulted in an EER of 8%.3 

Table I shows the result of using the reconstructed fingerprints as 

probes; the performance is reported as a function of the different 

threshold values used to binarize the original probe images. It is 

observed that a threshold of 180 results in an EER of 9.13%. 

These experiments suggest the possibility of decomposing and 

storing fingerprint images. 

B. Securing Private Face Images 

In the case of faces, the performance of the proposed tech- 

nique was tested on two different databases: the IMM and 

2http://www.nist.gov/data/WebGuide/SD_4/FingerprintDB_4.htm 

3No attempt was made to optimize the performance of the fingerprint matcher 

(VeriFinger SDK) on this dataset. 

http://www.nist.gov/data/WebGuide/SD_4/FingerprintDB_4.htm


  

 

 

TABLE I 
EQUAL ERROR RATES (%) AT DIFFERENT THRESHOLD 

VALUES      

 

 

Fig. 14. Images in the public datasets for both the (a) IMM and (b) XM2VTS 

databases. 

 
 

XM2VTS databases. These databases were used since the 

facial landmarks of individual images were annotated and 

available online. These annotations were necessary for the 

AAM scheme. The IMM Face Database [30] is an annotated 

database containing 6 face images each of 40 different subjects; 

3 of the frontal face images per subject were used in the experi- 

ments. Twenty-seven subjects were used to construct the private 

dataset and the remaining 13 were used as the public dataset. 

The XM2VTS frontal image database [31] consists of 8 frontal 

face images each of 295 subjects. One hundred ninety-two 

of these subjects were used to construct the private dataset 

and 91 subjects were used to construct the pubic dataset. The 

remaining subjects were excluded because several of their face 

images could not be processed by the commercial matcher. The 

composition of the public dataset is shown in Fig. 14. The AAM 

for each database was constructed using the face images (one 

per subject) from the public dataset. Fig. 15 shows examples of 

 

 
 

Fig. 15. Illustration of the proposed approach using images from the IMM data- 
base. 

 
 

TABLE II 
EQUAL ERROR RATES (%) WHEN USING DIFFERENT PUBLIC DATASETS 

WITH                             AND          

 

 
TABLE III 

EQUAL ERROR RATES (%) WHEN USING DIFFERENT PUBLIC DATASETS 

WITH                             AND          

 

 
 

the proposed approach when dataset D in Fig. 14(a) is used as 

the public dataset (here                             ). 

In the following experiments, the match scores were gener- 

ated using the Verilook SDK.4 In order to establish a baseline, 

the images in the private database were first matched against 

each other. This resulted in an EER of 6% for the IMM data- 

base and 2% for the XM2VTS database. 

1) Experiment 1: In this experiment, the impact of varying 

the number of images in the public dataset was investigated 

(datasets A, B, C, D, and E were used). The selection of hosts 

from the public dataset was based only on the transformation 

cost. The experiment consisted of matching the reconstructed 

private images against each other. EERs using the five public 

datasets are shown in Tables II and III. For the IMM database in 

Table II, it is clear that adding more images to the public dataset 

4Available: http://www.neurotechnology.com 

http://www.neurotechnology.com/


  
 

 

 

TABLE IV 
EQUAL ERROR RATES (%) WHEN DIFFERENT SELECTION CRITERIA ARE 

USED WITH                           AND          

 

 
 

TABLE V 
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TABLE VI 

EQUAL ERROR RATES (%) FOR DIFFERENT VALUES OF       AND                   . 

THE CHOICE OF      IS BASED ON [18] 
 

 

Fig. 16. Examples of reconstructed images for a subject with different values 
for the pixel expansion factor, . (a) ; (b) ; (c) ; 

(d)         . 

 
 

TABLE VII 
EQUAL ERROR RATES (%) FOR DIFFERENT VALUES OF       AND                   . 

THE CHOICE OF      IS BASED ON [18] 
 

 

initially improves the result. However, Dataset E results in the 

worst EER with respect to the other datasets. This drop in per- 

formance could be attributed to the inclusion of an individual 

with a beard in the public dataset: the absence of the appearance 

cost led to the selection of this host image even for those private 

face images that did not possess a beard, thereby affecting the 

reconstructed images. 

2) Experiment 2: In this experiment, the appearance cost was 

added to the criterion to select the host images and it is clear that 

this solves the problem encountered in Experiment 1. Dataset E 

is used in this experiment to select the hosts . Tables IV 

and V show the EERs of the reconstructed images when host 

images are selected using (a) the transformation cost    only 

and (b) the sum of the normalized transformation cost  and 

appearance cost . 

From both the above experiments it is also apparent that 

and results in better matching performance. 

3) Experiment 3: The purpose of this experiment was to de- 

termine if the encrypted face images upon reconstruction could 

be successfully matched against the original private face images. 

To evaluate this, the public Dataset A in Fig. 14, consisting of 

two fixed face images as hosts, was used. For each subject in 

the private dataset, one frontal face image was selected5 as the 

secret image to be encrypted by the two host face images. The 

VCS was invoked with contrast and a pixel expan- 

sion factor of . The reconstructed images were observed 

to match very well with the original images resulting in an EER 

of   0% in the case of the IMM database and 0.5% in the case 

of the XM2VTS database. On other hand, when either of the 

sheets were matched against the original images, the resultant 

EERs were greater than 45%. 

4) Experiment 4: The purpose of this experiment was to de- 

termine if the reconstructed face images could be successfully 

matched against those images in the private dataset that were 

not used in Experiment 3. To establish this, for each subject in 

the reconstructed dataset, frontal face images were chosen 

from the private database to assemble the gallery ( for 

IMM and for XM2VTS). The matching exercise con- 

sisted of comparing the reconstructed face images (from Ex- 

periment 1) against these gallery images (not used in Experi- 

ment 1). An EER of 2% was obtained for the IMM database. 

This performance, in this case, was even better than that of the 

original images  EER . The improvement could be due 

to the contrast enhancement of the private face images that oc- 

curs when increasing the dynamic range of the sheets resulting 

in improved quality of the reconstructed secret image. For the 

XM2VTS database, the obtained EER was 6% which is still 

comparable with the 2% obtained when matching the original 

images. 

5) Experiment 5: By using public Dataset D and 

and , sheet images were created with different contrast values: 

. Tables VI and VII report the 

EERs for these different values of . Here, the matching pro- 

cedure was the same as that of Experiment 4. For both databases, 

results in better performance than the other values. 

This improvement could be due to the contrast enhancement of 

the target images that occurs by increasing the dynamic range 

of the sheets and, consequently, the quality of the target image. 

6) Experiment 6: Next, the effect of pixel expansion on the 

final reconstructed image was tested. Fig. 16 shows that details 

of the sheets can appear on the final image for higher values 

of . The impact of on matching performance is shown in 

Table VIII. Here, the matching procedure was the same as that 

of Experiment 4. The host images were selected from Dataset D 

with . As shown in Fig. 16, the pixel expansion value affects 

the number of gray-levels in the reconstructed image, and 

this impacts the amount of detail appearing in it. Therefore, 

when      is 100, the visual details of the sheet images appear 

on the reconstructed image resulting in a drop in overall perfor- 

mance. 

7) Experiment 7: In this experiment, the possibility of ex- 

posing the identity of the secret image by using the sheet im- 

ages in the matching process is investigated. For this experi- 

ment, the sheet images for three different face samples of the 

5In the case of IMM database, the face sample exhibiting neutral expression 
and diffuse light was selected 



  

 

 

TABLE VIII 

EQUAL ERROR RATES FOR DIFFERENT VALUES OF    




Fig. 17. Examples from experiment 7 where (a), (d), and (g) are the first sheets 
and (b), (e), and (h) are the second sheets. (c), (f), and (i) are the corresponding 

reconstructed face images. 

 

 
same subject were first computed. Next, the reconstructed im- 

ages and the corresponding sheets were independently used in 

the matching process (i.e., sheet image 1 of all the private images 

were matched against each other; sheet image 2 of all the pri- 

vate images were matched against each other; reconstructed im- 

ages of all the private images were matched against each other). 

Fig. 17 shows that each subject in the private dataset has three re- 

constructed images. The public datasets used in this experiments 

were datasets A, F, and G. This experiment resulted in three 

EERs: the first was a result of using the reconstructed target im- 

ages for matching, while the second and the third EERs were a 

result of using the first sheet and second sheet, respectively, for 

matching. The results in Table IX confirm the difficulty of ex- 

posing the identity of the secret face image by using the sheets 

alone. 

Note that Experiment 7 involves automatic host selection 

from the public dataset based on the registration cost    de- 

scribed earlier. The positive impact of automatic host selection 

is seen in Fig. 17 where the selected host images (sheets) and 

the secret image are observed to have compatible expressions. 

8) Experiment 8: Different applications may employ dif- 

ferent public datasets for host image selection. Thus, the 

hosts selected for encrypting an individual’s face image can 

differ across applications. This experiment seeks to confirm 

that cross-matching of the stored sheets across applications 

(and inferring identities) will not be feasible. To demonstrate 

this, the possibility of using host images from different public 

databases for encrypting the same identity (i.e., face image) was 

investigated. The experiment was set up as follows. Two face 

samples of each of the 192 subjects in the XM2VTS private 

dataset were randomly selected. For an arbitrary subject, let  
and  denote the two face samples that were selected. Further, 

let  be encrypted into sheets and using a public 

TABLE IX 
EQUAL ERROR RATES (%) FOR EXPERIMENT 7. EXPERIMENTS CONFIRM 

THE DIFFICULTY OF USING INDIVIDUAL SHEET IMAGES TO 

REVEAL THE SECRET IMAGE 
 

 
dataset from the IMM database. Similarly, let  be encrypted 

into sheets   and     using a public dataset 

from the XM2VTS database. Let and  denote the recon- 

structed face images pertaining to   and , respectively. 

The following matching exercises were conducted: (a) 

against   ; (b)   against    ;   (c) 

against  ; (d)  against    ; (e)  against 

. The public datasets used in this experiment was the same 

as Experiment 7 (i.e., Datasets A, F, and G). Table X shows 

the EERs for these matching experiments and it is clear that it 

is difficult to perform cross-matching across different applica- 

tions. However, when the corresponding reconstructed images 

( and   ) are compared, the resulting EER 

suggests the possibility of successful matching. 

 

VI. CONCLUSION AND DISCUSSION 

This paper explored the possibility of using visual cryp- 

tography for imparting privacy to biometric templates. In the 

case of fingerprints and iris, the templates are decomposed 

into two noise-like images using (2, 2) VCS, and since the 

spatial arrangement of the pixels in these images varies from 

block to block, it is impossible to recover the original template 

without accessing both the shares. The XOR operator is used 

to superimpose the two noisy images and fully recover the 

original template. In addition, the contribution of this paper 

includes a methodology to protect the privacy of a face data- 

base by decomposing an input private face image into two 

independent sheet images such that the private face image can 



  
 

 

TABLE X 

EQUAL ERROR RATES (%) FOR EXPERIMENT 8 
 

 
be reconstructed only when both sheets are simultaneously 

available. The proposed algorithm selects the host images that 

are most likely to be compatible with the secret image based 

on geometry and appearance. GEVCS is then used to encrypt 

the private image in the selected host images. It is observed 

that the reconstructed images are similar to the original private 

image. The study on the effect of various parameters ( and 

) on the matching performance suggests that there is indeed 

a relation between the quality of the reconstructed secret and 

these parameters. Finally, experimental results demonstrate the 

difficulty of exposing the identity of the secret image by using 

only one of the sheets; further individual sheets cannot be used 

to perform cross-matching between different applications. 

Increasing the pixel expansion factor can lead to an in- 

crease in the storage requirements for the sheets. In the recent 

literature there have been some efforts to develop a VCS without 

pixel expansion [32], [33]. But no such scheme currently exists 

for generating sheets that are not random noisy images. Thus, 

more work is necessary to handle this problem.. 
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