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Abstract. In this study, we consider the multiple traveling salesmen
problem (mTSP) with the min-max objective of minimizing the longest
tour length. We begin by reviewing an existing integer programming (IP)
formulation of this problem. Then, we present several novel conjunctive
normal form (CNF) encodings and an approach based on modifying a
maximum satisfiability (MaxSAT) algorithm for the min-max mTSP.
The correctness and the space complexity of each encoding are analyzed.
In our experiments, we compare the performance of solving the TSP
benchmark instances using an existing encoding and our new encodings
comparing the results achieved using the proposed extended MaxSAT
solver to those achieved using the IP method. The results show that for
the same problem, the new encodings significantly reduce the number of
generated clauses over the existing CNF encoding. Compared to the IP
method, one of the proposals is more effective on relatively large-scale
problems, and it also has an obvious advantage over the IP method in
solving instances with a small ratio of the number of cities to the number
of salesmen.

Keywords: Boolean satisfiability - Min-max optimization - Multiple
traveling salesmen problem.

1 Introduction

As one of the classic problems in theoretical computer science, the traveling
salesman problem (T'SP) has also received much attention in operations research.
Moreover, the TSP has been reformulated to address various practical application
problems. The multiple TSP (mTSP) is a simple extension of TSP in which
more than one salesman is deployed concurrently to visit a set of interconnected
cities. All salesmen depart from and return to the same depot. Except for the
depot, each of the cities can only be visited exactly once by a single salesman. A
broader range of real-life problems can be modeled as the mTSP, including for
example, mission planning [5], workload balancing [20], printing press scheduling
[11], vehicle routing [12], and ride sharing [I6]. Regarding the objective to be
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optimized, there are two distinct directions, as follows: one that minimizes the
total distance traveled by all the salesmen (min-sum), and another that minimizes
the distance of the longest tour (min-maz). Generally speaking, if we consider
all tours as a vector, then the min-sum objective is to determine the minimal
Manhattan norm of the vector, while the min-max objective is to determine its
minimal Chebyshev norm. However, the min-sum objective conditionally results
in highly imbalanced solutions in which one salesman visits all or most of the
cities, if no restriction is imposed on the number of cities to be visited by each
salesman. Furthermore, as an emphasis on practicality, multi agent cooperation
does not aim to reduce costs, but rather to reduce the makespan to serve all the
clients. For this reason, we focus in this paper on the min-max mTSP.

1.1 Related Work

From the standpoint of computational complexity theory, the mTSP is strongly
N'P-hard as the TSP is a special case. In addition, for the min-max optimization
problem, some theorems related to its computational complexity have been proved
in the following literature. Yu [28] discussed the corresponding min-max version of
several classical discrete optimization problems including the minimum spanning
tree problem, the resource allocation problem, and the production control problem.
The strong NP-hardness of these problems is shown for an unbounded number of
scenarios. Ko and Lin [13] presented a number of optimization problems, such as
the min-max clique problem, the min-max three-dimensional matching problem,
and the min-max circuit problem, and showed that they are complete for the
class I1%, the second level of the polynomial-time hierarchy. Aissi et al. [I] proved
that the min-max and min-max regret versions of the assignment problem are
strongly AP-hard when the number of scenarios is not bounded by a constant.

Because the min-max mTSP is much more difficult to solve than the min-sum
version, only very small-scale instances of the min-max mTSP can be solved
optimally within an appropriate time limit. One of the earliest exact algorithms
for the min-max mTSP, discussed by Francga et al. [§], was based on the Tabu
search heuristic with the dichotomous and downward search schemes. Despite the
important academic and engineering value of the min-max mTSP, the research
on it is relatively limited and different heuristic approaches have been developed
in the literature. Frederickson et al. [9] proposed some approximation algorithms,
which included k-near insert, k-near neighbor, and k-split tour for the min-max
mTSP. Somhom et al. [23] and Modares et al. [I§] developed a self-organizing
neural network approach for the min-max mTSP, which introduced a competition
method to decide whether a city should be included in a tour. Soylu [24] presented
a general variable neighborhood search algorithm. Necula et al. [I9] and Venkatesh
and Singh [27] respectively proposed various swarm intelligence algorithms, such
as the ant colony, the artificial bee colony, and the invasive weed optimizations for
the min-max mTSP. More recently, Vandermeulen et al. [26] formulated combined
task assignment and routing problems as the minimum Hamiltonian partition
problem, which is equivalent to the min-max mTSP, and developed a heuristic
algorithm for solving it.
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1.2 Contributions

In Section[3] we propose three CNF encodings for the min-max mTSP in reference
to the characteristics of the IP formulation. These three encodings are all to
prevent subtours occurring in the solution of the problem; two are based on
vertex potential constraints, and the third is based on reachability constraints.
For each proposed encoding, we provide a complete proof of its correctness
and space complexity. In Section [] instead of a reduction from the min-max
optimization problem to the general weighted partial MaxSAT with an excessive
memory requirement, we propose an extended MaxSAT algorithm to solve the
encoded min-max mTSP. In Section [5] we compare our proposed CNF encodings
and existing naive encoding with an IP approach on the instances of the TSP
benchmark. Source code for our experiments is available[|

2 Preliminaries

The mTSP is defined on a directed graph G = (V, E), where V is the set of
vertices and F is the set of edges. The graph is associated with a distance matrix
D = (d;;) for each edge (i,7) € E. The matrix D is said to be symmetric when
dij =dj;, ¥ (i,j) € E and asymmetric otherwise.

2.1 IP Formulation for the Min-Max mTSP

Owing to the two-dimensional characteristics of edges, the min-sum mTSP is
typically formulated using an assignment-based double-index IP formulation,
while for the min-max mTSP, a general scheme is to add a third dimension in
order to distinguish clearly among the edges assigned to each salesman. Therefore,
we let x;;, be a binary variable that is equal to 1 if edge (¢, j) is selected in the
k-th salesman’s tour and 0 otherwise. We also define an integer variable u; (the
potential of vertex i) as the number of cities visited on a salesman’s path from
the depot to city ¢. Then, the min-max mTSP can be described as follows [19]:

min 6 (1)
sty myE =1, k=1,...,m (2

j=2

inmfl, k=1,....m (3

1=2

n m

szijk:_la ]:27 » 1, ’L#.] (4)

=1 k=1

SN i =1, i=2,...,n, i#j (5

j=1k=1

3 https://drive.google.com/file/d/1Rn-uTPBqoAnUmMMmbAX71AmyC_ixuetb/view?
usp=sharing
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n n

Zacijk:Za;jik, j=2,...,n, i#j, k=1,....m (6)

i=1 i=1

ui—uj+(n—m)~2xijk§n—m—l, 2<i#j<n (7)
k=1

Z dijzijr <0, E=1,....m (8)

(i,j)eE

zijk € {0,1}, V(i,)) € E, k=1,....,m

where the number of cities (including the depot) is n, the number of salesmen is
m with m < n. Constraint (resp., constraint ) guarantees that, for each
salesman k, the depot (i.e., vertex 1) is to be departed from (resp., returned to)
exactly once. Constraint (resp., constraint ) ensures that each non-depot
city is to be visited (resp., departed from) exactly once. Constraint @ enforces
that for each non-depot city, the salesman who enters and exits the same city
must be consistent. Constraint [2510] is based on the subtour elimination
constraint (SEC) proposed by Miller et al. [T7], referred to here as the MTZ-based
SEC, where the generated formulae and the required vertex potentials are O(n?).
This constraint is used to prevent subtours, which are degenerate tours that are
formed between non-depot cities and not connected to the depot. In addition,
this constraint ensures that each salesman is to visit at least one non-depot
city. Here n — m is the maximum number of vertices that can be visited by any
salesman. The potential of each vertex indicates the order of the corresponding
vertex in the tour. The objective function is to minimize the auxiliary variable
6 (# € R) indicating the upper bound of each salesman’s tour length, as shown

in inequality (8.

Definition 1. The min-maz optimization problem (MMOP) is defined generally
as follows:

min 0 s.t.C A 7\ (f(k,e) ge), (9)

k=1

where f(k,€) is the individual cost function for k (1 < k < m), € is a set of
other related variables and C is the set of remaining constraints. Specially, for the
min-max mTSP, f(k,e) = .z dexek, and C consists of constraints @)7@

eel

2.2 Maximum Satisfiability

A well-known Boolean satisfiability problem (SAT) was the first problem shown
to be N"P-complete [6]; this problem requires determining whether there exists a
truth assignment that satisfies a given Boolean formulaﬂ Typically, a Boolean

%A truth assignment is a function A : X — {0,1}, where X is a set of Boolean
variables and A is regarded as a conjunction of all elements in X.
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formula is expressed in conjunctive normal form (CNF), consisting of a conjunc-
tion (using the symbol A) of one or more clauses. A clause is a disjunction (using
the symbol V) of one or more literals, and a literal is an occurrence of a Boolean
variable or its negation (using the symbol —).

MaxSAT is an optimal version of SAT [I5]. In the weighted partial MaxSAT,
the problem instance is typically expressed as a set of hard and soft clauses,
where each soft clause has a bounded positive numerical weight that indicates
the cost of falsifying the soft clause. The problem is to find a model that satisfies
all the hard clauses and minimizes the total cost (i.e., maximizing the sum
of the weights of the satisfied soft clauses). Formally, we denote a MaxSAT
formula as F = H A (Cpy1,w1) Ao A (Crgm, W), where H is the set of hard
clauses consisting of A\!"_; C; and the remaining clauses (i.e., A/~ Cp4;) are soft.
Solving a MaxSAT instance F amounts to finding an assignment that satisfies H
and minimizes >, (w;=C), ;). Technically, we introduce the auxiliary Boolean
variable b; for each soft clause C,,4; with the implication of =b; — C,; where
1 < i < m, and such a b; is called the blocking variable [14], to ensure that F
can be solved through the resolution of a sequence of SAT instances associated
with the pseudo-Boolean (PB) constraints encoding [22] as follows:

Fo=HA (7\(Cn+i\/bi)) /\CPI\]IBF(iwibi <t). (10)
i=1 i=1

In Eq. , Fi is a CNF that is satisfiable if and only if F has an assignment A
whose cost (i.e., i (w;=Cpy;)) is less than ¢. If the optimal assignment of F
is A* and its minimal cost is t*, then the SAT problem F; for ¢ > t* is satisfiable,
while the problem for ¢ < t* is unsatisfiable. For SAT testing a sequence of F;, ¢
is initialized to Y ;- w; + 1, with the next ¢ depending on the current assignment
A, obtained from the previous testing. Whenever F; is unsatisfiable, t* is the
last tested and satisfiable ¢. Therefore, to search for the minimal cost for F is
to find the precise location of this transition from satisfiable to unsatisfiable
CNF formulae. MaxSAT solvers based on this approach are typically called
satisfiability-based solvers, the term used in the remainder of this paper.

Definition 2. Let X = {21, x9,...,2,} be a set of n Boolean variables. The
following naive CNF encodings correspond to three special cases of cardinality
constraints for X, as follows.

At most one constraint: AMO(X) = N \j_; (-2 V —zy).
At least one constraint: ALO(X) = \/I_, ;.
Exactly-one constraint: EO(X) = AMO(X) A ALO(X).

3 CNF Encodings for the MTZ-Based SEC

With the min-max mTSP in IP formulation, constraints 7 can be encoded
directly into CNF by using the exactly-one constraint. In constraint @, according
to the previous constraints, we know that both E?:l x5 and Z?:l Zji) are less
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than or equal to one. Therefore, the equation E 1 Tijk = Z:-L:l Z ik is equivalent
to its logical form /]| @k > \/Z:1 Zjik, which can also be represented simply as
CNF. For encoding C in Eq. @[), the remaining work is to convert the MTZ-based
SEC, viz., constraint , into a CNF formula.

3.1 Arithmetic Encoding

The most explicit method is to encode the arithmetic formula expressed as
constraint directly into CNF. For each vertex potential u;, 0 < u; < n — 2,
where 2 < i < n and n is the number of cities. Therefore, in total (n — 1)(n — 2)
Boolean variables are required corresponding to every possible value of all vertex
potentialsﬂ We denote these Boolean variables as p;;, where 2 < 4 < n and
1 <t <n—2. Then constraint can be rewritten in the following form:

n—2 m

Z(t(mtfuﬁ)JrZ( ﬂcmk)énfmfl

t=1 k=1

n—2 n—2 m 7’L2 _n (11)
o Do) + 3w + 3 (= mpaige) < T —m

t=1 t=1 k=1

where 2 < ¢ # j < n. Eq. is a canonical PB constraint that can be
encoded into a CNF formula. The arithmetic encoding is based on the idea of
transformation from the constraint satisfaction problem (CSP) to SAT.

3.2 Potential Encodings

In addition to encoding the arithmetic expression of constraint @ directly, we
can also achieve the logical conversion according to the specific meaning of the
MTZ-based SEC. For any two distinct vertex potentials, the difference between
their values must be less than or equal to n — m — 1. Moreover, Z;nzl Tijp = 1
if and only if vertex j is adjacent to vertex ¢ in the graph. Thus, in this case,
we have a pair of vertex potentials for which u; — u; > 1, indicating that vertex
J appears after vertex ¢ in the permutation. In brief, the MTZ-based SEC acts
to restrict the order of each pair of vertices in its tour if one such pair is the
successor of the other one. Obviously, a solution will contradict the exhaustive
MTZ-based SECs if it includes any subtour.

Guiding potential We use the properties of vertex potentials described above
to introduce a new type of Boolean variables v;;; to avoid the occurrence of
subtours, with 2 < i # j <n, (i,j) € E, and t (1 < ¢ <n — 2) indicating the
potential of the successor vertex j. For example, v;;; = 1 indicates that a salesman
will go directly to city 7 when departing from city ¢ which is the salesman’s

5 In the case of u; = 0, the corresponding Boolean variable can be omitted.
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t-th arrival non-depot city. Therefore, almost (n — 2)(n — 1)? additional Boolean
variables are required for the following encoding.

>3

(xzﬂc — \/ Vz]t) 2 S 7 7éj S n (12)

3 =
|l
[

2<i#j<n (13)

VS
X
et
1
<§
8
<.
=
N——

o~
Il
-
~
Il
-

/\(l’ljk—>.’L‘j1kV\/Ujl1), k=1,....m, I #]j (14)
Jj=2 =2
n—2 m . . .
o Vj ft#n—2 2<i#j<n,
Vijt — \/ Zjik V Viea Viteen, 117 S 7 . (15)
=1 P 0, otherwise. j#1

/\ AMO( L:J ij yijt). (16)

Eq. 1' (resp., Eq. 1) represents the implication from x;;; to \/?:_12 Vit
(resp., from vy to \/jL; zijk). Eqgs. (14) and (15) both guide z 15 or vj; in the
forward direction of each tour (i.e., the next vertex potential), with the former
corresponding to the potential value of 1 and the latter corresponding to the
remaining cases. Eq. imposes the restriction that each successor vertex j
can correspond only to at most one specific potential.

Theorem 1. The simultaneous Eqs. @7(@) ensure that there are no subtours
in the solution of the min-max mTSP.

Proof. Assume that an assignment A includes at least one subtour and that the set
of edge connections in such subtour is {Zaps, - - - s Tear b (-€0y A(Tabs Ao AZar) =
1), where 2 < a # b < n and 2 < ¢ # a < n. This subtour indicates that the
salesman k travels from non-depot city a to b and finally returns to a from
c. In accordance with Eq. , the projection relation from z;;; to \/;:12 Vijt
is constructed, to ensure that \/?:_12 viji can reflect the edge connections of
Z;jk- Since each route can be regarded as a series of head-to-tail edges with an
increasing potential to each tail vertex, we begin by constraining the connection
between the first arriving non-depot city and successor city through Eq. .
The subsequent edge connections are guided according to Eq. . An inevitable
contradiction will occur on the constraint of the last edge of the subtour. Here
we discuss the following two cases when A(veqt) = 1:

— Ift #n—2, then vear = Viey Taik Vies Val(t41)-
o If .A(\/k 1 Ta1k) = 1, then the definition of subtour is violated if A(zq1,) =

1; inconsistencies Wlth constraint @ arise otherwise.

. If AV, Vai(t+1)) = 1, then a contradiction with Eq. arises if
A(Vap(t+1)) = 1; otherwise, according to Eq. , this conflicts with
AV, zak) =1 (I # b) for the same reason as the previous subitem
whether k = k or not.



8 A. Zha et al.

— Otherwise, we have v q(,—2) — \/ZL:1 ZTa1k- This might contradict the defini-
tion of subtour or another constraint for the same reason as that mentioned
in the first subitem of the previous item.

Consequently, solutions of min-max mTSP without any subtour are guaranteed
by simultaneous Egs. 7. O

Theorem 2. Ejgs. @)7@) always produce a polynomial-sized CNF that in-
cludes the number of generated clauses of complexity O(n® +mn?), where m is
the number of salesmen and n is the number of cities.

Proof. The number of Clauses involved in Eq. is bounded above by m(n—1)2,

while that involved in Eq. (13)) is bounded by (n—2)(n—1)2. In Egs. . and .,
the number of clauses is bounded respectively, by m(n — 1) and (n — 2)(n — 1)?

Last, bounded by (n — )((” 2)2(” 1)) binary clauses are generated in Eq. 1.)
Therefore, Egs. 7 always produce a polynomial-sized CNF that includes
the number of generated clauses of complexity O(n® +mn?), in which the number
of binary clauses is O(n®). O

Blocking cycle An alternative interpretation of MTZ-based SEC is that con-
straints prevent cycles with respect to the set of vertices {2,...,n}. We still use
the aforementioned new type of Boolean variables v;j;, but we replace the vertex
potential guidance and some related constraints including Egs. f with
the following constraints to block cycles.

(12)

n—2 n
/\(\/Vm—>/\/\—\1/l”> t=1,....n—2, j#1i, l#i (17)
1=2 j=2 T=t [=2

Eq. (17) indicates that, for potentials 7 greater than or equal to the current
potential ¢, the head of any edge connection (i.e., departure vertex) i can not be
the tail of any edge connection (i.e., successor vertex).

Theorem 3. The simultaneous Eqs. (@ and guarantee that there are no
subtours in the solution of the min-max mTSP.

Proof. Assume that an assignment A includes at least one subtour and consider
that the set of edge connections in such a subtour is S = {Zapw, - - -, Tear } (€.,
A(Zapr A oo AZear) = 1), where 2 < a # b <n and 2 < ¢ # a < n. This subtour
indicates that the salesman k starts from non-depot city a to b and finally returns
to a from c. According to Eq. , A(\/?;l2 Vart A« ANy Vcat) = 1. Now focus
on A(Vapt, A ..o A l/cat‘SI) =1, where t; (resp., t|5|) is the minimal ¢ with respect
to A(\/Z:l2 Vapt) = 1 (resp., .A(\/?:_l2 Veat) = 1) and 1 <t < ... <tjgy <n—2
corresponding to the order of the assumed subtour’s edge connections. Further
according to Eq. 1) A(/\Z;f1 Ay “Viar) = 1. From Veats, € Uf;fl Ui, Viars
it follows that A(=vcar, Sl) = 1, which conflicts with the previous derivation.
Therefore, solutions of min-max mTSP without any subtour can be ensured by

Egs. and . ]
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Theorem 4. FEgs. @ and always produce a polynomial-sized CNF that
includes the number of generated clauses of complezity O(n® +mn?), where m is
the number of salesmen and n is the number of cities.

Proof. The number of clauses required in Eq. is bounded above by m(n—1)2.

In Eq. , the number of clauses is bounded by W and all these clauses
are binary clauses. Therefore, Egs. and also produce a polynomial-sized
CNF that includes the number of generated clauses of complexity O(n® + mn?),
in which the number of binary clauses is of complexity O(n?). O

3.3 Relative Encoding

To prevent cycles other than the main tour for each salesman, we also propose
an encoding method based on reachability constraints. In this encoding, we can
compact the variables of edge connections further from triple-index to double-
index. In contrast to the previous z;;; shown in Fig. [1] (a), we define a new type
of Boolean variables l;; depicted in Fig. [1| (b). For the axes of ¢ and j, instead of
using the first index (highlighted red in Fig. [1| (a)) to represent the depot city
in x;;r, we use the first m indices (highlighted red in Fig. [I| (b)) to represent m
duplications of the depot city sequentially for every salesmen in [;;.

#city = n; #salesman = m | 33 i—
12.../,7Lt4[5. ,l_.
1 2 3 . . . n
1
2
3
n

(b)

Fig. 1. Boolean variables of edge connections: (a) Each cell of a matrix indicates the
variable z;;, with the specific ¢ (index of rows), j (index of columns), and & (index of
salesmen), where for both rows and columns, index 1 corresponds to the depot city. (b)
Each cell of the matrix indicates the variable [;; with the specific ¢ (index of rows) and j
(index of columns), where for both rows and columns, indices from 1 to m, respectively,
correspond to the depot city for each salesman k. The cells marked by X indicate that
the corresponding variables can be omitted.

In addition, we also introduce another new type of Boolean variable r;;
which indicates whether vertex j can be reached via vertex ¢, where 1 < i <mn,
m+1<j<m+n-—1,and i # j. In other words, l;; = 1 if and only if vertex
j appears immediately after vertex ¢ in any salesman’s tour; while r;; = 1 if
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and only if vertex ¢ appears before vertex j in any salesman’s tour. This idea,
based on the relative positions of vertices in the permutation, was first proposed
in Prestwich [21] and was devoted to a CNF encoding of the Hamiltonian path
problem. Therefore, O(m? +n? +mn) Boolean variables are required for encoding
C in Eq. (@, as follows.

m+n—1
/\EO( U ), (18)
j=m+1
m m+n—1
AEo( U 1), (19)
j=1 i=m+1
m—+n—1 m+n—1
A Eo( U &), j#i o (20)
i=m+1 j=1
m4+n—1 m+n—1
A Eo( U ), i#j (1)
j=m+1 =1

m+n—1m+n—1
/\ /\ lij = i), JFi (22)
=1 j=m+1

m4+n—1m+n—1m+n—1
/\ /\ /\ (rij ATje = Tik), condition set (23)
=1 j=m+1 k=m+1

m4+n—1m+n—1

A N Crigvor). (24)

i=m+1 j=i+1

Eq. (resp., Eq. ) indicates that for each salesman, there exists exactly
one departure from (resp., return to) the depot city to (resp., from) another city.
Eq. (resp., Eq. ) specifies that each non-depot city can be departed from
(resp., visited) exactly once. Eq. shows the implication from [;; to r;;. The
transitive law of reachability variables is given by Eq. , where the condition
set includes that k # j # i and among the three indices i, j, and k, at most one
of them is less than or equal to m (i.e., indicating the depot city). Last but not
least, Eq. is an acyclic constraint.

Because this encoding does not include an equation that corresponds to
constraint @, the consistency of a salesman who enters and exits the same
city can be restricted only by reachability constraints. However, the Boolean
variables 7;; range over m 4+ 1 < j < m + n — 1. Consequently, the last edge
connection of each salesman’s tour that returns to the depot might not be able
to maintain this consistency. For example, we might obtain a solution in which
A(lwa Nlap N ... New) = 1, indicating that the tour originates from salesman
k’s depot to city a, then goes to the next cities b, ..., ¢, and finally returns to
the depot of salesman r’. Here I, is the last edge connection in this tour. Such
inconsistency does not affect the optimization results, since they have an identical
distance cost (i.e., dex = dew/)-
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Theorem 5. The simultaneous Eqs. @f guarantee that except for the edge
connection that returns the depot for each salesman, the edge connections are a
partial solution of the min-max mTSP without any subtour.

Proof. Assume that an assignment A includes at least one subtour, consider that
the set of edge connections in such subtour is {l4p, . . ., lcq }, and suppose that they
are both dominated by the salesman x (i.e., A(lgp A.. . Aleag ATra Ao ATke) = 1),
where m+1<a#b<m+n—1landm+1<c#a<m+n—1. According
to Eq. , we have A(rqp A -+ Areq) = 1. Then according to Eq. (23)), we can
obtain A(r..) = 1, and this contradicts Eq. . O

Lemma 1. Ejgs. (@)7 ensure that all reachability variables r;; can be ex-
cluded from decision variables in the entire inference process of solving the
min-maz mTSP.

Proof. In Theorem @ every reachability literal ;; or —r;; involved in its proof are
evaluated to 1 by unit propagations according to Eqs. 7. Therefore, we
can consider all r;; as the support variables used to restrict the solution without
any subtour and declare them to be non-decision variables. O

Theorem 6. Ejgs. (@7 always produce a polynomial-sized CNF' that in-
cludes a number of generated clauses of complexity O(n® + mn?), where m is the
number of salesmen and n is the number of cities.

4 An Extended MaxSAT Algorithm

To solve the MMOP shown in Eq. @D, we began by transforming it successfully
into general MaxSAT. However, the reduction method suffers from execution
slow down or even memory-out caused by the huge size of the encoded formula,
which introduces too many clauses with auxiliary variables owing to the totalizer
(TO) encoding [2I3]. This section proposes another approach to solving the
MMOP. Unlike the reduction method, this approach describes the MMOP as
a problem that slightly extends the DIMACS format of the weighted partial
MaxSAT problem, and solves it using a corresponding extended algorithm.

4.1 Grouped Soft Clauses

As has been mentioned in Definition |1} for the min-max mTSP, f(k,e) (1 <
k < m) can be expressed as a linear adder, where f(k,e) = 0L, >0 (dij -

z;;1) for the potential encodings and f(k,e€) = Z?:{"_l S (dig e - lig) +
SomAnt Z;'Z:J:ll(dij -7k; - li;) for the relative encoding. Note that, due to the

difference between the directed graphs corresponding to the potential encodings
and the relative encoding (see Fig. , the distance matrix D = (d;;) for the
relative encoding is an extension of that for the potential encodings. However,
the standard MaxSAT formula (i.e., the DIMACS format) simply divides all con-
straints into two parts: hard clauses and soft clauses, with no further subdivisions
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for soft clauses. To translate a MMOP into an extended MaxSAT problem, we

formulate the modified MaxSAT formulae respectively for the potential encodings
and for the relative encoding as follows:

]:(/potential) =HA /\ /\ /\(_\33ijk,dz’j7k),

k=1i=1j=1
m m+4n—1 m m+n—1

Flrelative) = H A /\ /\ (/\ —ri Vol dig k) \ (g Vﬁlz‘jvdimk))-
1= j=m-+1

(25)

Each grouped soft clause can be regarded as a triple (—I, d;;, k) indicating that
the constraint —I" corresponds to the weight d;; and is labeled as the k-th group
of soft clauses. This modification allows us to distinguish between extended soft
clauses in accordance with their respective groups.

4.2 Multiple PB Constraints for f(k,e) < 6

To solve the modified MaxSAT formulae F' in Eq. 7 we encode it into a
series of SAT instances referring to Eq. by simultaneously using multiple
PB constraints encoding as follows:

{otentia = H A\ N\ (e V bije) A /\ CNF (Z (dij - biji) < t)
k=1i=1j=1 = =1 j=1
=HA /\ CNF(ZZ i i) <t),
i=1 j=1

m m+n—1 m m+n—1

lretative) = HA N\ ( N\ Grei V=l Vbge) N\ (e Vi v bz‘jk))/\

k=1 =1 j=1 j=m+1
m4+n—1m+n—1

Z\CNF(Z Z dij - bije) < t)

m m+n—1 m m+n—1
=HA [\ CNF < > (Z i - i +_Z (dij’rkj'lij))<t
k=1 =1 j=1 Jj=m+1

(26)

Theorem 7. Whether for the potential encodings or the relative encoding, in
Eq. (@, F| is a CONF that is satisfiable if and only if F' (in Eq. ) has a
valid assignment whose costs for every group (i.e., Yk f(k,€)) are less than t at
the same time.

Proof. Let’s consider that for the potential encodings, the auxiliary variables
I' — x;j%; while for the relative encoding, I" — (74 Al;;) if 1 < j < m and
I' — (rg; Al;j) otherwise.

).
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Assume that there exists an assignment A satisfying F;. For any variable b;
included in soft clauses, if A(b;;;) = 1, then for F’, there exists an assignment
A’ consistent with A such that A’(I") € {0,1}. In this case, whether A’(I") is 0
or 1, 3,3 (dij - I') < t. If A(bsji;) = 0, then for F', there exists an assignment
A’ consistent with A such that A’(I") = 0.

Assume that there exists an assignment A satisfying F’. For any variable I"
included in soft clauses, if A(I") = 1, then for F{, there exists an assignment A’
consistent with A such that A'(I") = 1, implying A’(b;;x) = 1. If A(I") =0, then
for F/, there exists an assignment A’ consistent with A such that A’(b;;x) € {0, 1},
subsuming A’(b;;x) = 0, with the result that >, >, (di; - bij) < t. O

Therefore, according to Theorem [7] we can know definitively that the solution
of the extended MaxSAT formula F’ is equivalent to the solution of the original
MMOP in Eq. ().

5 Implementation and Evaluation

We evaluated the existing arithmetic encoding, the proposed encodings, and the
IP method experimentally on an Intel Core i7-6850K, 3.6 GHz processor with
32 GB RAM running Ubuntu 18.04. The arithmetic encoding is implemented
by using the TO encoding of PB constraints. The proposed encodings are two
potential encodings based on guiding potential and blocking cycle, respectively,
and a relative encoding. In the experiments, we called these comparison methods
arithmetic, guide, acyclic, and ip, respectively, for short.

Since there is no open benchmark for the min-max mTSP, we selected several
benchmark instances of different sizes from TSPLIBE For each selected instance,
we specified different numbers of salesmen and generated their corresponding
problem instances through implemented encodings and IP formulations. We
used a state-of-the-art IP optimizer—CPLEX [7], version 12.7.1, and an extended
MaxSAT solver by modifying QMAXSAT [29] to solve all generated problem
instances. For further performance comparison, we also introduced a heuristic
to the extended MaxSAT solver. The heuristic is to average naively the number
of cities assigned to each salesman, and it can be thought of as pre-processing,
which is only enabled when solving the initial solution. Each generated problem
instance will be solved by the corresponding solver within a one-hour time limit.

We selected small-scale instances and compared their runtimes using each
method, as shown in Table[I] In contrast, for those instances where the optimal
solution cannot be obtained within 3,600 CPU seconds, we compared their final
optimized values under various methods, as shown in Table 2| For Tables |1| and
the notation “insn_m” in the first column indicates that the number of cites is
n and the number of salesmen is m, where “insn” corresponds to the name of the
original benchmark instance. Each cell corresponds to its instance (its row) and
its encoding/formulation (its column). Except for the cells in the last column,
each of cell contains three values, unless an exception occurs such as a time-out

5 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
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Table 1. Comparison of runtimes using each method
Instance | arithmetic | guide | acyclic | relative | ip

burmal4 2 |2.5E¢ 353s (342s) [1.5E® 3555 (220s)|1.6E°

burmald_3|2.8E% 46s

ulysses16.3|6.5E° 1866 (1853s)|3.3E° 3965 (392s) |3.4E°

(44's)

1.6E® 13s (13s) |[1.7TE®
ulysses16.2|6.0E® 1509 (12265s)[3.1E° 270s (245s) |3.2E°

334s (249s) |5.4E3 t.0.0 (t.0.1)] 18s

22s  (25s) |6.4E% t.0.} (t.0.2)| 5s
131s (1175s)|8.1E% t.0.2 (t.0.2)|910s

129s (1365s) [9.4E® t.0.' (t.0.})[t.0."

(1) t.o.t

reached the optimum value yet.

Table 2. Comparison of optimized values using various methods

: time-out but has reached the optimum value already; (2) t.0.2: time-out and has not

Instance arithmetic | guide | acyclic | relative ip
gr24._2 7.6E7 1098 (1008) |2.8E° 862  (824) [2.9E® 840 (831) [2.7TE* 2609 (1797) 770
gr24_3 8.1ET 909 (861) |2.8ES 767  (787) [2.9E® 766 (749) [3.0E* 814 (827) 648
gr24_4 8.6ET 757 (803) |2.9E° 660 (668) [3.0E® 674 (676) [3.3E* 750 (744) 629
gr24_5 9.1E7 697 (670) |3.0E® 642  (640) |3.1E® 632 (629) |3.6E* 676 (673) 594
bays29_2 [2.5E® n.a.y. (3186*)|7.6E® 1495 (1453) |7.8E® 1597 (1436) |4.8E* 2393 (2903) 1122
bays29.4 [2.7E® 1543 (1614*)|7.8E® 1018 (1041) [8.1E® 1008 (975) |5.7E* 1671 (1174) 762
bays29.6  [3.0E® 1114 (1116) |8.3E® 807  (821) [8.5E® 795 (793) |6.6E* 948 (887) 705
bays29.8 [3.2E® 958 (845) |8.9E® 731  (714) |9.1E® 697 (702) |7.6E* 779 (766) 684
dantzigd2_2 - 5.3E7 2247* (549%)|5.4E7 1702* (549*) |1.5E° 856 (624%) 482
dantzigd2_4 - 5.4E7 1438 (487*)|5.5E7 614 (487")|1.7TE® 568 (488™) 473
dantzigd2_6 - 55E7 769 (429%)|5.6E7 479 (429%)|1.8E® 490 (471) 395
dantzigd2_8 - 5.7E7 506 (391%)|5.8E7 435 (391%)|2.0E° 427 (440) 373
berlin52_3 - 1.6E® n.ay. (8706*)|1.6E® n.a.y. (8706*)|2.9E° 6719  (7974) 3754
berlin52_6 - 1.6E® 6879 (5379) |1.7TE® 7359 (5418")|3.4E° 4758  (4721) 3265
berlin52_9 - 1.7E® 18864* (3949) |1.7E® 3842 (3956%)|3.8E° 3915 (3967) 2628
berlin52_12 - 1.8E% 4795 (3828) |1.8E® 3812 (3184) |4.3E° 2936 (3242) 2668
€il76_4 - - - 9.3E° 438 (514) 333
€il76._8 - - - 1.1ES 345 (348) 204
€il76.12 - - - 1.2E5 255 (290) 210
€il76_16 - - - 1.3E% 226 (229) 245
rat99._5 - - - 2.1E° 1864  (1182*) | 1004
rat99.10 - - - 2.3E% 1005 (568) 912
rat99_15 - - - 2.6E° 862 (621*) 773
rat99_20 - - - 2.9E5 826 (527*) | n.a.y.
bier127_6 - - - 4.4E% 139764 (128779*)| 63801
bier127_12 - - - 4.9E% 98107 (71474%) | n.a.y.
bier127_18 - - - 5.5E% 75242 (50742%) | n.a.y.
bier127.24 - - - 6.0E° 70310 (48294") | n.a.y.
pr152.8 - - - 7.7E°® 953386* (106741%)[105874*
prl52.16 - - - 8.7ES 152925 (69218) | n.a.y.
pri52.24 - - - 9.8E% 129144 (50343%) | n.a.y.
pr152.32 - - - 1.1E7 211209* (52308*) | n.a.y.
tsp225_11 - - - 2.5E7 1068331 (314578%)| n.a.y.
tsp225.22/ 2.8E7

,33/,44 - - - /3.1E7/3‘5E7 m.o. n.a.y.

(1) m.o.: memory-out; (2) n.a.y.: no answer yet; (3) value™: this value is the initial solution and it
is not updated until the end of the limit time.

or memory-out issue. The value on the left is the number of generated clauses,
the middle value is performed by the extended MaxSAT solver, and the value on
the right surrounded by round brackets is performed by the extended MaxSAT
solver with heuristic pre-processing. For the last column, each cell shows the
value performed by CPLEX. In Table [2] the cell marked by - indicates that the
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Table 3. The expansion comparison of optimized vaules for instance eil76

eil76 ||-17|-18]-19|-20| 21|-22| 23| 24| 25| _26|-27| 28| 29| 30| 31| 32| 33| 34| 35| 36| 37| 38

196
246

156
356

151
170

relative

ip 211|247(190|215|335[175|269 155(225|179|265|310(223 169(210|147|141|162|179

221‘214‘206‘184‘2()1‘201‘186 187‘182‘168‘184‘170‘173 164‘138‘152‘168‘171‘176

size of its instance is too large, resulting in a file generated by its encoding being
much larger than 10 GB. Thus, it was excluded from our experiment. In our
experimental results data, we marked the best performance of all CNF encodings
in bold, and if it is better than the ip, it will be highlighted in red.

As the results from Tables [I] and [2| show, the number of clauses generated by
various encoding methods is consistent with the theorems we have provided. For
the same instance, the number of clauses generated by arithmetic is much larger
than that of guide or acyclic, while those of guide and acyclic are approximately
the same but also much larger than those of relative. For relatively small-scale
instances, both in runtime and optimized value comparisons, acyclic is better than
the other encoding methods, while in comparisons of optimized value, there is a
disadvantage with ip. However, we found that as the scale of the problem became
larger, the performance of relative gradually became better, even surpassing that
of ip especially on larger instances where other encoding methods are difficult
to handle. For larger instances, the effect of heuristic pre-processing becomes
more apparent; even the obtained initial solution is not updated until the end,
while ip has no initial solution. Such instances require a runtime far exceeding the
provided limit time for better evaluation. The results also show that heuristics
are essential for solving the min-max mTSP problem. In addition, we noticed that
the smaller ratio of the number of cities to the number of salesmen, the smaller
the gap between the SAT-based methods and ip. Consequently, we conducted an
expanded experiment to increase the number of salesmen of benchmark instance
€il76, shown in Table [3| This experiment compared the performance of the
extended MaxSAT solver without heuristic with ip. We can see from Table
that, for the instances with a small ratio of the number of cities to the number of
salesmen, relative outperformed ip in the overall comparison of optimized values.

6 Conclusion

In this paper, we proposed three CNF encodings for the min-max mTSP. These
three encodings are all intended to prevent subtours occurring in the solution of
the problem; two of them are based on the vertex potentials, and the third is
based on the reachabilities. We also proposed an extended MaxSAT algorithm
with an optional heuristic pre-processing to solve the encoded min-max mTSP.
In terms of the space complexity of the generated problem, our new encodings
are significantly improved over the existing encoding. Furthermore, although the
proposed approaches are not as effective as the IP method in the performance of
small-scale problems, one of them outperforms the IP method for the instances
for which the ratio of the number of cities to the number of salesmen is small.
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