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Abstract. Hilbert’s tenth problem, posed in 1900 by David Hilbert,
asks for a general algorithm to determine the solvability of any given
Diophantine equation. In 1970, Yuri Matiyasevich proved the DPRM
theorem which implies such an algorithm cannot exist. This paper will
outline our attempt to formally state the DPRM theorem and verify
Matiyasevich’s proof using the proof assistant Isabelle/HOL.
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1 Background

In October 2017, Yuri Matiyasevich visited Jacobs University in Bremen, Germany.
During his short stay, he gave a few talks on Hilbert’s tenth problem and his
negative proof of the problem. He was interested in a formal verification of the
proof. And as a result of his visit, we as a small group of undergraduate students
developed into the Hilbert—10 research group at Jacobs University Bremen under
the supervision of Yuri Matiyasevich and Prof. Dierk Schleicher.

2 Hilbert’s Tenth Problem and the DPRM Theorem

David Hilbert formulated the problem as follows: “Given a Diophantine equation
with any number of unknown quantities and with rational integral numerical
coefficients: To devise a process according to which it can be determined in a
finite number of operations whether the equation is solvable in rational integers.’

Here, “rational integers” refer to integers in the normal sense and “Diophantine’
can be simply replaced by “polynomial” since the other conditions in the statement
already make it so. Further, “process” comes close to our modern understanding
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of an “algorithm.” And before anything else, we should have a formal definition
of an algorithm. One of the conventional ways of doing this, is via a Turing
machine. An algorithm, then, can be described as a state table the encodes the
transitions and start and halting conditions for a Turing machine that executes it.
Matiyasevich’s proof presented in [1] uses register machines, which are equivalent
to Turing machines.

In 1948, Martin Davis conjectured that every recursively enumerable set is
Diophantine. We first define a few things to understand this equivalence.

Definition 1 (Recursively enumerable set). A recursively enumerable set
is a set A such that there exists an algorithm that halts at exactly the members
of A. In the case of register machines, it is equivalent to say that A is accepted
by some register machine.

A related notion is that of a recursive or computable set. We call a set recursive
or computable if there exists an algorithm that terminates (in finite time) only
on inputs form this set. One then calls a set S computable if and only if there is
a (total) computable function f(x) such that
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The notion of a computable function is informal — it is just a function whose
value can be obtained using an “effective procedure”. However, one can formalize
this notion using other equivalent modes of computations like register machines
or Turing machines.

Definition 2 (Diophantine equation). A Diophantine equation is a polyno-
mial equation with integer coefficients and unknowns.

Note that integer coefficients and unknowns can be further reduced to natural
numbers*. Consequently, this project is only concerned with natural numbers. If
not explicitly stated otherwise, all variables, parameters and coefficients will be
non-negative.

Definition 3 (Diophantine set). A Diophantine set is a subset A of N* for
some i such that there exists j and a Diophantine equation D(x,y) = 0 with
r € N', y € NV such that Va € A, 3b € N/, P(a,b) = 0 only for a € A.

Furthermore, a Diophantine equation can be generalised by including expo-
nentiation, i.e. the exponents are allowed to be unknowns. instance, z¥+*" =0
is a valid exponential Diophantine equation. Consequently, one can define expo-
nential Diophantine sets using an exponential Diophantine equation. Note that
subtraction is not allowed in the exponent in order to make sure the equation
always has an integer value.

4 As a result of Lagrange’s theorem to express any natural number as the sum of four
squares, for details refer to Section 1.2.1 of [1].



If a set is Diophantine, then we can find a Diophantine equation to “encode”
that set. The set of squares is a simple example: it can be encoded by the
equation x — y? = 0. Since relations (or functions) are also sets, we can use
Diophantine equations to encode certain relations. One of them is the exponential
relation Rexp: Va,b, ¢, (a,b,¢) € Rexp <= a = b°. One can show that if Reyp is
Diophantine, then exponential Diophantine sets are Diophantine [1].

Recursive, or computable, sets are a proper subset of recursively enumerable
sets®. Since Davis’s conjecture implies that there exists a Diophantine set that
is not computable, there can be no general algorithm to determine whether a
Diophantine equation solutions in the integers. In other words, Hilbert’s tenth
problem has a negative solution if Davis’s conjecture is true.

In 1950, Julia Robinson proved is there is a Diophantine set if there exists a
Diophantine set R C N? for which there is a function showing roughly ezponential
growth, then R, is Diophantine.

In a 1961 paper, Martin Davis, Hilary Putnam and Julia Robinson showed that
every recursively enumerable set is exponential Diophantine.[2] Hence, the only
step missing from proving Davis’s conjecture is to find a Diophantine function
that satisfies the Robinson predicates.

In 1970, Yuri Matiyasevich found the missing puzzle piece and thus proved
Davis’s conjecture, which is now usually known as the Davis-Putnam-Robinson-
Matiyasevich (DPRM) theorem.

Theorem 1 (DPRM). All recursively enumerable sets are Diophantine.

In [1], Matiyasevich uses a slightly different approach from the original proof
that makes it more suitable for formalisation.

3 Formalisation of Matiyasevich’s Proof of the DPRM
Theorem

The proof can be split into three broad parts: number-theoretical prerequisites,
showing that exponentiation is Diophantine, and finally showing that a register
machine can be simulated using exponential equations. These three parts corre-
spond respectively to chapters two, three, and four in [1] — the main paper we
follow for our formalisation.

Matiyasevich first shows that that exponentiation is Diophantine i.e. there
exists a suitable polynomial P with the property:

p=¢q¢ <= 3Jx1,x9,...,Tm: P(p,q,7,21,22,...,2,m)=0.

He next shows that the halting condition of a register machine can be written
as an exponential equation. Together, these two statements give us the required
result: All listable sets are Diophantine and, consequently, there does not exist a
general algorithm to determine whether a Diophantine equation has solutions in
the integers.

5 This follows from the halting problem. The construction of such a set can be done
from a set P = {P;} of all programs by {2°3" | program P; halts on input z}.



3.1 Number-theoretical prerequisites

To begin, note that intersections and unions of Diophantine sets of same dimension,
inequality, equality, divisibility, and modulo are all Diophantine. Further, also
the conjunction and disjunction operators are Diophantine. That is any of the
aforementioned operations can be expressed with a polynomial. Consider for
example the union of the two Diophantine sets A and B. Then,

a€ AUB <= Jx1, - ,xm: Pla,z1,...,2,)=0.

Also note that a set A is Diophantine if one can find a system of polynomial
equations

Pi(a,b) =0, i €{0,...,n}

that have solutions whenever a € A.

After having stated that these operators are Diophantine, we will now continue
with some prerequisites that will facilitate describing register machines later. It
is often convenient to work with the positional notation of a number a in some

base b with the digits ay, i.e.
a=> apb* (1)
k=0

where only finitely many a; are non-zero.
We implement this first as a data type that stores the base b as a natural
number and the digits a; as numbers in a list.

datatype pos = Pos nat "nat list"

We next show that this data type is consistent with the number it represents
by first checking if the k-th digits of both the data type a natural number are the
same and that a list of numbers in a given base represents the correct number

lemma pn_consistency:

fixes digits :: "nat list"
fixes base :: nat

assumes '"base > 1"
assumes "digits "= []"

assumes "pn_digit_smaller_than_base (Pos base digits)"
shows "(n = pnval (Pos base digits))
= ((Pos base (hl_clean_zeroes digits))
= (pnconvert n base))"
(is "7P = 7Q")

lemma pn_digit_equivalence:
fixes digits :: "nat list"
fixes base k :: nat
assumes "base > 1"
assumes "pn_digit_smaller_than_base (Pos base digits)"



= digit (pnval (Pos base digits)) base k)
(d = (digits'k))"
(is "7P = 7Q")

shows "(d

In the particular case when the base b = 2 we consider two important relations

— orthogonality and masking. We say that two numbers a and a are orthogonal
when

(a 1 b) <~ apbr = OVEk (2)

Using a orthogonal function that encodes this behaviour, it can be shown that

lemma 1m02_41_ortho_odd_binomial:
fixes a b :: nat
shows "(orthogonal a b) = (odd ((a + b) choose b))"
(is "?P = 7Q")

Similarly, we say that ¢ masks b whenever by < ¢ for all k. Using Kummer’s
theorem and the fact that Binomial coefficients are Diophantine, we can find a
Diophantine representation for the masking relation. This requires us to prove

lemma 1m02_43_masking:
fixes b ¢ :: nat
shows "(masks c¢c b) = (odd (c choose b))" (is "?7P = 7Q")

Finally, using these relations we can show that digit-by-digit multiplication
(a-b = c with ¢, = a-by) can be written as a generalised exponential Diophantine
equation by proving:

lemma 1m02_47_digit_mult:
fixes a b ¢ :: nat
shows "(c = (digit_binary_mult a b))
= ((masks a c)
& (masks b c)
& (orthogonal (a - ¢c) (b - ¢)))"

3.2 Exponentiation is Diophantine

The first major part of the proof relies on the fact that a second order re-
currence (similar to Fibonacci numbers) exhibits exponential growth and that
exponentiation can be made Diophantine 6

We first consider the sequence defined by

ap(0) = 0,a5(1) =1, ap(n + 2) = bap(n + 1) — ap(n).
and implement in Isabelle as

5 The fact that exponentiation is Diophantine effectively proves Julia Robinson’s
hypothesis.



fun alpha :: "nat => nat => int" where
"alpha b 0 = 0" |
"alpha b (Suc 0) = 1" |
"alphal\_n: "alpha b (Suc (Suc n)) = (int b) *
(alpha b (Suc n)) -
(alpha b n)"

Note that this sequence has several useful properties: it shows linear growth
for b = 2 and grows exponentially with b > 2; x = ap(m) and y = ap(m + 1) give
us solutions to the Pell equation 22 — bxy + y? = 1; and that it satisfies:

ap(B)|ap(m) <= E|m, ay(k)?|ap(m) <= kay(k)|m. (3)

Once all these components are in place one can show that the relation between
numbers a, b and ¢ given by the formula:

3<bAa= apc) (4)

is Diophantine by combining all the proprieties of the sequence a; into a system
of 15 equations with variables (a, b, ¢, s, 7, u, v, t, w) (for the actual system of
equations refer to [1]). The implication goes in both directions: the system has
solutions if relation (4) is satisfied (sufficiency) and, simultaneously, if Eq.4 is
satisfied then one can find numbers s, r, ¢, u, v, w satisfying all the equations in
the system (necessity).

We have found a Diophantine representation for something that grows expo-
nentially. From here there is a small step to a generalisation of the representation
for any exponential relation p = ¢".

p=q < Imb:p<mAqap(r)—ap(r—1)=p modm (5)

with m = bg—¢*—1, b = agra(r+1)+¢*+2. For the particular cases ¢ = 0, 7 = 0
and p=1; and ¢ =0, 0 < r and p = 0 can be treated separately and then added
to the final system of equations using the Diophantine operator conjunction.

The formalisation for this part of the proof is fairly straightforward and only
required stating and simply proving the lemmas listed in the paper. For instance
the main result (3.23)

Vb >2VEk > 0:ay(m)=0 (mod ay(k)) <= m =0 (mod k), (6)

of section 3.4 in [1], can be implemented using the previously defined function
alpha:

theorem divisibility_alpha:
fixes b k m :: nat
assumes "b > 2" and "k > 0"
shows "alpha b m mod alpha b k = 0 --> m mod k = 0"
(is "7P --> 7Q")

The beginning of the implemented proof has the following form:



proof
assume Q: "7Q"
define n where "n = m mod k"
from Q n_def have n0O: "n=0" by simp
from n0 have Abn: "alpha b n = 0" by simp
from Abn divisibility_lemmal assms(1l) assms(2) n_def
mult_eq_O_iff show "7P" by simp
next assume P: "7P"
[...]
qed

We make use of the predefined template: First, we assume Q and show that it
implies P and afterwards assume that Q holds to prove P. This is a very basic
and straight forward proof. In order to present a more sophisticated proof we
introduce our own data type. It corresponds to 2 x 2 matrices which are used
frequently in chapter 3.

datatype mat2 = mat (mat_11 : int) (mat_12 : int)
(mat_21 : int) (mat_22 : int)

The functions mat_11, mat_12, mat_21, mat_22 give us access to the indi-
vidual entries of our 2 x 2 matrices. Using these functions we can formulate a
lemma which has a more interesting proof than the previous one. It has no direct
correspondence in [1] but is a consequence of equation (3.38):

lemma congruence_Abm:

fixes bmn :: nat

assumes "b>2"

defines "v == alpha b (m+1) - alpha b (m-1)"

shows "mat_21 (mat_pow n (mat_pow 2 (A b m))) mod v
=0 mod v &

mat_22 (mat_pow n (mat_pow 2 (A b m))) mod v
= ((-1) ~ n) mod v"

(is "?P n & 7Q n")

The statement is composed of two sub-statements (abbreviated with 7P n
and ?7Q n) which are connected with a logical and. The two statements are put in
one lemma because the statements depend on each other: In the following proof
by induction we need both ?P n and?Q n to prove 7Q (Suc(n)). Furthermore,
for one step (Q4) there has to be made a case distinction on m because the case m
= 0 has to be treated separately.

proof (induct n)
case 0O
from mat2.exhaust have S1:
"mat_pow O (mat_pow 2 (A bm)) = mat 1 0 0 1" by simp
then show 7case by simp
next



case (Suc n)
(* introducing abbreviations for matrices *)
(* after that proof of P *)
from [...] have F1: "7P (Suc(n))" by metis
(* now proof of 7Q n, we use hypothesis on 7P n *)
from Suc.hyps have Q1: "mat_22 (mat_pow n Z) mod v
= (-1)"n mod v" by simp
[...]
(* now we need a a case distinction on mx)
consider (eq0) "m = 0" | (g0) "m>0" by blast
then have Q4: "h mod v = (-1) mod v"
proof cases
case eq0
from eq0 have S1: "A bm =mat 1 0 0 1" by simp
from eq0 v_def have S2: "v = 1" by simp
from S1 S2 show 7thesis by simp
next case g0
(* this case is more involved *)
[...]
from S5 S8 S9 show 7thesis by simp
qed
[...]
from [...] have F2: "?Q (Suc(n))" by simp
from F1 F2 show 7case by blast
qed

In the inductive step, 7Q (Suc(n)) and ?P (Suc(n)) are proved indepen-
dently and put together in a final step to finish the proof.

3.3 Simulation of register machines using equations

The second major part of the proof requires a mathematical description of register
machines; in particular, it describes a method that can be used to simulate a
register machine as a set of exponential equations.

The paper describes a register machine with an arbitrarily large number

of registers R1,R2, ..., Rn. The machine executes a program with instructions
labelled S1,...,Sm where each Sk can be of the type
ISk:RI++;Si
IISk: Rl — —;Si;Sj
ITI Sk : HALT

Each of these instructions respectively increase the value of Rl and move to St;
decrease the value of Rl when Rl > 0 and go to Si, else move to Sj; and HALT.

The proof in [1] describes a “protocol” to handle the data of the register
machine. This protocol can be viewed as three rectangular tables merged into
one. The tables respectively handle the state, register, and zero-indicator data.



Each table has ¢ columns where ¢ is the number of instructions the machine
executes before halting. The state table has m rows, one for each state, and the
register and zero-indicator tables have n rows. Hence, for the ¢-th iteration of the
machine sy, ; represents the k-th state and 7;; the [-th register. The zero-indicator
tables contains the “zero indicator” values z;; such that z;; = 0 whenever r;; =0
and one otherwise (See an example of a protocol chart in section 4.3 of [1]).

The register machine checks if a given value a belongs to a listable set and
halts if and only if this value is accepted. That for a to be accepted by the
machine there exists a sequence of state transitions such that

Smq=1NS814= . = 8m-1,4=0. (7)

In [3] Xu, Zhang und Urban describe an implementation of a Turing machine
in Isabelle. We use adapt their ideas to implement register machines for our
formalisation.

We first describe the state of the machine as its own data type where Add,
Sub and Halt respectively refer to the states transitions Rl + +, Rl — —, and Halt

datatype instruction =
Add register state |
Sub register state state |
Halt

Both the Add and Sub instructions refer to arbitrary register Rl, which is
meant to be the “index” of registers here. We call a list of all register values the
Tape of the register machine, inspired by the metaphor used while describing
Turing machines. The state are implemented in a similar fashion.

We call a column of the protocol the configuration of the register machine i.e,
the “snapshot” of all current register values and encode it in the configuration
data type. Since every unique state can be characterised by a specific instruction
and the state of register values at the given “time” (iteration) of the register
machine, we create a type synonym for the configuration as the 2-tuple:

type_synonym configuration = "(instruction * tape)"

The execution of the register machine is described by transitioning from one
configuration to the next. This requires us to first “fetch” the next instruction
from the program, given the register value:

fun fetch :: "program => instruction => nat => instruction" where
"fetch p (Add r next) val = p!next" |
"fetch p (Sub r next nextalt) val = p!(if val = 0
then nextalt
else next)" |
"fetch p Halt val = Halt"

and then updating the tape based on the new instruction:



fun update :: "tape => instruction => tape" where
"update t (Add r _) = list_update t r (t!r + 1)" |
"update t (Sub r _ _) = list_update t r
(if t'r = 0
then O
else tlr - 1)" |
"update t Halt = t"

Where the function 1ist_update changes the values of the registers. Combining
these, we finally describe one “step” of the register machine:

fun step :: "configuration => program => configuration"
where
"(step (s, t) p) = (let nexts = fetch p s
(pts)

(read t (p!s));
nextt = update t (p!s)
in (nexts, nextt))"

A natural next goal here is to use these functions to describe the actual
“protocol” for the register machine and prove subsequent lemmas regarding it.

In particular, once we have a description of the rows of the protocol —
values that give us the “history” of a particular state or register value over the
execution time of the machine — we can describe them using the positional
notation described earlier in Eq. 1. For each of the states, register values, and
zero indicators, we can define

o0 oo oo
t t t
Sk = E Sptb’ T = E r+b" oz = E 21,tb (8)
t=0 t=0 t=0

Here the base b is chosen such that it’s larger than any value that appears in the
protocol. For some appropriate ¢ and using masking relations (which were already
proven to be Diophantine) we can describe Eq.7 as a system of exponential
equations:

b=2T1 5, =07 (9)

The final value of s,, clearly depends on the register values r; and the zero
indicators z;. The converse is also true here, that is, given numbers s1, ..., Sy,
ZlyeeeyZn, T1,...,Tn and p,q, b, c that satisfy the above conditions, then the
program will stop after ¢ steps given a certain input a.

This equivalence shows that the register machine will terminate after ¢ steps if
and only if there exists a system of Diophantine equations that characterises the
listable set accepted by the machine! And since exponentiation is Diophantine,
every listable (recursively enumerable) set is indeed Diophantine!

4 Conclusion and Future Plans

When we started in October 2017, a computer verification of the entire DPRM
theorem had seemed like too ambitious of a project. However, in the six months



that have followed, we’ve made significant progress towards a full formalisation.
Most of the theorems in Chapter 3 ("Exponentiation is Diophantine" in [1]) have
been stated and proved, we’ve finished stating all the lemmas from Chapter 2
("Number theoretical prerequisites" in [1]), and finished the required formalisation
of a register machine in Isabelle (Chapter 4; "Simulation of register machines
using equations"). We expect to finish the formalisation by the end of May and
then refine things as required later.

At the time of writing, we weren’t able to find any formally verified proofs of
Hilbert’s problems. When finished, our attempt would be the first such verification.
One of the major outcomes of our work will be a complete computer verification of
the DPRM-theorem. In the process, we also plan to produce a proof of Kummer’s
theorem, and produce a formalisation of a register machine as described in [1].

In the larger mathematical context, we see our attempt as bringing the
methods of twenty-first century — formal verification — to one of the major
results from the last century. We also see our work as an ode to Hilbert’s problems
and to more than two decades worth of work that Martin Davis, Hilary Putnam,
Julia Robinson, and Yuri Matiyasevich put in to solve Hilbert’s tenth problem.
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