
EasyChair Preprint
№ 15776

Migraine Classification Using Machine Learning
and Deep Learning in Low-Resource Healthcare
Settings

Anithamol Ashokan, Ikram Ur Rehman and Parisa Saadati

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 29, 2025



Migraine Classification Using Machine 

Learning and Deep Learning in Low-Resource 

Healthcare Settings 
 

 

 

 

 

Abstract 

Migraine is a neurological condition that impairs quality of life, with diagnostic challenges, especially in 

resource-limited settings lacking specialised tools and expertise. While AI models for migraine classification have 

been explored in standard healthcare, limited research focuses on low-resource environments. To address this, 

we evaluate the efficacy of Machine Learning and Deep Learning models (SVM, KNN, DT, RF, and TabNet) for 

migraine classification, with a focus on computational efficiency and interpretability. Among the models, RF 

emerged as the best model, achieving 95.8% accuracy, precision, recall, and F1 score, while TabNet achieved 

slightly lower performance 91.1%, 91.8%, 91.1%, 90.7% respectively. RF demonstrated enhanced computational 

efficiency, with a training time of 0.9s and memory usage of 0.14 MB, compared to TabNet's 10.8s and higher 

memory usage. Furthermore, SHAP analysis supported RF’s interpretability, and we propose RF as a cost- 

effective, AI-driven diagnostic tool for migraine classification, improving access to healthcare in resource-limited 

regions. 
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1.0 Introduction 

Migraine, a complex and intense neurological condition, affect approximately 1 billion 

individuals worldwide (Pradeep et al., 2020), ranking as the second leading cause of disability 

according to the World Health Organisation. Though non-life-threatening, migraines severely 

impact work productivity, physical health, and emotional well-being (Khan et al., 2024). 

Triggered by factors like sensitivity to light, irregular sleep, and skipped meals, migraines can 

be challenging to diagnose accurately due to their symptomatic overlap with other headache 

types (Migraine Trust, n.d.). According to the study conducted by Ge and Chang (2023), 

migraine poses significant and persistent concerns especially in non-high-income East and 

Southeast Asia. Traditional diagnostic tools such as Magnetic Resonance Imaging, Computed 

Tomography, and Positron Emission Tomography scans are often employed to diagnose 

migraines, but these methods are costly and typically require access to highly skilled 

neurologists (Khan et al., 2024). This presents a significant barrier in low-resource settings 

where access to imaging facilities and neurology professionals is limited (Mortel et al., 2022). 

Moreover, in developing nations, where personal health insurance is often lacking, especially 

for the poorest populations, access to costly neuroimaging testing might be difficult. For 

example, almost 40% of people in Cameroon live under the poverty line and 96–98% lack 

financial support for medical bills (Mortel et al., 2022). Consequently, expenses out of pocket 

for CT imaging can adversely affect patients and their families financially. These circumstances 

emphasise the crucial need for early disease intervention to decrease the impact of chronic 

illnesses on patient’s lives and a country's socioeconomic conditions, especially in areas with 

limited access to neurologists. 

The rapid advancement of Artificial Intelligence (AI), particularly in Machine Learning (ML) 

and Deep Learning (DL), offers promising solutions for healthcare diagnostics by extracting 

patterns from complex clinical data (Rathore and Mannepalli, 2021). ML/DL models have been 

effectively used in disease classification, including patient clustering and diagnostic support 

(Torrente et al., 2024), which could aid in diagnosing migraine subtypes more affordably and 

efficiently. However, ML/DL model adoption in clinical settings has been limited by challenges 

in interpretability and the high computational demands of some models, which may be 

impractical in low-resource environments (Habehh and Gohel, 2021). Thus, developing 

computationally efficient and interpretable models is crucial (Rundel et al., 2024) for enabling 

broader use of AI-driven diagnostic tools in underserved regions. 



To the best of our knowledge, this study is the first to propose a computationally efficient and 

interpretable model for migraine classification specifically trained for low-resource healthcare 

settings, while assessing key performance metrics accuracy, precision, recall, F1 score, Area 

under the Receiver Operating Characteristic Curve (AUC-ROC) and Mathew’s correlation 

coefficient (MCC). In this research we compared the performance of ML models—Support 

Vector Machine (SVM), k-Nearest Neighbor (KNN), Decision Tree (DT), and Random Forest 

(RF) as well as the DL model TabNet. The models were evaluated on a secondary migraine 

dataset, with performance metrics assessed both prior to and following Hyper-Parameter 

Tuning (HPT) to identify the most effective approach for the classification of migraine subtype. 

In addition, computational efficiency was assessed based on training and prediction time, 

memory usage during these process, and overall size of the model. Interpretability, a key 

requirement for clinical adoption was addressed by analysing the effective model output 

through SHapley Additive exPlanations (SHAP) summary and waterfall plots, which highlight 

each feature’s contribution to predictions, helping healthcare professionals understand and trust 

the model decision. By focusing on performance, computational efficiency, and interpretability, 

we aim to establish an AI-driven diagnostic approach for migraine classification that is both 

practical and clinically acceptable, thereby reducing reliance on expensive diagnostics and 

facilitating early intervention in underserved areas. 

This paper is structured into five sections, beginning with the introduction following the 

abstract. The second section presents a literature review, examining existing studies relevant to 

our research and identifying their limitations. The third section outlines the methodology 

applied in this research, while the fourth section discusses the results and analysis. The fifth 

and final section offers the conclusion. 



2.0 Literature Review 

AI poses several noteworthy applications in headache diagnosis. A Computer-based Diagnostic 

Engine is one of the tools designed to diagnose migraine. The engine employs a rule set that is 

derived from the International Classification of Headache Disorder-3 criteria for primary 

headaches, in addition to evaluating secondary headaches and medication overuse headaches 

(Cowan et al., 2022). 

Chiang et al. (2024) proposed a novel natural language processing technique which was 

recently posted on GitHub to reliably assess headache frequency from free-text clinical notes. 

This technology attempts to help individuals determine the proper degree of treatment 

depending on their headache frequency, demonstrating another unique application of AI in 

headache management. 

Moreover, AI offers innovative methods for diagnosing and categorising migraines using a 

range of ML and DL algorithms. Many studies have been proposed ML/DL models that can be 

used for migraine diagnosis and classification. 

SVM is one of the commonly utilised algorithms in the studies, especially for classification 

problems. For instance, the study conducted by Hsiao et al. (2023) utilised SVM with different 

types of kernels and discovered that a median Gaussian kernel yielded the highest level of 

accuracy when distinguishing chronic migraines from other types of headaches with accuracy 

92.6%. SVM's adaptability, together with its efficacy in managing high-dimensional data, has 

made it a widely favoured option (Kazemi and Katibeh, 2018). 

Another efficient algorithm identified is the RF model and its variations, such as Extremely 

Randomised Trees, were extensively employed, especially in ensemble techniques aimed at 

enhancing classification accuracy. Sasaki et al. (2023) utilised these algorithms alongside 

additional methods such as XGBoost, showcasing their effectiveness in accurately identifying 

migraine headaches with accuracy noted 94.50%. ORHANBULUCU and LATİFOĞLU (2024) 

employed the Rotation Forest ensemble method to increase the resilience of the model by 

creating a variety of decision trees, resulting in an improvement in the overall accuracy of 

diagnosis by 95.14%. Utilising the EEG signal data Subasi, Ahmed and Alickovic (2018) 

showed that RF achieved the performance of 85.18% using flash simulation. 

Alternatively, DL models have had a substantial impact on studies, especially in dealing with 

intricate data like MRI and MEG scans. The study conducted by Khan et al. (2024) emphasised 



the effectiveness of Deep Neural Network (DNN) in accurately categorising seven types of 

migraines. The DNN attained an exceptional accuracy rate of 99.66% by utilising augmented 

tabular data. Moreover, the researchers Rahman Siddiquee et al. (2023) successfully employed 

the advanced deep learning model 3D ResNet-18 to accurately diagnose migraines and post- 

traumatic headaches. The model demonstrated its capability to analyse high-dimensional 

imaging data, achieving accuracies between 75% in differentiating migraineurs from healthy 

controls. 

Another noteworthy DL model is TabNet employed in research conducted by (S. N. Mudassir 

and R. M, 2024). Due to its capacity to capture intricate patterns in tabular data while 

preserving interpretability, authors were able to effectively capture complex linkages within 

the data, leading to enhanced diagnostic outcomes noted as 98%. 

Additionally, Artificial Neural Network (ANN) have been utilised in several studies to 

categorise different forms of headaches. Despite being less sophisticated than newer deep 

learning architectures, these models have demonstrated their effectiveness in research 

including structured or less complex data. A study showed the performance of ANN as 98% 

accuracy in classifying migraine subtypes (Sanchez-Sanchez, García-González and Ascar, 

2020). The adaptability of ANN to different headache categorisation problems has made it a 

highly significant tool in this field of research (Taufique et al., 2021). 

Despite being a relatively simple algorithm, KNN’s effectiveness in classifying migraine 

achieved 85% demonstrated its continued relevance in ML research (Romould et al., 2024). 

In the research conducted by Mitrović et al. (2023), Logistic Regression and Linear 

Discriminant Analysis (LDA) models were used for classifying migraine categories and 

healthy controls, with LDA in particular achieved high accuracy of 98% when paired with 

feature selection methods. 

Moreover, DT models were also examined, frequently as components of ensemble methods or 

in conjunction with other algorithms to enhance performance, to improve the accuracy and 

robustness of classification models which is analysed in a study utilising EEG data of patients, 

DT achieved performance level of 87.5% (Hsiao et al., 2023). 



2.1 Limitation 

While many studies report high predictive accuracy, particularly for DL models such as DNNs 

and 3D ResNet-18, few studies focus on the computational efficiency required for these models 

to run in resource-constrained environments. For instance, sophisticated DL models, although 

highly accurate, often demand substantial computational power and expertise, limiting their 

feasibility for use in low-resource clinical settings. For example, Study conducted by Rahman 

Siddiquee et al. (2023) highlighted the effectiveness of these models in handling data like MRI 

or MEG scans, but the practical applicability of these models in developing countries, where 

computational infrastructure is limited, is largely unexplored. 

Furthermore, model interpretability is another critical factor often overlooked. Many of the 

algorithms, especially DL models, operate as "black box" systems, making it difficult for 

healthcare professionals to trust or interpret the outputs without a clear understanding of the 

underlying processes (Miotto et al., 2018). While models like TabNet offer some degree of 

interpretability, the balance between performance, interpretability, and computational demands 

has not been comprehensively evaluated. Existing research primarily focuses on limited 

performance evaluation metrics rather than comparing a range of metrics also with 

computational efficiency and interpretability analysis (Rundel et al., 2024). 

We aim to address these gaps by conducting a comprehensive comparison of ML/DL 

algorithms, focusing not only on predictive accuracy but also on their computational 

efficiency and interpretability, which are critical for practical application in resource- 

constrained environments. By working with tabular data instead of imaging data, we provide 

an alternative approach that minimises costs while ensuring that the algorithms are accessible 

and usable in low-resource settings. In addition, we will contribute to the literature by 

evaluating models using a wider range of metrics in a single study, providing valuable insights 

into which models are most suitable for classifying migraine subtypes, particularly in 

underdeveloped regions where computational and financial resources are limited. 



3.0 Methodology 

This section describes the methods used to identify the effective algorithm in migraine 

classification. Firstly, the secondary dataset was obtained followed by Data preprocessing, 

Exploratory Data Analysis (EDA), Feature selection, and Data augmentation technique. 

Secondly, the model selection process for migraine classification was conducted, followed by 

model training and testing both prior to and post HPT. Various evaluation metrics, including 

accuracy, precision, recall, F1 score, AUC-ROC, MCC, and K-fold cross-validation scores, 

were applied to assess performance. Additionally, computational resource requirements were 

analysed, and the interpretability of the effective algorithm was thoroughly examined to ensure 

practical applicability in a clinical setting. The detailed workflow is shown in the Figure 1 and 

2. 

 

 
Figure 1. Data Processing Pipeline. 



 
 

Figure 2. Model Development and Evaluation Workflow. 

 

 

3.1 Dataset Collection 

The dataset was acquired via Kaggle, an online community platform tailored for machine 

learning enthusiasts (www.kaggle.com, n.d.). 

Moreover, the research conducted by (S. N. Mudassir and R. M, 2024) discovered that the 

dataset consists of medical records documenting patients diagnosed with various migraine- 

related disorders and it was carefully gathered by qualified medical experts at the Centro 

Materno Infantil de Soledad in the first quarter of 2013. 

Furthermore, during the literature investigation, it was discovered that this migraine dataset has 

been extensively utilised in several studies on migraine analysis, including those conducted by 

(N. N. Aung and W. Srimaharaj, 2023), (Romould et al., 2024), and (Sanchez-Sanchez, García- 

González, and Ascar, 2020). 

3.2 Dataset Description 

The obtained data consists of 400 records with 24 features including both numerical and 

categorical variables. The attribute of the dataset is described in the Table 1. The “Type” 

column holds the different types of migraine diagnosed and it is the target variable in the study 

that need to be classified by the selected model. 

http://www.kaggle.com/


SL. 

NO 

ATTRIBUTES DESCRIPTION TYPE OF 

DATA 

RANGE 

OF 

VALUE 

1 Age Age Of the Patient Reported Continuous 15 To 77 

2 Duration Length Of Symptoms During the Most Recent 

Episode, Measured in Days. 

Discrete 1 To 3 

3 Frequency Monthly episode frequency. Discrete 1 To 8 

4 Location Either unilateral or bilateral pain location 

(none - 0, unilateral - 1, bilateral - 2) 

Discrete 0 To 2 

5 Character Character depicts the throbbing or persistent 

sensation of pain. (none - 0, throbbing - 1, 

Persistant - 2) 

Discrete 0 To 2 

6 Intensity The level of pain, categorised as mild, moderate, or 

severe (none - 0, mild - 1, moderate - 
2, severe - 3) 

Discrete 0 To 3 

7 Nausea Patient's sensation of nausea (not - 0, yes - 1) Discrete 0 To 1 

8 Vomit Patient's sensation of vomiting (not - 0, yes - 1) Discrete 0 To 1 

9 Phonophobia Sensitivity to noise (not - 0, yes - 1) Discrete 0 To 1 

10 Photophobia Sensitivity to light (not - 0, yes - 1) Discrete 0 To 1 

11 Visual The count of reversible visual symptoms Discrete 0 To 4 

12 Sensory The count of reversible sensory symptoms Discrete 0 To 2 

13 Dysphasia Impaired speech coordination (not - 0, yes - 1) Discrete 0 To 1 

14 Dysarthria Disarticulated noises and words (not - 0, yes - 1) Discrete 0 To 1 

15 Vertigo Symptom of dizziness (not - 0, yes - 1) Discrete 0 To 1 

16 Tinnitus Patient's ability to hear things (not - 0, yes - 1) Discrete 0 To 1 

17 Hypoacusis Deafness (not - 0, yes - 1) Discrete 0 To 1 

18 Diplopia Dual vision 

(not - 0, yes- 1) 

Discrete 0 To 1 

19 Defect Simultaneous frontal eye field and nasal field defect 

in both eyes (not - 0, yes - 1) 

Discrete 0 To 1 

20 Ataxia Lack of muscular control (not - 0, yes - 1) Discrete 0 To 1 

21 Conscience Compromised moral awareness (not - 0, Yes - 1) Discrete 0 To 1 

22 Paresthesia Bilateral paraesthesia at the same time (not - 0, yes - 

1) 

Discrete 0 To 1 

23 DPF Family history (not - 0, yes - 1) Discrete 0 To 1 

24 Type Type Of Migraine Diagnosed 

(Typical Aura With Migraine, Migraine Without 

Aura, Typical Aura Without Migraine, Familial 

Hemiplegic Migraine, 

Sporadic Hemiplegic Migraine, 

Basilar-Type Aura, Other) 

Nominal Nill 

 

Table 1. Dataset Description. 



3.3 Hardware and Software Specification 

 

The analysis of the optimal algorithm for migraine classification was performed on Google 

Colaboratory or Colab, a cloud-based platform that offers access to robust computational 

resources (Carneiro et al., 2018). The investigation was conducted using a MacBook Pro as the 

local interface to interact with the cloud environment. 

3.3.1 Hardware Specification 

• Local Device: MacBook Pro 13-inch (2022 model). 

• Processor: Apple M2 chip that features an 8-core CPU and a 10-core GPU. 

• Memory: 16 GB RAM facilitated efficient multitasking, enabling effortless transitions 

between several applications and browser tabs during project work. 

• Operating System: macOS Sonoma, version 14.6.1 offers a reliable and protected 

platform for accessing cloud-based services. 

 

3.3.2 Software Specification 

• Programming Language: Python. 

• Processor: Intel(R) Xeon(R) CPU @ 2.20GHz. 

• Memory: 12.67 GB RAM. 

• Disk: 107.72 GB total, 74.88 GB free. 

 

 

3.4 Data Preprocessing 

The data preprocessing involved multiple essential steps to ensure the dataset quality for 

analysis. Firstly, we checked for the missing values using the missingno library, and it was 

ensured that there were no missing values, with each column containing 400 non-missing 

entries. Secondly, duplicate rows were identified, revealing 6 duplicates, which were then 

removed, leaving 394 unique records. 

Following this, outliers were identified using the Interquartile Range (IQR) method (Ur 

Rehman and Belhaouari, 2021), visualized through box plots. Instead of removing the outliers, 

they were capped to preserve the data integrity while controlling for extreme values. After 

addressing outliers, standardisation was  applied using Z-score transformation via 

the StandardScaler library, ensuring each numerical feature had a mean of 0 and a standard 

deviation of 1 (Gao et al., 2019), critical for algorithms sensitive to scale. This process 



confirmed that several features lacked variability, as indicated by a standard deviation of 0, 

suggesting minimal influence on classification outcomes. 

Finally, categorical data in the "Type" column was encoded using label encoding method (Qiu 

and Liu, 2023), transforming the 7 unique values into numerical representations suitable for 

model training. The encoded value corresponding to the categorical value are represented 

below: 

• Basilliar-Type aura: 0 

• Familial hemiplegic migraine: 1 

• Migraine without aura: 2 

• Other: 3 

• Sporadic hemiplegic migraine: 4 

• Typical aura with migraine: 5 

• Typical aura without migraine: 6 

 

Together, these steps created a well-prepared dataset for reliable and interpretable analysis. 

Figure 3 represents the data preprocessing steps done. 

 

 

 
Figure 3: Data Preprocessing Steps. 

 

 

3.5 Exploratory Data Analysis 

The EDA aimed to uncover key insights and patterns (DSouza, 2020) within the migraine 

dataset through visual analysis. Initially, the distribution of the target variable was analysed 

using a bar plot, which revealed an imbalance, particularly favouring the "Typical aura with 

migraine" class. To address this, the Synthetic Minority Oversampling Technique (SMOTE) 

was applied later to balance the dataset. 



Secondly, a boxplot was used to examine the age distribution across migraine types, showing 

that certain types (e.g., "Basilar-type aura" and "Sporadic hemiplegic migraine") are associated 

with specific age ranges, suggesting age as a valuable classification feature. Following this, a 

violin plot highlighted the distribution of intensity scores among migraine types, indicating that 

intensity variations might enhance classification accuracy. 

Finally, a scatter plot was used to explore the relationship between two continuous variables 

Duration and Frequency relative to the target variable. The plot indicated some clustering by 

migraine type, suggesting that these variables, when combined, could aid in differentiating 

between classes. These visual analyses provide foundational insights for selecting key features 

in the migraine classification process. Figure 4 depicts the EDA process. 

 

 

 
Figure 4. EDA processes. 



3.6 Feature Selection Process 

 

To identify features most relevant to migraine classification, a correlation matrix analysis was 

conducted supplemented by insights derived from relevant domain literature. This approach 

enabled a nuanced selection process, balancing statistical relevance with clinical insights. 

While evaluating the linear relationships among all numerical variables and their association 

with the target variable. Strong correlations, such as those between intensity, visual symptoms, 

and the target variable, were retained due to their potential predictive power. Conversely, 

features with minimal correlations, such as “location” and “character,” were flagged as less 

relevant for classification. 

Features exhibiting low variance across the dataset, such as "Photophobia," "Phonophobia," 

and "Dysarthria," were reviewed for possible exclusion. Although these features displayed 

limited statistical contribution, they hold clinical significance in distinguishing migraine types 

(Pescador Ruschel & De Jesus, 2023; Demarquay et al., 2018). Given their medical relevance, 

these features were preserved to maintain a clinically comprehensive dataset, ensuring 

meaningful contributions to migraine classification. 

This balanced approach allowed for a streamlined feature set that leverages statistically robust 

predictors while preserving essential clinical attributes, improving the model’s accuracy and 

applicability in migraine diagnosis. Figure 5 illustrates the correlation matrix prior to and after 

feature selection process. 

 

Figure 5. Correlation Matrix. 



3.7 Data Augmentation Process 

 

To address the small sample size and imbalance in migraine types identified in preprocessing 

stage, SMOTE technique was applied. This data augmentation approach generates synthetic 

samples by interpolating between existing minority class instances and their nearest 

neighbours, enhancing class balance without duplication (Temraz & Keane, 2022). Following 

SMOTE, the dataset expanded from 394 to 1,687 records, achieving a balanced distribution 

across all seven migraine classes (see Figure 6). This balanced dataset better supports effective 

model training and classification across all migraine types. 

 

Figure 6. Distribution of Target variable following SMOTE. 

 

 

3.8 Model Selection 

From the literature analysis done, we chose some of the effective ML/DL models for migraine 

classification on tabular data. SVM, KNN, DT, RF, and TabNet. These models were chosen for 

their efficiency, interpretability, and proven performance on similar classification tasks. 

3.9 Data Partitioning 

 

The dataset was divided into training and testing subsets using 70:30 ratio, with 70% allocated 

for training and 30% reserved for testing to evaluate the model’s predictive performance. This 

ratio was chosen to balance model learning and testing, providing a substantial amount of data 

for training while ensuring a sufficient test set to validate the model’s generalisability to new, 

unseen data. This approach is particularly crucial in medical research, where data is limited, 

and models must undergo rigorous testing due to their potential impact on patient outcomes 



(Gunawan Kurnia, 2024). After splitting, the training subset contained 1180 records, and the 

testing subset contained 507 records (see Figure 7), each with 10 features. 

 

Figure 7. Number of records after data partitioning. 

 

 

3.10 Model Evaluation 

To classify migraine types effectively, five algorithms were evaluated prior to and after HPT. 

The performance was assessed using accuracy, precision, recall, F1 score, AUC-ROC, MCC 

and confusion matrix. 

To prevent overfitting, we used stratified K-fold cross-validation with n_splits= 10, 

shuffle=True, and random_state=42. We employed GridSearchCV for hyperparameter 

optimisation, using n_jobs= -1 for parallelization and verbose=1 for monitoring the search 

progress. The Table 2 provides a comparison of the default and tuned parameters for each 

model, showing the parameter values pre and post HPT. The comparison illustrates how the 

tuning process influenced the model's performance. 

Furthermore, the confusion matrix and AUC-ROC curve for each model, both before and after 

HPT, are illustrated in Figure 8 to 11. The performance comparison of the models are shown 

in Tables 3 and 4, respectively. 

The effectiveness of the ML/DL models pre and post HPT reveals significant differences in 

their underlying mechanisms and their interactions with the data. Among all the classification 

methods considered, RF, the ML algorithm stands out as the most promising model, as it 

consistently outperforms others in terms of all the metrics with accuracy 95.8%. This is because 

of the RF’s ensemble learning approach, which consists of multiple DTs to reduce overfitting 



and improved generalization. In contrast, DT showed underfitting due to its single-tree 

structure, limiting capacity to generalize well on unseen data which is reflected in its relatively 

lower CV score of 89.3% even with HPT. 

On the other hand, SVM and KNN had significant improvement after HPT, with both 

algorithm’s accuracy reached up to 93% and 92.8% respectively. These models exhibited 

substantial improvements in F1-score and MCC, suggesting improved balance and reliability 

in their predictions. The improvement in SVM can be attributed to the fine-tuning of its 

regularization parameter C where others remain default. The enhancement in KNN is likely 

due to the optimisation of the number of neighbours and distance metrics, which results in more 

precise decision boundaries. Initially, KNN's performance was limited by its sensitivity to noise 

and local patterns. However, HPT mitigated these issues, enabling it to capture more global 

structures in the data. 

TabNet, despite being a DL model, did not exhibit as such an improvement as SVM and KNN 

following HPT. This could be attributed to the inbuilt design of TabNet, which already includes 

mechanisms such as sequential attention and feature selection, thereby optimising its ability to 

learn from tabular data efficiently. This model was analysed with maximum epochs 100 with 

early stopping parameter 10 and the batch size was set to 64 since the dataset size is 

comparatively small. The optimizer algorithm used was adam. Like RF model, its architecture 

may already be well-suited to the task, as evidenced by its stable performance both pre and 

post HPT. Nevertheless, it was unable to surpass RF's performance, despite achieving 

comparable CV score of 91.6% post HPT. This may be due to RF's bagging approach that 

provides greater robustness against overfitting (IBM, 2023a), a well-known challenge in deep 

learning models such as TabNet. 



Model Parameter Default Value Tuned Value 

SVM C 1.0 10 

 SVM Kernel Radial Basis Function 

(RBF) 

Radial Basis Function 

(RBF) 
 SVM Gamma Scale Scale 

KNN n_neighbors 5 3 
 KNN Weights Uniform Distance 
 KNN p 2 (Euclidean distance) 1 (Manhattan distance) 

DT Criterion Gini Gini 
 DT max_depth None None 
 DT min_samples_leaf 1 1 
 DT min_samples_split 2 2 
 DT ccp_alpha 0.0 0.001 

RF n_estimators 100 100 
 RF Criterion Gini Entropy 
 RF max_depth None 20 
 RF min_samples_split 2 5 
 RF min_samples_leaf 1 1 
 RF max_features sqrt log2 

TabNet n_d 8 24 
 TabNet n_a 8 24 
 TabNet n_steps 3 5 
 TabNet gamma 1.3 1.0 
 TabNet lambda_sparse 0.04 0.001 
 TabNet optimizer_fn torch.optim.Adam torch.optim.Adam 

 TabNet 
optimizer_params 

0.02 0.02 

 TabNet mask_type sparsemax sparsemax 
 TabNet max_epochs 100 100 
 TabNet patience 10 10 
 TabNet batch_size 64 64 

 TabNet 

virtual_batch_size 

128 128 

 

Table 2. Comparison of parameters value Before and After Optimisation. 



 

 

Figure 8. Confusion matrix Prior HPT. 

 

 

 

 

 

 

Figure 9. Confusion matrix Post HPT 



 
 

 

Figure 10. AUC-ROC Curve Prior HPT. 

 

 

 

 

 

Figure 11. AUC-ROC Curve Post HPT. 



 

MODEL 

 

PRECISION 

 

RECALL 

 

F1 

SCORE 

 

AUC- 

ROC 

 

MCC 

 

ACCURACY 

(%) 

 

10-FOLD CV- 

ACCURACY 

SVM 86.4 85.9 85.0 98.2 0.83 85.9 86.6 

KNN 89.7 88.1 87.3 97.7 0.86 88.1 88.1 

DT 89.1 89.1 89.1 93.7 0.87 89.1 88.0 

RF 95.6 95.6 95.6 99.5 0.94 95.6 92.4 

TABNET 90.4 90.5 90.3 98.2 0.88 90.5 88.1 

 

Table 3. Classification report of all algorithms before HPT. 

 

 

 

MODEL 

 

PRECISION 

 

RECALL 

 

F1 
SCORE 

 

AUC- 
ROC 

 

MCC 

 

ACCURACY 
(%) 

 

10-FOLD CV- 
ACCURACY 

SVM 93.6 93.0 92.8 98.9 0.92 93.0 91.6 

KNN 93.0 92.8 92.6 97.9 0.91 92.8 91.9 

DT 89.0 89.1 89.0 94.7 0.87 89.1 89.3 

RF 95.8 95.8 95.8 99.6 0.95 95.8 92.6 

TABNET 91.8 91.1 90.7 98.6 0.89 91.1 91.6 

 

Table 4. Classification report of all algorithms after HPT. 

 

 

3.11 Computational Efficiency Analysis 

We assessed the computational efficiency of each model based on the factors: 

 

• Training time of the model 

• Prediction time of the model. 

• Memory usage during training. 

• Memory usage during prediction. 

• Model Size. 

Where the time was calculated in Seconds and memory usage in Megabytes. 

 

Model Size is the quantity of storage capacity needed to store the trained model (Saeed, 2023). 

This encompasses the overall count of parameters, in addition to any supplementary data 

structures, such as trees in decision trees or layers in neural networks, that are essential for the 

model's functioning. A lower model size is beneficial in situations when there are limited 

resources for deploying models. The computational efficiency analysed for each model is 

depicted in the Figure 12 and the comparison is shown in the table 5. 



The computational efficiency of the models varied significantly across different 

metrics. KNN and DT exhibited the fastest training times at 0.1 and 0.11 seconds, respectively, 

followed closely by SVM at 0.26 seconds. RF took longer to train, requiring 0.9 seconds, 

while TabNet had the longest training time at 10.8 seconds. In terms of prediction 

time, TabNet was the fastest, predicting in just 0.04 seconds. The remaining models SVM, RF, 

and DT had similar prediction times, ranging between 0.10 and 0.13 seconds, while KNN was 

the slowest, with a prediction time of 0.19 seconds. 

Memory usage also differed substantially across models. During training, TabNet consumed 

high memory at 1.13 MB, far exceeding the other models, which used between 0.02 MB (DT) 

and 0.14 MB (KNN and RF). Similarly, during prediction, TabNet continued to have the highest 

memory consumption (0.11 MB), while SVM and DT used the least 0.01 MB. Furthermore, 

the model sizes for all models were very small, with SVM, KNN, DT, and RF all at 0.046 MB, 

and TabNet being slightly smaller at 0.035 MB. 

The computational efficiency analysis shows that KNN and DT are the fastest to train, making 

them suitable for environments requiring frequent updates. However, TabNet excels in 

prediction speed, despite its longer training time, which makes it ideal for real-time 

applications. KNN's slower prediction time limits its use for immediate decision-making, while 

SVM and DT's low memory usage makes them better suited for resource-constrained settings. 

Even though, TabNet’s small model size and fast predictions make it best suitable, it failed in 

the training time taken whereas, RF balances memory, speed, and size positioning it as an 

adaptive option. 



 

 

 

Figure 12. Computational Analysis of the model. 



 

MODEL 

Training 

Time 
(s) 

Prediction 

Time 
(s) 

Memory usage 

(Training) 

(MB) 

Memory Usage 

(Prediction) 

(MB) 

 

Model Size 

(MB) 

SVM 0.26 0.13 0.1 0.01 0.046 

KNN 0.1 0.19 0.14 0.02 0.046 

DT 0.11 0.1 0.02 0.01 0.046 

RF 0.9 0.13 0.14 0.02 0.046 

TABNET 10.8 0.04 1.13 0.11 0.035 

 

Table 5. Comparison of Computational Efficiency of all Algorithms. 

 

 

3.12 Interpretability Analysis Using SHAP 

To make model decisions clear and actionable for healthcare professionals interpretability 

analysis was performed for the effective algorithm identified. The technique used to identify 

the interpretability of the model was SHAP (Nguyen et al., 2021). SHAP is used to better 

understand the model's prediction for a particular input, the contribution of each feature to this 

prediction is calculated. 

The feature that holds the most importance is the one that exhibits the most extensive range of 

SHAP values acquired for that feature. The relative contribution is determined in relation to 

the base value. Each dot represents the contribution of a specific feature, where blue denotes 

lower values and red suggests higher values in a SHAP plot. 

The SHAP summary plot (see Figure 13) provides an overview of the way in which various 

features interact and contribute to the model's predictions throughout the dataset. It was noted 

that features such as Age, Intensity, and Vomit have substantial interactions with other features, 

such as Frequency and Duration, which underscores their significant impact on the model's 

predictions. In contrast, features such as Phonophobia and Photophobia exhibit minimal 

interaction with other features as they exhibit narrower spreads of SHAP values. This suggests 

that these features have fewer complex relations with other features in the dataset, resulting in 

more direct and isolated contributions to the model's predictions. 

At the same time, the SHAP waterfall plot (see Figure 14) provides a detailed explanation of 

how individual features contribute to the prediction for class 1 for the first instance in the test 

set. Starting from a baseline value of 0.143, reflective of the average probability for class 1 

throughout the dataset, the figure 78 illustrates how each feature either increases or decreases 

the predicted chance for this specific case. Phonophobia has the most significant positive 



impact, increasing the predicted probability by 0.11 units, pushing the prediction toward class 

1. Conversely, Duration and Photophobia have the largest negative impacts, decreasing the 

prediction by 0.07 and 0.06, respectively. Other features such as Intensity and Vomit contribute 

smaller positive and negative effects, respectively. The final prediction of 0.143 reflects the 

cumulative influence of these features on the model's decision, showing that while some 

features increase the probability, others tend to reduce the probability of this instance being 

classified as class 1. 

 

Figure 13. SHAP summary plot for RF model Interpretability Analysis. 

 

 

Figure 14. Waterfall plot Analysis of RF model. 



4.0 Result and Analysis 

In this study, we conducted a comprehensive evaluation of ML/DL models for classifying 

migraines in low-resource healthcare settings, assessing key performance metrics like 

accuracy, precision, recall, F1 score, AUC-ROC, and MCC, as well as computational efficiency 

and interpretability. 

Our best-performing model, RF, demonstrated high accuracy, with an accuracy score of 95.8% 

and a 10-fold cross-validation accuracy of 92.6%. RF also achieved superior metrics across the 

board, including an F1 score of 95.8, an MCC of 0.95, and an AUC-ROC of 99.6, indicating 

robust performance and high reliability. The RF model's high AUC-ROC score illustrates its 

strong discriminatory ability between classes, further affirming its suitability for migraine 

classification. 

Comparatively, models such as SVM, KNN, DT, and TabNet achieved notable results, yet were 

less optimal than RF. For instance, SVM reached an accuracy of 93.0%, with an F1 score of 

92.8, an MCC of 0.92, and an AUC-ROC of 98.9. While these metrics are strong, RF 

outperformed SVM, particularly in AUC-ROC and cross-validation accuracy, suggesting better 

generalizability. KNN, with an accuracy of 92.8% and an MCC of 0.91, and TabNet, with an 

accuracy of 91.1% and an MCC of 0.89, both performed comparably but were less consistent 

and computationally efficient for resource-constrained settings. DT, on the other hand, yielded 

an accuracy of 89.1% and an MCC of 0.87, further reinforcing RF as the top choice in terms 

of balanced performance metrics. 

Beyond these performance metrics, our study emphasized computational efficiency and 

interpretability to align with the needs of low-resource environments. RF’s computational 

requirements were efficiently met through cloud-based Google Colab, which provided a cost- 

effective and accessible environment. This setup allowed for HPT and model evaluation 

without demanding advanced local hardware, highlighting RF's suitability for economically 

challenged regions. TabNet, despite its rapid prediction capabilities, required intensive 

computational resources during training, presenting challenges in low-resource settings. 

Interpretability was another critical focus, given the need for healthcare practitioners to 

understand the model’s decision-making process. SHAP interpretability analysis showed that 

RF relied heavily on clinically significant features, such as photophobia and intensity, 

validating its decision-making in a clinically relevant manner. This transparency enhances trust 

in the model, especially in clinical settings where interpretability supports diagnostic accuracy. 



In comparison to other studies in the literature (see table 6), which report accuracy levels of 

RF as 78–99% (Dhiyaussalam et al., 2020; S. S. Esfahan et al., 2023; David et al., 2023) but 

may overlook constraints faced in resource-limited environments, our results are intentionally 

contextualized. By evaluating models not only on accuracy but also on computational 

efficiency and interpretability, our work aligns closely with the practical requirements of low- 

resource healthcare settings. This approach ensures that the model not only performs 

effectively but also generalizes well across various migraine subtypes, establishing it as a viable 

and reliable solution for healthcare providers in such contexts. 

 

Sl. 

no 

Study Outcome by 

the model 

Dataset type Effective 
algorithm 

identified 

Accuracy of the 

effective model 

1 (Romould et al., 

2024) 

Classification 

of 6 types of 
migraine 

Migraine 

Tabular 
dataset 

KNN 85% 

2 (S. S. Esfahan et 

al., 2023) 

Classification 

of migraine vs. 

tension-type 

headaches 
(TTH) 

Psychologica 

l and 

demographic 

data 

RF 97.92% 

3 (David et al., 2023) Classification 

of 7 migraine 
types 

Clinical 

dataset with 
24 features 

RF with Scatter 

Search 

98.26% 

4 (S. N. Mudassir and 

R. M, 2024) 

Classification 

of various 

migraine 
subtypes 

Clinical and 

patient- 

reported data 

TabNet 98% overall; 99% 

for specific 

migraine subtypes 

5 (Fu et al., 2024) Classification 

of migraine 

with aura vs. 

migraine 
without aura 

Structural 

and 

functional 

MRI data 

RF 78.1% 

6 (Dhiyaussalam et 

al., 2020) 

Classification 

of migraine, 

tension-type 

headache 

(TTH), and 
cluster 

headaches 

Migbase 

dataset with 

39 features 

RF 99.56% 

7 (Tahhan et al., 

2024) 

Risk 

assessment 

and 

classification 

of migraine 

among 

university 
students 

Survey data 

on lifestyle, 

dietary 

habits, and 

behavioral 

factors from 

university 
students 

Linear SVM 92.7% 

8 (Chen et al., 2024) Classification 

of Migraine 
Without Aura 

Resting-state 

fMRI data 

SVM with 

MVPA 

81.54% (First 

cohort); 76.47% 

(Second cohort) 



  vs. Healthy 

Controls 

   

9 (Subasi, Ahmed 

and Alickovic, 

2018) 

Classification 

of migraine vs. 

healthy 

controls 

EEG data 

collected 

during flash 

stimulation 
(4 Hz) 

RF 85.18% 

10 (Fu et al., 2022) Classification 

of migraine 

without aura 

(MwA) vs. 

healthy 

controls and 

prediction of 

tVNS 

treatment 

efficacy 

fMRI data 

from 70 

MwA 

patients and 

70 healthy 

controls 

SVM for 

classification, 

SVR for 

prediction 

79.3% 

11 (Qawasmeh et al., 

2020). 

Classification 

of headache 

types: 

Migraine, 

Cluster 

Headache, 

Tension-Type 

Headache, and 

Secondary 
Headache 

Data 

collected 

from patients 

RF 99.1% 

(Migraine), 93% 

overall accuracy 

12 (Hsiao et al., 2023) Classification 

of chronic 

migraine vs. 

healthy 
controls 

EEG data 

from 

DT 87.5% 

13 (Nie et al., 2023). Classification 

of migraine 

patients vs. 

healthy 
controls 

Resting-state 

fMRI data 

SVM with 

combined 

features 

96.81% 

14 (Subasi et al., 2019) Classification 

of migraine 

patients vs. 
healthy 
controls 

EEG data 

with and 

without 
photic 
stimulation 

RF 85.95% 

15 (Kazemi and 
Katibeh, 2018) 

Classification 
of pediatric 

migraine 

without aura 

patients vs. 

healthy 

controls 

EEG data SVM 93% 

16 Proposed Study Classification 

of migraine 

subtypes 

Tabular Data RF - ML Model 

TabNet - DL 

model 

95.8% 

91.1% 

 

Table 6. Comparative Analysis of Effective Model Performance with Related Studies. 



5.0 Conclusion 

In this study, we evaluated various ML/DL algorithms for classifying migraine subtypes, 

focusing on their applicability in low-resource healthcare settings. Our analysis found that RF, 

a ML model, was the most effective, achieving 95.8% accuracy and outperforming other 

models in terms of additional metrics. TabNet, the DL model, achieved slightly lower 

performance with 91.1% accuracy. RF also demonstrated better computational efficiency 

compared to TabNet, making it more suitable for resource-constrained environments. 

Furthermore, RF's interpretability was enhanced using SHAP summary and waterfall plots, 

ensuring transparency for clinical use. These findings suggest that AI-driven diagnostic tools, 

such as RF, could reduce reliance on costly medical imaging and specialized neurologists, 

offering a more accessible solution for migraine classification in low-resource healthcare 

settings. 
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