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ABSTRACT

The objective of this note is to present a theorem about the approximation of any
distribution by a mixture of Gama distributions, that allows to consider directly infinite
states space in the study of queuing networks systems.
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1. INTRODUCTION

The usual approach to the study of queuing networks is based on the
consideration of finite states space, see for instance (1,2).

The insensitivity problem? may be approached for systems with infinite states
space, representing these systems as limits of insensible systems sequences, see again
(1,2).

Alternatively the system with infinite states space may be considered directly
and use the fact that any distribution may be approached by a mixture of Gama
distributions, as it is shown in the following theorem, see (3).

2. THE APPROXIMATION THEOREM

Theorem 2.1

Be F(x) the Distribution Function of the positive random variable X. It is
possible to choose a sequence of Distribution Functions F,,(x), where each term is a
mixture of Gama Distributions, such that

! This work was financially supported by FCT through the Strategic Project PEst-OE/EGE/U10315/2011.

2 That is, the fact that some characteristics of the network depend on the service time distribution only
through its mean. When this happens it is said that those characteristics are insensible to the service time
distribution.
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in the whole x for which F(.) is continuous.

Dem:

Consider

n0 =) (ot oo
k=1

where Gk (.) is the Distribution Function of a Gama Distribution with mean k and
variance % being its Characteristic Function
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Suppose that there are the X moments till the order r. Giving to the ¢k (t) the
form
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the Characteristic Function of E, (x) is given by
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by the Monotone Convergence Theorem, see (4).

So
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being ®(t) the X Characteristic Function in the neighborhood of t = 0. In consequence

T}li_r)rgo E,(x)=F(x).m

Observations:

The convergence considered in this theorem, through the characteristic
function, is the convergence in distribution,

Evidently, using this approximation for the service time distribution, it is
possible to consider directly infinite states space in the study of queuing
networks systems.
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