
EasyChair Preprint
№ 2257

Determine the Interconnection of a Hardware
Implementation for DSP Applications

Jehad Ahmad Ghanim and Ali Shatanawi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 13, 2020

 1

Abstract - In VLSI design the hardware is

implemented with some objective and constrain

functions (as lower number of hardware used).

When the system contains a lot of processing

elements (PEs) and memory registers, the cost of

the interconnections becomes of great issue and

must be minimized. The work in the field of

determination of the interconnection for a

hardware implementation is not very common.

In high-level synthesis it is usually considered the

time scheduling and processor assignment from a

given DFG. However, the cost of interconnection

is not widely discussed and is left to a hardware

system to determine it. In this paper, a technique

for determining the interconnection in a

hardware design is proposed. The objective

function is the minimum number if hardware

used and the constrain is minimum iteration

period bound. This interconnection is shown to

accomplish cost optimality in terms of

minimizing the number of multiplexers used.

.

Keywords: Datapath, DFG, high-level synthesis,

multiplexers

I. Introduction

Digital signal processing (DSP),

communications, and image processing are

computationally intensive, and thus demand

systems with high computational power. The

high computational power is necessary to

accomplish the given tasks in real time. Due to

the inherent parallelism of DSP applications, a

multiprocessor system is a natural choice for the

implementation of these applications [1].

.

The technique used to design digital systems

at the high level is typically referred to as the

high-level synthesis (HLS). This technique is

used to produce efficient hardware

implementations for the given tasks. The HLS

process starts with the specification of the

algorithmic level behavior (input-output

specifications) of a given digital system, and

completes by finding the data path realizing the

given I/O specifications. The algorithmic level

behavior is usually represented by a data flow

graph (DFG). An example of a DFG is depicted

in Fig 1. Through the HLS procedure objective

functions and constraints must be met.

In this paper, a technique [12] to determine

the interconnection of a given hardware

implementation is proposed. The result of this

technique is a schedule matrix used to represent

a data path of heterogeneous multiprocessor

system's implementation.

4
*
 2

+

1D
 Z

-1

1D
 Z

-1

1
+ 8

+

6
+

7
*

3
*

5
*

+:Adder of 1 computational delay

*:Pipelined multiplier of 2 computational delays

9
I
 10

O

Fig 1: DFG of the second order IIR filter

II. Previous Work

Synthesis tools that are used to generate

valid implementations for digital systems are

present since the 1970s. Many of them are

targeted for the generation of data paths of

general-purpose digital systems.

Some of the synthesis tools are specialized in

DSP applications. LAGER is a data path

compiler that is specialized in DSP applications

Determine the Interconnection of a

Hardware Implementation for DSP

Applications

Ali Shatnawi

Department of Computer Engineering

Jordan University of Science and

Technology

Box 3030, Irbid 22110, JORDAN

ali@just.edu.jo

Jehad Ahmad Ghanim

Department of Computer Science

AlKharj Community College/

Sattam bin AbdulAziz University

AlKharj, Saudi Arabia

j.ghanim@psau.edu.sa

 2

[3]. The algorithmic behavior specification is

expressed in an Assembly-like language

program. The main disadvantage of this

synthesis tool is that, the multiprocessing

system is limited to four processors

communicating by serial interfaces. MARS

(Minnesota Architecture Synthesis) [8] does not

consider the minimization of the

interconnection network. Furthermore, MARS

execution time is unpredictable as the course of

action of its procedure tremendously varies with

the graph topology [9].

IV. Determining the Interconnection
Since there are a number of processing

elements (PEs) and registers which are used to

handle data tokens that are produced by other

PEs or stored in registers, multiplexers are

required to control the data transfer between

these PEs and the registers. Each PE or register

having more than source of data tokens requires

a multiplexer to select between these sources.

The selection inputs of each multiplexer must

be set to select the value of the required source

at the different control steps. The multiplexers

and the write-enable signals from the control

unit assure the proper operation of the system

(according to the I/O behavioral specifications).

M2 2D2S

R0 A1 1D1S

A2 1D1S

M1 2D2S

R1 R2

Input

X
I1

Output

Y
O1

C3

C0 C1 C2

MUX

M

U

X

MUX

MUX

Fig 2: Hardware implementation for the second-order IIR

filter shown in Fig 1

The interconnection minimization is

done by reducing the size of each multiplexing

unit. This minimization is performed by

decreasing the number of sources of the

variables that are attached to the inputs of each

multiplexer.

There are two groups of multiplexers,

the PEs multiplexers and the registers

multiplexers. The sources of the PE-

multiplexers are any PE, register, or constant-

register. The sources of the register-multiplexer

are any PE or register. Since each PE has two

inputs, each require a distinct group of input

multiplexers. In this case, there is a possibility

that a source of data operands may be attached

to the inputs of each multiplexer group. Thus, if

it is possible to attach each source of data

operands to only one multiplexers group, the

total size of the multiplexers is reduced. The

lower bound on the size of the multiplexers

groups of any PE is determined by the total

number of different sources of this PE. The

algorithm that attempts to minimize the size of

both multiplexers' groups of any PE (and thus

the number of multiplexers) is stated below:

1. Put all PEs in a non-selected PEs list

2. Select a PE from this list and set it as a

target PE. This PE is removed from the

non-selected PEs list.

3. Group all the sources (PEs and registers)

of the data tokens for the target PE in a

sources-list. This list also contains the

control steps at which each source is

accessed, since each source may occur

several times in this list.

4. Calculate the number of occurrences of

each source in this list. This number equals

to the number of different references to a

source in an iteration period.

5. Sort the sources in the sources-list

according to the number of occurrences of

each source in descending order

6. Take the first source (the one with the

largest number of accesses found) and

remove it from the sources-list

7. Assign each access of the taken source to

the entry of the required control step in the

row of the multiplexers group of the target

PE that has the highest number of free

cells (in the PEs multiplexers source

selection matrix). If the entry of the

required control step is not free, assign it

to the entry of the required control step in

the row of the other multiplexers group.

8. If the source-list is not empty go to step 6

9. If the non-selected PEs list is not empty go

to step 2

The register-multiplexer minimization

process described in the register allocation

algorithm in the previous section is done in case

that a variable consists of two elements only. In

this case, the two elements are assigned to the

same register if possible. Thus, element

produced in the previous iteration is not

required to be transferred between multiple

registers, since this element is already stored in

a register.

Table 1 and table 2 show the source of

the data for each PE and register of the example

(Fig 1) at each control step. From these tables,

the values of the select lines of the multiplexers

of each PE and register at each control step are

determined.

 3

Fig 3. Multiplexers minimization Algorithm

The columns determine the control steps

(except the last one) and the rows determine the

PEs. Each cell in the table determines the type

of the source of the variable and its number. The

letters A, M, R, and C denote adders, pipelined

multipliers, registers, and registers that store

constants (multiplier constants) respectively.

The number next to each letter identifies the

source from the group of sources of the same

type. The last column determines the number of

inputs of the multiplexer, or the number of

different sources that are connected to the

corresponding multiplexer. The row with

dashed entries in the multiplexer number

(MUX#) or register number (register#) columns

means that it does not have any multiplexers or

registers.

Control

Step

Processor

MUX# 0 1 2 #

A1
MUX1 M1 M1 M1 1

MUX2 I1 A1 A1 2

A2
MUX1 R2 - - 1

MUX2 A1 - - 1

M1
MUX1 R0 R0 A1 2

MUX2 C0 C1 C2 3

M2
MUX1 - - A1 1

MUX2 - - C3 1

I1 - - - - 0

O1 - - A2 - 1

Table 1: The PEs multiplexers source selection matrix

Control

Step

Register

0 1 2 #

R0 - - A1 1

R1 - M2 - 1

R2 R1 - - 1

Table 2: The registers multiplexers source selection

matrix

In table 1, since each source appears

only in one multiplexer row for each PE, hence,

the bound on the size of each multiplexer is

achieved.

Due to the repeated nature of DSP

algorithms, the sequences in the source

selection matrices are repeated every iteration.

Thus, the iteration period imposes an upper

bound on the number of inputs for each

multiplexer. Number of inputs must be as

.

The dashed entries in the source

selection matrices of the PEs and registers

represent the case of no input and thus the

number-of-inputs for each multiplexer can be

reduced by the number of these dashed entries.

In addition, many different variables can be

taken from the same source (PE or register).

 All entries in the source selection

matrices that belong to the same source must be

TNo_Inputs 

 4

set to the same input line of the multiplexer.

Furthermore, because the registers can latch the

data based on a write-enable signal from the

control unit, consecutive elements of a variable

that are stored in the same register do not

require additional inputs. This is because the

previous element is still in the register until its

lifetime ends and the next element is latched by

a write-enable signal from the control unit. For

example, in register number 0, the source of the

third entry is the first add PE, but the source of

the first entry is the register 0 itself. Since the

element is already in register 0, this entry does

not need an input for the multiplexer of register

number 0. Thus, the minimum number of inputs

(No_Inputs) for each multiplexer is limited by

the maximum number of different sources of

each variable.

Filter Type Number of

MUXs without
algorithm

Number of
MUXs with
algorithms

Second-order IIR
filter

8 4

fifth-order wave
digital elliptic
filter

36 11

fourth-order
Jaumann wave
digital filter

17 6

all-pole lattice
filter

16 7

Table 3. The number of multiplexers required before and

after the use of the minimization algorithm

Filter Type Central

Memory
Distributed
Memories

number of
MUXs

number of
MUXs

Second-order IIR
filter

1 0

Fifth-order wave
digital elliptic filter

4 0

fourth-order

Jaumann wave
digital filter

2 0

all-pole lattice filter 2 0

Table 4. The required number of multiplexers for both types

of memory systems

Instead of using () multiplexers for

the representation of each PE multiplexer group

or register-multiplexer, N being the minimum

power of 2 larger than (No_Inputs), a group of

(No_Inputs-1) two-input multiplexers [11] can

be used to form multiplexing unit. This is

because the number of multiplexer inputs N is

usually more than the needed number of inputs

(No_Inputs). These (No_Inputs-1) two-input

multiplexers are connected as a binary tree to

form a multiplexing unit with a lower cost than

that of the () multiplexer. Since each two-

input multiplexer has only one select line, a

group of log2(No_Inputs) select lines are

required for the new multiplexing unit. The

least significant select line is connected to the

leaf multiplexers and the most significant select

line is connected to the root multiplexer.

A row in the source selection matrices

with only one input (indicated from the last

column) implies that the corresponding

hardware unit (PE or register) does not require

a multiplexer and is connected directly to the

source of that input. These rows with zero

number of inputs means that the corresponding

hardware unit does not take any input from any

other hardware units in the system. This is the

case for the input virtual PE. This PE takes its

input stream from outside the system; thus, it

has a zero number of inputs with respect to other

hardware units.

From table 1, it is clear that there are two

different sources at MUX2 of the first adder and

at MUX1 of the second multiplier. Thus, the

multiplexers used are () multiplexers. The

second PE of each type has only one operation

to process, thus it does not need any

multiplexer, and it is connected directly to its

source of data. Clearly from table 2 the registers

do not need any multiplexers.

III. Conclusion

A new technique to determine the

interconnection is presented here. It is used to

assign the data sources to the inputs of the

processing elements is also presented. This

algorithm minimizes the total number of such

sources assigned to each input multiplexer. As

a result, the total size of multiplexing units is

minimized.

REFERENCES

[1] D. J. DeFatta, J. G. Lucas, and W. S. Hadgkiss,
“Digital signal processing, a system design

approach,” John Wiley & Sons, 1988.

[2] M. C. McFarland, A. C. Parker, and R.
Camposano, “The high-level synthesis of digital

systems,” Proceedings of the IEEE, vol. 78, no.

2, pp. 301-318, Feb. 1990.
[3] J. M. Rabaey, S. P. Pope, and R. W. Brodersen,

“An integrated automated layout generation

system for DSP circuits,” IEEE Trans.
Computer-Aided Design, vol. CAD-4, no. 3, pp.

285-296, Jul. 1985.

[4] H. Deman et al., “Cathedral II: A silicon
compiler for digital signal processing,” IEEE

Design and Test, vol 3, no.6, pp. 13-25, Dec.

1986.
[5] B. S. Haroun, and M. I. Elmasry, “Architectural

synthesis for DSP silicon compiler,” IEEE
Trans. Computer-Aided Design, vol.8, no. 4, pp.

431-447, Jun. 1990.

1N

12

 5

[6] C. T. Hwang, J. H. Lee, Y. C. Hsu, and Y. L. Lin

“A formal approach to the scheduling problem

in high level synthesis,” IEEE Trans. Computer-

Aided Design, vol. 10, no. 4, pp. 464-475, Apr.
1991.

[7] F. F. Yassa, J. R. Jasica, R. I. Hartley, and S. E.

Noujaim, “A silicon compiler for digital signal
processing: methodology, implementation, and

applications,” Proceeding of the IEEE, vol. 75,

no. 9, pp. 1272-1282, Sep. 1987.
[8] -Y. Wang, and K. K. Parhi, “High-level DSP

synthesis using concurrent transformations,

scheduling, and allocation,” IEEE Transactions
on Computer-Aided Design of Integrated

Circuits and Systems, vol. 14, no. 3, pp. 274-

295, Mar. 1995.
[9] Shatnawi, “Compile-time scheduling of digital

signal processing data flow graphs onto

homogeneous multiprocessor systems,” Ph.D.
Thesis Department of Electrical and Computer

Engineer, Concordia University, Montreal

Canada, Apr. 1996.
[10] Shatnawi, M. O. Ahmad, and M. N. S. Swamy,

“Scheduling of DSP data flow graphs onto

multiprocessors for maximum throughput,”
Paper no.548, The 1999 IEEE International

Symposium on Circuits & Systems, May 30-
June 2, 1999, Orlando, Florida.

[11] C.-J. Tseng, and D. P. Siewiorek “Automated

synthesis of data paths in digital systems,” IEEE
Transactions on Computer-Aided Design, vol.

CAD-5, no. 3, pp. 379-395, Jul. 1986.

[12] J. Ghanim, “High Level Synthesis of Integrated
Heterogeneous Multiprocessor Systems for

Digital Signal Processing Applications,” Msc.

Thesis Department of Electrical Engineering,
Jordan University of Science and Technology,

Irbid Jordan, Jan. 2000.

