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Abstract - In VLSI design the hardware is 

implemented with some objective and constrain 

functions (as lower number of hardware used). 

When the system contains a lot of processing 

elements (PEs) and memory registers, the cost of 

the interconnections becomes of great issue and 

must be minimized. The work in the field of 

determination of the interconnection for a 

hardware implementation is not very common. 

In high-level synthesis it is usually considered the 

time scheduling and processor assignment from a 

given DFG. However, the cost of interconnection 

is not widely discussed and is left to a hardware 

system to determine it. In this paper, a technique 

for determining the interconnection in a 

hardware design is proposed. The objective 

function is the minimum number if hardware 

used and the constrain is minimum iteration 

period bound. This interconnection is shown to 

accomplish cost optimality in terms of 

minimizing the number of multiplexers used. 

. 
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I. Introduction 

Digital signal processing (DSP), 

communications, and image processing are 

computationally intensive, and thus demand 

systems with high computational power. The 

high computational power is necessary to 

accomplish the given tasks in real time. Due to 

the inherent parallelism of DSP applications, a 

multiprocessor system is a natural choice for the 

implementation of these applications [1].  

 

 

 

. 

 

 

The technique used to design digital systems 

at the high level is typically referred to as the 

high-level synthesis (HLS). This technique is 

used to produce efficient hardware 

implementations for the given tasks. The HLS 

process starts with the specification of the 

algorithmic level behavior (input-output 

specifications) of a given digital system, and 

completes by finding the data path realizing the 

given I/O specifications. The algorithmic level 

behavior is usually represented by a data flow 

graph (DFG). An example of a DFG is depicted 

in Fig 1. Through the HLS procedure objective 

functions and constraints must be met.  

In this paper, a technique [12] to determine 

the interconnection of a given hardware 

implementation is proposed. The result of this 

technique is a schedule matrix used to represent 

a data path of heterogeneous multiprocessor 

system's implementation. 

 

 
 

4
*
 2

+
 

1D 
 Z

-1
 

 

1D 
 Z

-1
 

 

1
+ 8

+ 

6
+ 

7
* 

3
* 

5
* 

+:Adder of 1 computational delay 

*:Pipelined multiplier of 2 computational delays 

9
I
 10

O
 

 
Fig 1: DFG of the second order IIR filter 

II. Previous Work 

Synthesis tools that are used to generate 

valid implementations for digital systems are 

present since the 1970s. Many of them are 

targeted for the generation of data paths of 

general-purpose digital systems.  

Some of the synthesis tools are specialized in 

DSP applications. LAGER is a data path 

compiler that is specialized in DSP applications 
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[3]. The algorithmic behavior specification is 

expressed in an Assembly-like language 

program. The main disadvantage of this 

synthesis tool is that, the multiprocessing 

system is limited to four processors 

communicating by serial interfaces.  MARS 

(Minnesota Architecture Synthesis) [8] does not 

consider the minimization of the 

interconnection network. Furthermore, MARS 

execution time is unpredictable as the course of 

action of its procedure tremendously varies with 

the graph topology [9]. 

IV. Determining the Interconnection 
Since there are a number of processing 

elements (PEs) and registers which are used to 

handle data tokens that are produced by other 

PEs or stored in registers, multiplexers are 

required to control the data transfer between 

these PEs and the registers. Each PE or register 

having more than source of data tokens requires 

a multiplexer to select between these sources. 

The selection inputs of each multiplexer must 

be set to select the value of the required source 

at the different control steps. The multiplexers 

and the write-enable signals from the control 

unit assure the proper operation of the system 

(according to the I/O behavioral specifications). 
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Fig 2: Hardware implementation for the second-order IIR 

filter shown in Fig 1 

 

The interconnection minimization is 

done by reducing the size of each multiplexing 

unit. This minimization is performed by 

decreasing the number of sources of the 

variables that are attached to the inputs of each 

multiplexer. 

There are two groups of multiplexers, 

the PEs multiplexers and the registers 

multiplexers. The sources of the PE-

multiplexers are any PE, register, or constant-

register. The sources of the register-multiplexer 

are any PE or register. Since each PE has two 

inputs, each require a distinct group of input 

multiplexers. In this case, there is a possibility 

that a source of data operands may be attached 

to the inputs of each multiplexer group. Thus, if 

it is possible to attach each source of data 

operands to only one multiplexers group, the 

total size of the multiplexers is reduced. The 

lower bound on the size of the multiplexers 

groups of any PE is determined by the total 

number of different sources of this PE. The 

algorithm that attempts to minimize the size of 

both multiplexers' groups of any PE (and thus 

the number of multiplexers) is stated below: 

1. Put all PEs in a non-selected PEs list 

2. Select a PE from this list and set it as a 

target PE. This PE is removed from the 

non-selected PEs list. 

3. Group all the sources (PEs and registers) 

of the data tokens for the target PE in a 

sources-list. This list also contains the 

control steps at which each source is 

accessed, since each source may occur 

several times in this list. 

4. Calculate the number of occurrences of 

each source in this list. This number equals 

to the number of different references to a 

source in an iteration period. 

5. Sort the sources in the sources-list 

according to the number of occurrences of 

each source in descending order 

6. Take the first source (the one with the 

largest number of accesses found) and 

remove it from the sources-list 

7. Assign each access of the taken source to 

the entry of the required control step in the 

row of the multiplexers group of the target 

PE that has the highest number of free 

cells (in the PEs multiplexers source 

selection matrix). If the entry of the 

required control step is not free, assign it 

to the entry of the required control step in 

the row of the other multiplexers group. 

8. If the source-list is not empty go to step 6 

9. If the non-selected PEs list is not empty go 

to step 2 

The register-multiplexer minimization 

process described in the register allocation 

algorithm in the previous section is done in case 

that a variable consists of two elements only. In 

this case, the two elements are assigned to the 

same register if possible. Thus, element 

produced in the previous iteration is not 

required to be transferred between multiple 

registers, since this element is already stored in 

a register. 

Table 1 and table 2 show the source of 

the data for each PE and register of the example 

(Fig 1) at each control step. From these tables, 

the values of the select lines of the multiplexers 

of each PE and register at each control step are 

determined. 
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Fig 3. Multiplexers minimization Algorithm 

 

The columns determine the control steps 

(except the last one) and the rows determine the 

PEs. Each cell in the table determines the type 

of the source of the variable and its number. The 

letters A, M, R, and C denote adders, pipelined 

multipliers, registers, and registers that store 

constants (multiplier constants) respectively. 

The number next to each letter identifies the 

source from the group of sources of the same 

type. The last column determines the number of 

inputs of the multiplexer, or the number of 

different sources that are connected to the 

corresponding multiplexer. The row with 

dashed entries in the multiplexer number 

(MUX#) or register number (register#) columns 

means that it does not have any multiplexers or 

registers. 

 

 
Control 

Step 

Processor 

MUX# 0 1 2 # 

A1 
MUX1 M1 M1 M1 1 

MUX2 I1 A1 A1 2 

A2 
MUX1 R2 - - 1 

MUX2 A1 - - 1 

M1 
MUX1 R0 R0 A1 2 

MUX2 C0 C1 C2 3 

M2 
MUX1 - - A1 1 

MUX2 - - C3 1 

I1 - - - - 0 

O1 - - A2 - 1 

Table 1: The PEs multiplexers source selection matrix  

 

 
Control 

Step 

Register 

0 1 2 # 

R0 - - A1 1 

R1 - M2 - 1 

R2 R1 - - 1 

Table 2: The registers multiplexers source selection 

matrix 

 

In table 1, since each source appears 

only in one multiplexer row for each PE, hence, 

the bound on the size of each multiplexer is 

achieved. 

Due to the repeated nature of DSP 

algorithms, the sequences in the source 

selection matrices are repeated every iteration. 

Thus, the iteration period imposes an upper 

bound on the number of inputs for each 

multiplexer. Number of inputs must be as 

. 

The dashed entries in the source 

selection matrices of the PEs and registers 

represent the case of no input and thus the 

number-of-inputs for each multiplexer can be 

reduced by the number of these dashed entries. 

In addition, many different variables can be 

taken from the same source (PE or register). 

 All entries in the source selection 

matrices that belong to the same source must be 

TNo_Inputs 
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set to the same input line of the multiplexer. 

Furthermore, because the registers can latch the 

data based on a write-enable signal from the 

control unit, consecutive elements of a variable 

that are stored in the same register do not 

require additional inputs. This is because the 

previous element is still in the register until its 

lifetime ends and the next element is latched by 

a write-enable signal from the control unit. For 

example, in register number 0, the source of the 

third entry is the first add PE, but the source of 

the first entry is the register 0 itself. Since the 

element is already in   register 0, this entry does 

not need an input for the multiplexer of register 

number 0. Thus, the minimum number of inputs 

(No_Inputs) for each multiplexer is limited by 

the maximum number of different sources of 

each variable. 

 
Filter Type Number of 

MUXs without 
algorithm 

Number of 
MUXs with 
algorithms 

Second-order IIR 
filter 

8 4 

fifth-order wave 
digital elliptic 
filter 

36 11 

fourth-order 
Jaumann wave 
digital filter 

17 6 

all-pole lattice 
filter 

16 7 

Table 3. The number of multiplexers required before and 

after the use of the minimization algorithm 

 
Filter Type Central 

Memory 
Distributed 
Memories 

number of 
MUXs 

number of 
MUXs 

Second-order IIR 
filter 

1 0 

Fifth-order wave 
digital elliptic filter 

4 0 

fourth-order 

Jaumann wave 
digital filter 

2 0 

all-pole lattice filter 2 0 

Table 4. The required number of multiplexers for both types 

of memory systems 

 

Instead of using ( ) multiplexers for 

the representation of each PE multiplexer group 

or register-multiplexer, N being the minimum 

power of 2 larger than (No_Inputs), a group of 

(No_Inputs-1) two-input multiplexers [11] can 

be used to form multiplexing unit. This is 

because the number of multiplexer inputs N is 

usually more than the needed number of inputs 

(No_Inputs). These (No_Inputs-1) two-input 

multiplexers are connected as a binary tree to 

form a multiplexing unit with a lower cost than 

that of the ( ) multiplexer. Since each two-

input multiplexer has only one select line, a 

group of log2(No_Inputs) select lines are 

required for the new multiplexing unit. The 

least significant select line is connected to the 

leaf multiplexers and the most significant select 

line is connected to the root multiplexer. 

A row in the source selection matrices 

with only one input (indicated from the last 

column) implies that the corresponding 

hardware unit (PE or register) does not require 

a multiplexer and is connected directly to the 

source of that input. These rows with zero 

number of inputs means that the corresponding 

hardware unit does not take any input from any 

other hardware units in the system. This is the 

case for the input virtual PE. This PE takes its 

input stream from outside the system; thus, it 

has a zero number of inputs with respect to other 

hardware units. 

From table 1, it is clear that there are two 

different sources at MUX2 of the first adder and 

at MUX1 of the second multiplier. Thus, the 

multiplexers used are ( ) multiplexers. The 

second PE of each type has only one operation 

to process, thus it does not need any 

multiplexer, and it is connected directly to its 

source of data. Clearly from table 2 the registers 

do not need any multiplexers. 

 

III. Conclusion 

A new technique to determine the 

interconnection is presented here. It is used to 

assign the data sources to the inputs of the 

processing elements is also presented. This 

algorithm minimizes the total number of such 

sources assigned to each input multiplexer. As 

a result, the total size of multiplexing units is 

minimized. 
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