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Abstract—A group signature scheme in which signers are
able to designate openers by specifying access structures over
openers’ attributes was introduced at CANDAR 2021, which is
called GSdT. In this paper, we present a construction of GSdT
from only symmetric-key primitives; pseudorandom functions,
hash functions and commitments. Due to the features, our
GSdT is expected to be secure against computational power
of quantum computers. We first introduce syntax and security
definitions in the static group model. Then, in our construction,
the key ingredient is a non-interactive zero-knowledge proof of
knowledge system that is constructed from the primitives in
the “MPC-in-the-head” paradigm, owing the technique that was
developed by Katz, Kolesnikov and Wang (ACM-CCS 2018). Our
approach starts with their group signature scheme, but non-
trivially extends the Merkle tree so that signers can treat (all-
AND) boolean formulas as the access structures. According to our
estimation, the signing time is less than 3.0 sec and the signature
size is less than 0.5 MB in a scenario that the numbers of group
members and attributes are 27 and 23, respectively, and security
to be attained is 128 bit quantum security.

Index Terms—group signatures, anonymity, traceability,
accountability, attribute-based, post-quantum, symmetric-key
primitives

I. INTRODUCTION

Anonymity and traceability are the fundamental properties
required to cryptography. However, it is seemingly difficult
to make these two properties compatible. A typical example
is the group signature. The group signature is a kind of
digital signatures, proposed by Chaum and van Heyst [1] and
formalized through the work of Bellare-Micciancio-Warinschi
[2]. The group signature has both anonymity and traceability
as its security requirements, but the excessive power of tracing
by openers forces the anonymity opaque. This is because
signers are unable to know by whom and when their signatures
are opened. The feature motivated the study of balancing
the anonymity and the traceability such as accountable ring
signatures [3], group signatures with message-dependent open-
ing [4], bifurcated anonymous signatures [5] and multimodal
private signatures [6].

The group signatures with designated traceability over
openers’ attributes (GSdT) that were proposed by Anada,

Fukumitsu and Hasegawa at CANDAR 2021 [7] (and [8])
are group signatures by which signers are able to designate
openers with access structures. That is, the signers can control
traceability by selecting the openers’ attributes in the signing
phase. This characteristic is expected to help accountability in
the way that the openers with satisfying attributes can claim
validity of opening because they are legitimately selected
by signers themselves. In [7], [8], the notion of GSdT was
introduced with the syntax of schemes and the definitions
of security requirements. Also, the public-key based generic
construction of GSdT was given, namely a construction from
a ciphertext-policy attribute-based encryption (CP-ABE), a
digital signature and a non-interactive zero-knowledge proof
(NIZK). Then, the pairing-based instantiation was proposed
by [9].

On the other hand, one of the most important research topics
of the modern cryptography is the post-quantum cryptography.
This is because the basic problems of the integer factorization
and the discrete logarithm can be solved in polynomial-time
by applying the Shor’s algorithm [10] on a quantum computer.
On GSdT, the known concrete construction is not quantum
computer resistant as described above. Thus to construct a
post-quantum GSdT is a remaining problem that should be
addressed.

The aim of this paper is a post-quantum construction of
GSdT. There are two approaches for the purpose. One is
the quantum-resistant public-key based approach such as the
lattice-based one. This approach basically follows the known
generic constructions [7], [11]. The other approach is to
employ the symmetric-key primitives such as pseudorandom
functions (PRFs), hash functions (HFs) and commitments
(Cmts).

A. Our contribution

In this paper, we adopt the latter approach, which is justified
due to the following situation. In Round 3 Submissions of
NIST Post-Quantum Cryptography [12], “Alternate Candi-
dates: Digital Signature Algorithms” have been selected. The
Picnic signature algorithm [13] is one of the selection, which



is constructed from only the symmetric-key primitives. As is
explained in the specification [13], the feature of Picnic is
“conservative” assumptions on PRFs, HFs and Cmts, which
means assumptions on symmetric-key primitives. The primi-
tives can be instantiated from, for example, LowMC1 [14] and
SHAKE [15]. Thus, the approach is considered to be one of the
hopeful directions of research for post-quantum cryptography.

Along the approach, our construction of GSdT is sketched
as follows. It is basically a non-trivial extension of the group
signature scheme (GS) that was given by Katz, Kolesnikov and
Wang [16] (KKW), and a subsequent work by Anada, Fuku-
mitsu and Hasegawa [17] for an accountable ring signature
scheme from the symmetric-key primitives, where the main
idea is for a group member to generate a signature by gen-
erating a non-interactive zero-knowledge proof of knowledge
(NIZKPoK) of a secret key corresponding to the group public
key. There the NIZKPoK is constructed from the symmetric-
key primitives, and the properties of knowledge-soundness and
computational zero-knowledge follow from the properties of
them, in the random oracle model. A key observation must
be on an effective usage of a Merkle tree [18] to shorten the
size of a signature and to reduce the amount of computation to
generate a signature. Analysing the construction of the Merkle
tree, we extend the tree by patching subtrees whose leaves have
labels that are hash values of random private-key strings each
of which is for every attributes and for every group members
(see Fig. 2). Then we can naturally (but non-trivially) apply
the strategy of KKW [16].

Due to the simplicity of the static group model in which
the keys of group members and openers are generated and
fixed in the group-key generation phase, we will introduce
syntax and security definitions for the static case, for the
first time. More precisely, referring to the previous work by
Bellare, Micciancio and Warinschi [2], we give definitions
of correctness, anonymity and traceability for our setting of
designated traceability over openers’ attributes. Intuitively,
the correctness is the property that honestly generated group
signatures are accepted and can be traced to actual signers,
with probability one. The anonymity is the property that, given
a group signature, it is computationally difficult for any PPT
adversary to correctly guess the actual signer with non-trivial
probability. In our construction of GSdT, the property is guar-
anteed due to the zero-knowledge property of the employed
NIZKPoK of KKW [16]. The traceability is the property that it
is computationally difficult for any PPT adversary to generate
a valid group signature that is traced to a group member
who is not corrupted. In our construction, the property is
guaranteed due to the knowledge-soundness of the NIZKPoK
in the random oracle model and collision-resistance of hash
functions.

Let l denote the number of group members and let k denote
the number of attributes that appears in an all-AND boolean
formula associated to a group signature of our GSdT. The
number of leaf nodes of our GSdT is equal to lk, while that

1Low multiplicative complexity.

of the KKW GS is l. Since the structure of the above Merkle
tree is similar to that of the KKW GS, we estimate that the
asymptotic behaviors of the signing time and the size of a
signature follow the behaviors of the KKW GS. Here in the
case of the KKW GS the asymptotic behaviors are proportional
to the number of leaf nodes, l. Therefore the signing time and
the size of a signature of our GSdT are proportional to lk.
Moreover, the expected concrete performance can be estimated
based on the implementation results of the group signature
scheme in the previous [16]. As a result, the signing time is
expected to be less than 3.0 sec and the signature size is less
than 0.5 MB in the situation that the number of group members
is 27, the number of designated attributes is 23 and the target
security is 128 bit quantum security. Thus, our GSdT from
the symmetric-key primitives is considered to be efficient in
realistic scenarios.

Finally, we note that the description of our GSdT in the later
sections is for the case of all-AND formulas when the signers
designate openers’ attributes. To describe the construction for
the case of general boolean formulas should be our future
work.

II. PRELIMINARIES

N denotes the set of natural numbers. We write [n] to denote
the set of n numbers {1, . . . , n} ⊂ N. λ(∈ N) stands for the
security parameter. Let pp be the set of public parameters. The
number of elements in a finite set S is denoted by |S|. ε is
the empty string. The concatenation of a string a followed by
a string b is written by a ∥ b. a ∈R S means that a uniform
random sampling of an element a from a finite set S. We
denote by z ← A(a), or A(a) → z that an algorithm A with
input a returns z. When a probabilistic algorithm A with input
a and randomness r on a random tape returns z, we define
it as z ← A(a; r). Let AO denote an algorithm A which is
allowed to access an oracle O. St stands for the inner state of
an algorithm. “Probabilistic polynomial-time” is abbreviated
as PPT.

A. Pseudo-random Functions [19]

We treat pseudo-random functions as a family. For a security
parameter λ ∈ N and a key kλ ∈ {0, 1}λ, we define a function
PRFλ

kλ
: {0, 1}λ → {0, 1}λ. Then PRF = {PRFλ

kλ
}λ∈N is

a function family. We also employ a uniform λ-bit function
family UF = {UFλ}. Namely, UFλ : {0, 1}λ → {0, 1}λ maps
any λ-bit string into a uniformly distributed λ-bit string. PRF
should satisfy the following requirement.
(PRF: pseudorandomess) For any given PPT algorithm A,
Advrand

PRF,A(λ) := |Pr[APRFλ
kλ (1λ) = 1]−Pr[AUFλ

(1λ) = 1]|
is negligible in λ.

The superscript λ of PRFλ
kλ

is omitted as PRFkλ
.

B. Hash Functions [20]

We also treat hash functions as a family. For a security pa-
rameter λ ∈ N, we define a function Hλ : {0, 1}∗ → {0, 1}λ,
and then H = {Hλ}λ∈N is set as a function family. H should
satisfy the following two requirements.



(HF1: Preimage resistance) For any given PPT algorithm A,
Advpreim

H,A (λ) := Pr[Hλ(x) = y | y ∈R {0, 1}λ; x← A(y)] is
negligible in λ.
(HF2: Collision resistance) For any given PPT algorithm A,
Advcol

H,A(λ) := Pr[x1 ̸= x2 ∧ Hλ(x1) = Hλ(x2) | (x1, x2)←
A] is negligible in λ.

The superscript λ of Hλ is omitted as H.

C. Merkle Trees [18]

A Merkle tree is one of the data structures of trees that
are basically binary. Each leaf of the tree has a hash value
h ← H(y) of some value y. Then, for each non-leaf node
that has two children whose hash values are represented by
h1 and h2, a hash function hp ← H(h1 ∥ h2) is attached to
the non-leaf node. The hash value attached to the Markle root
is expressed by h∗. Pathj is said to be a Merkle proof at a
leaf j or a Merkle path at a leaf j denoted as Pathj . Pathj

is the minimum set of values to reconstruct h∗. Namely, it
includes the value attached to the leaf j and all the values of
the successive parents, the values attached to all the siblings.
For the convenience, we also include h∗ in Pathj .

D. Commitments [19]

Let p(·) be a polynomial. A commitment scheme Cmt
consists of two PPT algorithms; Com and Vrf.
• Com(m; r) → com. On input a message m ∈ {0, 1}p(λ)
with a randomness r, this PPT algorithm generates a commit-
ment com, and then returns com.
• Vrf(com,m, r) → d. On input a commitment com, a
message m and a randomness r that is used to generate
com, this deterministic polynomial-time algorithm generates
a boolean decision d, and then returns d.

Cmt should satisfy the following three requirements.
(Com1: Correctness) For any 1λ, any m ∈ {0, 1}p(λ) and any
r, Pr[d = 1 | com← Com(m; r); d← Vrf(com,m, r)] = 1.
(Com2: Hiding) We define the following experimental algo-
rithm Exphide

Cmt,A for any given algorithm A.

Exphide
Cmt,A(1λ)

(m0,m1, St)← A(1λ); b ∈R {0, 1}; com← Com(mb; r)

b′ ← A(St, com); If b = b′ then return 1 else return 0

Then, Cmt is said to be computationally hiding if, for any
PPT algorithm A, the advantage of A, which is given by
Advhide

Cmt,A(λ) := |Pr[Exphide
Cmt,A(1λ) = 1] − (1/2)|, is neg-

ligible in λ.
(Com3: Binding) We define the following experimental algo-
rithm Expbind

Cmt,A for any given algorithm A.

Expbind
Cmt,A(1λ)

(com,m, r,m′, r′)← A(1λ); If Vrf(com,m, r) =

Vrf(com,m′, r′) = 1 ∧m ̸= m′ then return 1 else return 0

Then, Cmt is said to be computationally binding if, for any
PPT algorithm A, the advantage of A, which is given as
Advbind

Cmt,A(λ) := Pr[Expbind
Cmt,A(1λ) = 1], is negligible in λ.

E. Zero-Knowledge Proofs from “MPC-in-the-Head” [16],
[21]

Zero-knowledge Proofs from MPC-in-the-Head are zero-
knowledge proofs proposed by Ishai, Kushilevitz, Ostrovsky
and Sahai ( [21], IKOS). We employ the modified version
proposed by Katz, Kolesnikov and Wang ( [16], KKW), which
is summarized below. The protocol ΠZK is a three-round
protocol for which a prover convinces the possession of a
witness w satisfying a given circuit C. ΠZK is an honest-
verifier zero-knowledge (HVZK) proof of knowledge. ΠZK
is generically constructed from ΠMPC that is secure against
semi-honest corruption of all-but-one of the n parties, and
can evaluate the circuit C in the “preprocessing model” (see
Appendix A.2 of [16]). Let P1, . . . , Pn be the parties in ΠMPC.
In such a preprocessing phase, for each i ∈ [n], a seed seedi

is chosen for the party Pi to derive a longer randomness used
in ΠMPC, and then a |C|-bit string aux for the party Pn is
also generated, where |C| denotes the number of AND-gates
of C. (For more details, refer to [16].) In the KKW protocol, a
prover P emulates the preprocessing phase, then M copies of
ΠMPC are executed. A verifier V in ΠZK selects τ emulators
whose transcript is opened, where τ ∈ [M ]. Thus, ΠZK is
specified by the parameters (M,n, τ).
3-round HVZK protocol of [16] for a circuit C.
Input) A prover P is given a circuit C and a witness s.t.
C(w) = 1, whereas a verifier V is given only the circuit C.
Round 1: P) For j ∈ [M ], the following processes are run:

1) Choose seed∗
j ∈R {0, 1}λ and then pseudo-randomly

generate seedj,1, rj,1, . . . , seedj,n, rj,n ∈ {0, 1}λ by
using seed∗

j . Also, generate auxj ∈ {0, 1}|C| by
the specific way explained in Section 2 of [16]. Set
statej,i := seedj,i for i ∈ [n − 1]. As for i = n set
statej,n := seedj,n ∥ auxj .

2) For i ∈ [n], set comj,i ← Com(statej,i; rj,i).
3) Simulate the online phase of ΠMPC by using

(statej,i)i∈[n]. During that, store the messages broadcast
by Pi as msgsj,i.

4) Set hj ← H(comj,1 ∥ · · · ∥ comj,n), rj ∈R {0, 1}λ and
h′
j ← H((ẑj,α)α∈[|C|] ∥ msgsj,1 ∥ . . . ∥ msgsj,n ∥ rj),

where ẑj,α is a “masked value” that is formalized in
Section 2.1 of [16].

Set h ← H(h1 ∥ · · · ∥ hM ), h′ ← H(h′
1 ∥ · · · ∥ h′

M ) and
h∗ ← H(h, h′), and then send h∗ to V.
Round 2: V) Choose a subset C ⊂ [M ] including τ elements
uniformly at random. For j ∈ C, choose pj ∈ [n] uniformly at
random. Set P := (pj)j∈C , then send (C,P) to P.
Round 3: P) Send (seed∗

j , h
′
j)j∈[M ]\C and

((statej,i, rj,i)i ̸=pj
, comj,pj

, (ẑj,α)α∈[|C|], rj ,msgsj,pj
)j∈C

to V.
Verify: V) the following processes are run:

1) For j ∈ C and i ̸= pj , set comj,i ← Com(statej,i; rj,i)
and hj ← H(comj,1 ∥ · · · ∥ comj,n).

2) For j ∈ [M ]\C, set hj as P does, and h← H(h1 ∥ · · · ∥
hM ).



3) For j ∈ C, generate (msgsj,i)i∈[n] and (ẑj,α)α∈[|C|],

compute the output bit b of C and check b
?
= 1. set

h′
j ← H((ẑj,α)α∈[|C|] ∥ msgsj,1 ∥ . . . ∥ msgsj,n ∥ rj)

and h′ ← H(h′
1 ∥ · · · ∥ h′

M ).
4) Check H(h, h′)

?
= h∗.

We can apply the Fiat-Shamir transformation [22] to the
above 3-round protocol to obtain a non-interactive zero-
knowledge proof of knowledge in the random oracle
model. We denote the proof system by NIZKPoK, and
use it in the later sections. NIZKPoK should satisfy the
following three requirements. (NIZKPoK1: Completeness),
(NIZKPoK2: Knowledge-Soundness) and (NIZKPoK3: Com-
putational Zero-Knowledge). For the details, see Section 2 of
[16].

F. Predicates over Attributes

To treat an attribute-based primitive, the following notations
for a function Rκ that describes a relation between two kinds
of attributes are introduced.
• κ: A vector in Nc for a constant c ∈ N, which is an index
that indicates a structure of a predicate.
• Xκ: The set of openers’ attributes.
• Yκ: The set of signature attributes.
• Rκ : Xκ × Yκ → {0, 1}: A predicate that determines
a relation between Xκ and Yκ as {(X,Y ) ∈ Xκ × Yκ |
Rκ(X,Y ) = 1}.

III. GROUP SIGNATURES WITH DESIGNATED
TRACEABILITY OVER OPENERS’ ATTRIBUTES

- STATIC CASE -

In this section, we define syntax and security of our scheme
GSdT of group signatures with designated traceability over
openers’ attributes. In the previous work [7], the proposed
syntax of GSdT is partially dynamic group [11]; that is, a
user can join the group and a candidate opener can get an
opening key based on its attributes. In contrast, our syntax is
static [2]; that is, the keys of group members are generated and
fixed, and also, the keys of openers are generated and fixed,
in the group-key generation phase. Then security definitions
are described in the static case.

A. Syntax

Our GSdT consists of four PPT algorithms
(GKG,GSign,GVrfy,Open).
• GKG(1λ, 1l, 1L, κ) → (pp, gpk, gsk,ok). This PPT algo-
rithm of group-key generation is executed by the group man-
ager (abbreviated as “GM”). GKG takes as input a string 1λ

that indicates the security parameter λ, a string 1l that indicates
the number of group members l, a string 1L that indicates the
number of openers L and an index κ that indicates a structure
of a predicate. Here l and L are assumed to be upper bounded
by a polynomial in λ. Also, κ is assumed to include a number
K ∈ N that determines the attribute universe U = [K] (a small
universe). Moreover, for every o ∈ [L], κ is assumed to include
data that determine the opener’s attribute Xo. GKG returns a
set of public parameters pp, a group public key gpk, a vector

of group member private secret keys gsk (with l entries) and
a vector of openers’ opening keys ok (with L entries). Here,
for each o ∈ [L], ok[o] is assumed to include the data of the
opener’s attribute Xo.
• GSign(gpk, gsk[i], Y,m)→ (Y, σ0). This PPT algorithm of
group-signature generation is executed by a group member.
GSign takes as input gpk, gsk[i], a signature attribute Y and
a message m. GSign returns a group signature (Y, σ0).
• GVrfy(gpk,m, (Y, σ0)) → 1/0. This deterministic
polynomial-time algorithm of group-signature verification is
executed by an arbitrary verifier of a group signature. GVrfy
takes as input gpk, m and (Y, σ0). GVrfy returns a boolean
decision 0 or 1.
• Open(gpk,ok[o],m, (Y, σ0)) → i′. This deterministic
polynomial-time algorithm of group-signature opening is exe-
cuted by an opener of a group signature. Open takes as input
gpk, ok[o], m and (Y, σ0). Open returns a group member ID,
i′.

B. Security Definitions

For a scheme of GSdT in the static case, we introduce three
security notions according to the previous work of Bellare et
al. [2]; correctness, anonymity and traceability.

Firstly, we define oracles that are needed to define the secu-
rity notions, by Fig.1. GSignO is a group-signing oracle which
returns the output of GSign. OpenO is an opening oracle
which returns the output of Open. CrptOO is a corrupting-
opener oracle which returns ok[o]. CrptUO is a corrupting-
user oracle which returns gsk[i]. ChaOb is a challenge oracle
about a bit b which returns a challenge signature (Y, σ0). We
note that ChaOb responds to only the first query. Besides, in
the following, MS is the set of (m, (Y, σ0)) which is queried
to OpenO. CO is the set of openers’ IDs (‘o’s) which are
corrupted by an adversary. CU is the set of group members’
IDs (‘i’s) which are corrupted by the adversary.
GSdT1: Correctness In the following experimental algorithm
Exprcorr

GSdT,A, A is an algorithm.

Exprcorr
GSdT,A(1λ, 1l, 1L, κ)

(pp, gpk, gsk,ok)← GKG(1λ, 1l, 1L, κ)

(i,m, Y )← A(gpk)
If i /∈ [l] then return 0

(Y, σ0)← GSign(gpk, gsk[i], Y,m)

OSY ← {o ∈ [L] | Rκ(Xo, Y ) = 1 for (Xo, ōk)← ok[o]}
If OSY ̸= ∅ and GVrfy(gpk,m, (Y, σ0)) = 0 then return 1

For o ∈ OSY do

i′ ← Open(gpk,ok[o],m, (Y, σ0))

If i ̸= i′ then return 1

Return 0

Then the advantage of the adversary algorithm A is defined
as

Advcorr
GSdT,A(λ)

def
= Pr[Exprcorr

GSdT,A(1λ, 1l, 1L, κ) = 1].



GSignO(i, Y,m)
If i /∈ [l] then return ⊥
Else return GSign(gpk, gsk[i], Y,m)

OpenO(o,m, (Y, σ0))
If (m, (Y, σ0)) ∈ MS then return ⊥
Return Open(gpk,ok[o],m, (Y, σ0))

CrptOO(o)
If o /∈ [L] then return ε
(Xo, ōk)← ok[o]
If ∃(m, (Y, σ0)) ∈ MS s.t. Rκ(X,Y ) = 1

then return ε
CO← CO ∪ {o}
Return ok[o]

CrptUO(i)
If i ∈ CU then return ε
CU← CU ∪ {i}
Return gsk[i]

ChaOb(i0, i1,m, Y )
If i0 /∈ [l] or i1 /∈ [l] then return ⊥
If gsk[i0] = ε or gsk[i1] = ε then return ⊥
If ∃o ∈ CO s.t.
Rκ(X,Y ) = 1 for (Xo, ōk)← ok[o]

then return ⊥
(Y, σ0)← GSign(gpk, gsk[ib], Y,m)
MS← MS ∪ {(m, (Y, σ0))}
Return (Y, σ0)

Fig. 1. Definition of oracles.

Definition 1: If for any unbounded A Advcorr
GSdT,A(λ) = 0,

then GSdT is said to be correct.
GSdT2: Full anonymity In the following experimental algo-
rithm Expranon-b

GSdT,A, A is an algorithm.

Expranon-b
GSdT,A(1λ, 1l, 1L, κ) // b ∈ {0, 1}

(pp, gpk, gsk,ok)← GKG(1λ, 1l, 1L, κ)

MS← ∅,CO← ∅
d← A(gpk, gsk)OpenO,CrptOO,ChaOb

Return d

In the above experiment, after a query to the challenge oracle
ChaOb, it is prohibited for A to issue queries to the opening
oracle OpenO and the corrupting-opener oracle CrptOO
that A wins trivially. Then the advantage of the adversary
algorithm A is defined as

Advanon
GSdT,A(λ)

def
= |Pr[Expranon-0

GSdT,A(1λ, 1l, 1L, κ) = 1]

−Pr[Expranon-1
GSdT,A(1λ, 1l, 1L, κ) = 1]|.

Definition 2: If for any PPT A Advanon
GSdT,A(λ) is negligible

in λ, then GSdT is said to be fully anonymous.
However, our scheme of GSdT which will be described in

Section IV does not have the above full anonymity. For this
reason, we introduce the following “weak anonymity”.

GSdT2’: Weak anonymity In the following experimental al-
gorithm Exprw-anon-b

GSdT,A, A is an algorithm.

Exprw-anon-b
GSdT,A(1λ, 1l, 1L, κ) // b ∈ {0, 1}

(pp, gpk, gsk,ok)← GKG(1λ, 1l, 1L, κ)

MS← ∅,CO← ∅,CU← ∅
d← A(gpk)GSignO,OpenO,CrptUO,CrptOO,ChaOb

If i0 ∈ CU or i1 ∈ CU then return ⊥
Return d

In the above experiment, after a query to the challenge oracle
ChaOb, it is prohibited for A to issue queries to the opening
oracle OpenO and the corrupting-opener oracle CrptOO that
A wins trivially.

In the definition of the full anonymity, the adversary A
is given all the private secret keys gsk. In contrast, in the
definition of the weak anonymity, A is not given the private
secret keys gsk[i0] and gsk[i1] where i0 and i1 are group
members’ IDs queried to the challenge oracle ChaO. That
is, A is not given gsk, and moreover, the queries to the
corrupting-group-member oracle CrptUO about i0 and i1 is
prohibited.

Then the advantage of the adversary algorithm A is defined
as

Advw-anon
GSdT,A(λ)

def
= |Pr[Exprw-anon-0

GSdT,A(1λ, 1l, 1L, κ) = 1]

−Pr[Exprw-anon-1
GSdT,A(1λ, 1l, 1L, κ) = 1]|.

Definition 3: If for any PPT A Advw-anon
GSdT,A(λ) is negligible

in λ, then GSdT is said to be weakly anonymous.
GSdT3: Traceability In the following experimental algorithm
Exprtrace

GSdT,A, A is an algorithm.

Exprtrace
GSdT,A(1λ, 1l, 1L, κ)

(pp, gpk, gsk,ok)← GKG(1λ, 1l, 1L, κ)

CU← ∅
(m, (Y, σ0))← A(gpk,ok)GSignO,CrptUO

OSY ← {o ∈ [L] | Rκ(Xo, Y ) = 1 for (Xo, ōk)← ok[o]}
If OSY = ∅ or GVrfy(gpk,m, (Y, σ0)) = 0 then return 0

Find o ∈ [L] s.t. Rκ(Xo, Y ) = 1 for (Xo, ōk)← ok[o]
i← Open(gpk,ok[o],m, (Y, σ0))

If i ∈ CU then return 0

If (i, Y,m) was queried to GSignO then return 0

Return 1

Then the advantage of the adversary algorithm A is defined
as

Advtrace
GSdT,A(λ)

def
= Pr[Exprtrace

GSdT,A(1λ, 1l, 1L, κ) = 1].

Definition 4: If for any PPT A Advtrace
GSdT,A(λ) is negligible

in λ, then GSdT is said to be traceable.



IV. OUR CONSTRUCTION AND SECURITY

In this section, we describe our construction of GSdT
from symmetric-key primitives. Then we state its security
properties.

A. Construction

We construct the four PPT algorithms GKG, GSign, GVrfy
and Open from pseudorandom function (PRFs), hash func-
tions (Hs) and commitments (Cmts). Note here that the non-
interactive zero-knowledge proof of knowledge NIZKPoK of
KKW [16] is constructed from PRF, H and Cmt. In the
following, a signature attribute Y ∈ Yκ is an all-AND boolean
formula, while an opener’s attribute X ∈ Xκ is a subset of
the attribute universe U = [K]. We denote by [Y ] the set of
attributes that appear in Y .
• GKG(1λ, 1l, 1L, κ) → (pp, gpk, gsk,ok). Our GKG takes
as input 1λ, 1l, 1L and κ. GKG computes the values that
determines the circuits of PRF·(·), H(·) and NIZKPoK. It
also computes the values of public parameters of the Merkle
tree. It sets the data of the public parameters as pp. Then for
each group member i ∈ [l] and for every attribute j ∈ [K],
it generates two strings k0i,j, k

1
i,j ∈R {0, 1}λ uniformly and

independently at random. It sets a private secret key for i as

gsk[i] : = (k0i,j, k
1
i,j)j∈[K], (1)

i = 1, . . . , l.

Then, for each opener o ∈ [L], it sets an opening key as

ok[o] : =
(
Xo, (k

0
i,j)j∈Xo

)
i∈[l]

, (2)

o = 1, . . . , L.

Then, for each i ∈ [l] and for every j ∈ [K], it computes values
of the pseudorandom function as

y0i,j ← PRFk0
i,j
(0λ), y1i,j ← PRFk1

i,j
(0λ). (3)

Using these values, it sets the group public key as

yi,j : = (y0i,j, y
1
i,j), (4)

i = 1, . . . , l, j = 1, . . . ,K,

gpk : = (yi,j)i∈[l],j∈[K]. (5)

It returns (pp, gpk, gsk,ok).
GM maintains pp and gpk. On the other hand, GM dis-

tributes gsk[i] to each group member i (i = 1, . . . , l), and
ok[o] to each opener o (o = 1, . . . , L).
• GSign(gpk, gsk[i], Y,m) → (Y, σ0). Our GSign takes as
input gpk, gsk[i], Y and m. First, for each i ∈ [l], it computes
for each j ∈ [Y ] the hash value of yi,j as

hi,j ← H(yi,j), (6)
j ∈ [Y ], i ∈ [l].

Then it generates a Merkle tree T from the data (hi,j)j∈[Y ],i∈[l],
as follows (see Fig. 2 for an instance case (l, |[Y ]|) = (2, 2)).

1) For each i ∈ [l]: Construct a binary tree from the data
(hi,j)j∈[Y ], and set the root hash as h∗

i .

2) Construct a binary tree from the data (h∗
i )i∈[l], and set

the root hash as h∗.
3) Concatenate the root nodes of 1) with leaf nodes of 2)

by identifying the nodes with the same label h∗
i , and set

the resulting tree as T .

h∗

h∗
1

h1,1

y1,1

h1,2

y1,2

h∗
2

h2,1

y2,1

h2,2

y2,2

Fig. 2. Merkle tree T of our GSdT. Case of (l, |[Y ]|) = (2, 2)．

Second, by using the index ‘0’ part of the private secret key
gsk[i] = (k0i,j, k

1
i,j)j∈[K] (i.e. the former component), GSign

computes the following hash value.

Parsing [Y ] as (j1, . . . , jk), j1 < · · · < jk,

h′ ← H(k0i,j1 , . . . , k
0
i,jk

), (7)

where H means applying the hash function H successively
(for neighboring two entries) to form a binary-tree structure
extending the Merkle tree.

Then, using h′ as the key, GSign computes the hash value
x of m and the pseudorandom function value of x.

x← H(m), (8)
y ← PRFh′(x). (9)

Third, GSign generates a boolean circuit Cx,y,T so that it
satisfies the following conditions. Cx,y,T should be hardcoded
with the values x, y and (hi,j)j∈[Y ],i∈[l], where each hi,j is the
value labeled at each leaf node of T . Cx,y,T should take as
input (k0i,j, k

1
i,j)j∈[Y ], i and a Merkle path Path. Here, when the

tree T is truncated just under the node N ′ which has the label
h∗

i ( so that N ′ turns into a leaf node), Path is the Merkle path
at the node N ′ to reconstruct h∗. Cx,y,T should be a circuit to
compute y0i,j ← PRFk0

i,j
(0λ) and y1i,j ← PRFk1

i,j
(0λ) for every

j ∈ [Y ]. Cx,y,T should output a boolean 1 if and only if the
following three conditions hold.

1) y = PRFh′(x).
2) Path is certainly the Merkle path at the node N ′ with

respect to the truncated tree of T .
3) The remaining subtree (generated by truncating T just

above N ′) is the Merkle tree to reconstruct the root hash
h∗

i from the values (k0i,j, k
1
i,j)j∈[Y ] through PRF and H.

Fourth, GSign generates a proof π of knowledge of a witness
w := ((k0i,j, k

1
i,j)j∈[Y ], i,Path) that makes the circuit Cx,y,T

output 1 by executing the prover algorithm P(Cx,y,T , w) of
the KKW NIZKPoK.

Finally, setting σ0 := (y, π), GSign returns a group signa-
ture (Y, σ0).



• GVrfy(gpk,m, (Y, σ0)) → 1/0. Our GVrfy takes as input
gpk, m and (Y, σ0). It computes the hash value x← H(m) of
the message m, and parses σ0 = (y, π) to obtain y, and gener-
ates the Merkle tree T from the data hi,j ← H(yi,j), j ∈ [Y ], i ∈
[l]. Then it executes the verifier algorithm V(Cx,y,T , π) of the
KKW NIZKPoK, and obtains a boolean decision b. GVrfy
returns b.
• Open(gpk,ok[o],m, (Y, σ0)) → i′. Our Open takes as
input gpk, ok[o], m and (Y, σ0). It firstly checks whether
R(Xo, Y ) = 1 or not. Note that R(Xo, Y ) = 1 holds if and
only if Xo(⊂ [K]) satisfies that Xo ⊃ [Y ]. If R returns 0, then
Open returns ⊥. Else if R returns 1, then Open computes
x← H(m), and parses σ0 = (y, π) to obtain y. Then it checks
whether GVrfy(gpk,m, (Y, σ0)) = 1 holds or not. If GVrfy
returns 0, then Open sets i′ := ⊥, and returns i′. Else if GVrfy
returns 1, then, by using ok[o] =

(
(k0i,j)j∈Xo

)
i∈[l]

, Open does
the following exhaustive search. (Note that [Y ] = {j1, . . . , jk}.)

For i ∈ [l] :

h′ ← H(k0i,j1 , . . . , k
0
i,jk

)

If y = PRFh′(x) then return i′ := i
Return i′ := ⊥

Open returns i′.

B. Security

In the following, (PRF), (HF1), (HF2), (Com1), (Com2) and
(Com3) denote the properties of PRF, H and Cmt summarized
in Section II.

Theorem 1 (Correctness): If PRF is a pseudorandom func-
tion, H is a hash function and Cmt is correct (Com1), then
our GSdT is correct (GSdT1)．
Proof (sketch). In the experiment Exprtrace

GSdT,A(1λ, 1l, 1L, κ),
GVrfy(gpk,m, (Y, σ0)) returns 1 when OSY ̸= ∅ due
to the construction of our GSdT. Further, i′ returned by
Open(gpk,ok[o],m, (Y, σ0)) satisfies i′ = i. These holds for
any unbounded A. □

Theorem 2 (Weak anonymity): If PRF is pseudorandom
(PRF), H is preimage resistant (HF1) and collision resistant
(HF2), Cmt is correct (Com1) and computationally hiding
(Com2), then our GSdT is weakly anonymous (GSdT2’) in
the random oracle model.
Proof (sketch). The property holds due to the computa-
tional zero-knowledge of NIZKPoK and our construction
of the Merkle tree T . More precisely, for any given PPT
adversary A that is in accordance with the experiment
Exprw-anon-b

GSdT,A(1λ, 1l, 1L, κ), we construct a PPT distinguisher D
on NIZKPoK, assuming all the hash functions are the random
oracles. The details are omitted. □

Theorem 3 (Traceability): If PRF is pseudorandom (PRF),
H is preimage resistant (HF1) and collision resistant (HF2),
Cmt is correct (Com1) and computationally binding (Com3),
then our GSdT is traceable (GSdT3) in the random oracle
model.
Proof (sketch). The proof goes in the same way as in the
traceability proof of the group signature scheme proposed by

KKW [16], except treatment of the predicate R(X,Y ) and
the related keys gsk and ok because our construction of the
Merkle tree T is similar to that of the Merkle tree of KKW
[16]. More precisely, for any given PPT adversary A that is in
accordance with the experiment Exprtrace

GSdT,A(1λ, 1l, 1L, κ), we
construct a polynomial-time reduction to the computationally
binding (Com3) by using the PPT knowledge-extractor B on
NIZKPoK, assuming all the hash functions are the random
oracles. The details are omitted. □

V. PERFORMANCE ESTIMATION

In this section, we estimate expected performance of our
GSdT described in Section IV. The estimation is based on the
implementation and estimation of KKW [16].

As a concrete instantiation that is expected to attain security
against quantum computers, the block cipher LowMC [14]
(as PRF) and the cryptographic hash function SHAKE [15]
(as H and Cmt) are employed in KKW [13], [16]. LowMC
is suitably designed for multi-party computation because it
has less AND-gates and less AND-depth [14]. By employing
LowMC in the design of PRF, the computational amount to
generate a signature and the length of a generated signature
of the group signature scheme GS that was proposed in KKW
[16] are expected to be less than the ones which does not
employ LowMC. The computational amount and the length
are dominated by the circuit C that appears in the signing
algorithm of GS. Here we note that the structure of wires
and gates are determined by the Merkle tree T . Things are
similar in the case of our GSdT because the construction
of our Merkle tree has similar structure to that of GS [16].
Nonetheless, we pay attention that the number of leaf nodes
of GS [16] is equal to the number of group members l, while
the number of leaf nodes of our GSdT is equal to lk, where
k := |[Y ]| is the number of attributes that appears in the all-
AND boolean formula Y associated to the group signature.
Thus, in short, when our GSdT is instantiated with the block
cipher LowMC [14], its performance is estimated to be the
one where the number l is substituted with lk.

Table I shows the estimation based on the substitution. We
remark that the note (*1) in Table I shows citation from the
results with 128 bit quantum security. Here l = 27 = 128 and
k = 23 = 8, so lk = 210, and hence we read ‘ 210 ’ in Table
4 of KKW [16].

VI. CONCLUSION

In this paper, based on the previous work of Katz-
Kolesnikov-Wang [16] (KKW), we have proposed a group sig-
nature scheme GSdT that is constructed from only symmetric-
key primitives, in which a signer can designate openers with an
all-AND formula over openers’ attributes. Here the symmetric-
key primitives are pseudorandom functions, hash functions
and commitments. The proposed GSdT is expected to be
secure against computational power of quantum computers.
The performance of our GSdT is also estimated. The signing
time is less than 3.0 sec and the signature size is less than 0.5
MB in the situation that the number of group members l is



TABLE I
COMPARISON OF EFFICIENCY AND SECURITY IN THE RANDOM ORACLE MODEL. (*1) MEANS (l, k) = (27, 23).

Scheme Len.σ Comp.σ Security Assump. Quant. Resist. Len.σ Comp.σ(*1)
KKW [16] GS O(log(l)) O(log(l)) (PRF),(HF1,2),(COM1-3) Yes 285KB (*1) 2.0sec (*1)

Our GSdT O(log(lk)) O(log(lk)) (PRF),(HF1,2),(COM1-3) Yes 418KB (*1) 3.0sec (*1)

27, the number of designated attributes k is 23 and the target
security is 128 bit quantum security.

In the presented construction, only all-AND formulas over
attributes can be designated as access structures by a group
member in the signing phase. In future work, the bound of
designation should be generalized to any boolean formulas
towards attaining fine grained access control of the opening
function. Besides, since our GSdT is in the static group model,
to give GSdT schemes from symmetric-key primitives in the
models of the partially dynamic group [11] and the fully dy-
namic group [23] is a natural direction. Further, implementing
our GSdT and optimizing the parameters such as (M,n, τ)
of NIZKPoK would be useful for real usage. For the purpose,
the “Picnic 3” post-quantum signature algorithm [13] should
be analyzed.
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