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ABSTRACT 

This work objective is the presentation of Kuhn-Tucker theorem with the 

consideration of infinite dimension. So, the mathematical fundaments of this result, not 

so important in Mathematical Programming but a very challenging problem from the 

mathematical point of view, are shown in a very simple way. We will see how this result 

can be obtained in the context of real Hilbert spaces through the separation theorems. 
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1. INTRODUCTION 

As an application of convex sets separation theorems, in real Hilbert spaces, see 
[1 − 3. ], the Kuhn-Tucker theorem for infinite dimension is presented. But consider first 

an important property of the real Hilbert spaces convex continuous functionals: 

 

Theorem 1.1 

A continuous convex functional in a Hilbert space has minimum in any limited 

closed convex set.   

Demonstration: 

If the space is of finite dimension, obviously the condition of the convexity for the 

set is not needed. In spaces of infinite dimension, note that if {𝑥𝑛}  is a minimizing 

sequence, so, as the sequence is bounded, it is possible to work with a weakly convergent 

sequence and there is weak lower semi continuity, see for instance [4] : lim𝑓(𝑥𝑛) ≥ 𝑓(𝑥), 

calling f (.) the functional, where x is  the weak limit, and consequently the minimum is 

f(x). As a closed convex set is weakly closed, x belongs to the closed convex set. □ 

 

            Now it is possible to establish a basic result characterizing the minimal point of a 

convex functional constrained by convex inequalities: the Kuhn-Tucker theorem, see for 

instance [5], object of the next section. A finite number of inequalities will be considered, 

for now, and note that there is no need of imposing any continuity conditions, see [1]. 

2. KUHN-TUCKER THEOREM 

Let’s begin with 

Theorem 2.1 (Kuhn-Tucker) 

 

Be 𝑓(𝒙), 𝑓𝑖(𝒙), 𝑖 = 1, … , 𝑛, convex functionals defined in a convex subset C of a 

Hilbert space. Consider the problem 
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𝑚𝑖𝑛
𝑥∈𝐶

𝑓(𝒙)

𝑠𝑢𝑏: 𝑓𝑖(𝒙) ≤ 0, 𝑖 = 1, … , 𝑛.
 

 

Be 𝒙0 a point where the minimum, supposed finite, is reached. Suppose also that 

for each vector u in 𝐸𝑛 (Euclidean space of dimension n), non-null and such that 𝑢𝑘 ≥ 0, 

there is a point x in C such that 

 

∑ 𝑢𝑘𝑓𝑘(𝒙)

𝑛

𝑘=1

< 0                                          (2.1) 

 

where 𝑢𝑘 are the coordinates of u. 

 

Thus, 

 

i) There is a vector v, with non-negative coordinates 𝑣𝑘, such that 

 

 

min
𝒙∈𝐶

{𝑓(𝒙) + ∑ 𝑣𝑘𝑓𝑘(𝒙)

𝑛

𝑘=1

} = 𝑓(𝒙0) + ∑ 𝑣𝑘𝑓𝑘(𝒙0) = 𝑓(𝒙0),          (2.2)

𝑛

𝑘=1

 

 

ii) For any vector u in 𝐸𝑛  with non-negative coordinates (it is also said: 

belonging to the positive cone of 𝐸𝑛) 

 

 

𝑓(𝒙) + ∑ 𝑣𝑘𝑓𝑘(𝒙) ≥

𝑛

𝑘=1

𝑓(𝒙0) + ∑ 𝑣𝑘𝑓𝑘(𝒙0 ≥ 𝑓(𝒙0)) + ∑ 𝑢𝑘𝑓𝑘(𝒙0).

𝑛

𝑘=1

            (2.3)

𝑛

𝑘=1

 

 

Demonstration: 

Be the sets A and B in 𝐸𝑛+1: 

 

 𝐴: {𝒚 = (𝑦0, 𝑦1, … , 𝑦𝑛) ∈ 𝐸𝑛+1: 𝑦0 ≥ 𝑓(𝒙), 𝑦𝑘 ≥ 𝑓𝑘(𝒙)for some 𝒙 in 𝐶, 𝑘 =
1, … , 𝑛. },  

 

𝐵: {𝒚 = (𝑦0, 𝑦1, … , 𝑦𝑛) ∈ 𝐸𝑛+1: 𝑦0 < 𝑓(𝑥0), 𝑦𝑖 < 0, 𝑖 = 1, … , 𝑛. }. 
 

It is easy to confirm that A and B are disjoint convex sets in 𝐸𝑛+1. 

So, they can be separated, that is, it is possible to find 𝑣𝑘, 𝑘 = 0,1, … , 𝑛 such that  

 

inf
𝒙∈𝐶

𝑣0𝑓(𝒙) + ∑ 𝑓𝑘(𝒙) ≥ 𝑣0𝑓(𝑥0) − ∑ 𝑣𝑘|𝑦𝑘|

𝑛

𝑘=1

𝑛

𝑘=1

.          (2.4) 

 

 

As (2.4) must hold for any |𝑦𝑘|, it is concluded that 𝑣𝑘 , 𝑘 = 1, … , 𝑛 , is non- 

negative. Approaching |𝑦𝑘| from zero it is obtained 

 

 



𝑣0𝑓(𝑥0) + ∑ 𝑣𝑘𝑓𝑘

𝑛

𝑘=1

(𝒙) ≥ 𝑣0𝑓(𝑥0) 

 

 

and as the 𝑓𝑘(𝑥0) are non-positive it follows that 

 

∑ 𝑣𝑘𝑓𝑘(𝑥0)

𝑛

𝑘=1

= 0.                                    (2.5) 

 

Then it is shown that 𝒗𝟎 must be positive 

In fact if the whole 𝑣𝑘, 𝑘 = 1, … , 𝑛 are zero, 𝑣0 cannot be zero, and from 𝑣0𝑧0 ≥
𝑣0𝑦0 for any 𝑦0 < 𝑓(𝑥0) < 𝑧0, it follows that 𝑣0 must be positive. 

Supposing now that not all the 𝑣𝑘 are zero, k=1, …, n, there is an 𝒙 ∈ 𝐶 such that 

∑ 𝑣𝑘𝑓𝑘(𝒙)𝑛
𝑘=1 < 0 (by hypothesis). But for any 𝑧0 greater or equal than 𝑓(𝒙) it must be 

𝑣0(𝑧0 − 𝑓(𝑥0)) ≥ − ∑ 𝑣𝑘𝑓𝑘(𝑥0)𝑛
𝑘=1 > 0, and so 𝑣0 must be positive. So, after (2.4) and 

putting 𝑉𝑘 = 𝑣𝑘
𝑣0

, 𝑘 = 1, … , 𝑛 it is obtained 

 

𝑓(𝒙) + ∑ 𝑉𝑘𝑓𝑘(𝒙) ≥ 𝑓(𝑥0) = 𝑓(𝑥0) + ∑ 𝑉𝑘𝑓𝑘(𝑥0)

𝑛

𝑘=1

𝑛

𝑘=1

, 

 

resulting in consequence the remaining conclusions of the theorem. □ 

Observation:  

- A sufficient condition, obvious but useful, so that (2.1) holds is that there is a 

point x in C such that 𝑓𝑖(𝒙) is lesser than zero for each 𝑖, 𝑖 = 1, … , 𝑛. 
 

Corollary 2.1 (Lagrange Duality Theorem) 

In the conditions of Kuhn-Tucker’s Theorem  

 

𝑓(𝑥0) = sup
𝒖≥0

inf
𝒙∈𝐶

(𝑓(𝒙) + ∑ 𝑢𝑘𝑓𝑘(𝒙)

𝑛

𝑘=1

) . 

 

Demonstration: 

𝒖 ≥ 0 means that the whole coordinates𝑢𝑘 , 𝑘 = 1, … , 𝑛, of u are non-negative. 

The result is a consequence of the arguments used in the Theorem of Kuhn-Tucker 

demonstration: 

- For any 𝒖 ≥ 0 

 

inf
𝒙∈𝐶

(𝑓(𝒙) + ∑ 𝑢𝑘

𝑛

𝑘=1

𝑓𝑘(𝒙)) ≤ 𝑓(𝑥0) + ∑ 𝑢𝑘𝑓𝑘(𝑥0) ≤ 𝑓(𝑥0)

𝑛

𝑘=1

. 

 

- For 𝑢𝑘 = 𝑣𝑘 

 



inf
𝒙∈𝐶

(𝑓(𝒙) + ∑ 𝑣𝑘

𝑛

𝑘=1

𝑓𝑘(𝒙)) ≥ 𝑓(𝑥0). 

 

then resulting the conclusion. □ 

Observation:  

- This Corollary gives a process to determine the problem optimal solution.  

- If the whole 𝑣𝑘 in expression (2.3) are positive, 𝑥0 is a point that belongs to 

the border of the convex set determined by the inequalities. 

- If the whole 𝑣𝑘 are zero, the inequalities are redundant for the problem, that 

is: the minimum is the same as in the “free” problem (without the inequalities 

restrictions).  

3. KUHN-TUCKER THEOREM FOR INEQUALITIES IN INFINITE 

DIMENSION 

In this section, the situation resulting from the consideration of infinite inequalities 

will be studied. A possible approach is: 

- To consider a transformation F(x)  from a real Hilbert space H to 𝐿2: space of 

the summing square functions sequences.  

- To consider the positive cone  ℘, in 𝐿2, of the sequences which the whole 

terms are non-negative. 

- To consider the negative cone  ℵ, in 𝐿2, of the sequences which the whole 

terms are non-positive. 

- To formalize the problem of the minimization of the convex functional f(x), 

constrained to 𝑥 ∈ 𝐶 convex, as in section 2, and 𝐹(𝑥) ∈ ℵ, supposing that 

𝐹(𝑥) is convex. 

 

Unfortunately, the Kuhn-Tucker theorem does not deal with this situation. So, 

similarly to the demonstration of Theorem 2.1 define 

𝐴 = {(𝑦, 𝑧): 𝑦 ≥ 𝑓(𝑥) ⋀ 𝑧 − 𝐹(𝑥) ∈ ℘ for any 𝑥 ∈ 𝐶}, 
 

𝐵 = {(𝑦, 𝑧): 𝑦 < 𝑓(𝑥0)  ∧  𝑧 ∈ ℵ}, 

where 𝑥0 is a minimizing point, as before. But now, A and B, even being disjoint, can not 

necessarily be separated if neither A nor B have interior points. And evidently ℵ has not 

interior points. 

 Another way, to establish a generalization, may be: 

- To consider a real Hilbert space I that encloses a closed convex cone ℘. 

- Given any two elements 𝑥, 𝑦 ∈ 𝐼, 𝑥 ≥ 𝑦 if 𝑥 − 𝑦 ∈ ℘.  
It is a well-defined order relation: if 𝑥 ≥ 𝑦 and 𝑦 ≥ 𝑧, 𝑥 − 𝑦 ∈ ℘ and 𝑦 −
𝑧 ∈ ℘; being ℘ a convex cone, (𝑥 − 𝑦) + (𝑦 − 𝑧) ∈ ℘, that is 𝑥 ≥ 𝑧. 
 

- So ℘ may be given by ℘ = {𝑥 ∈ 𝐼: 𝑥 ≥ 0} and may be called positive cone. 

- The negative cone ℵ will be given by ℵ = −℘ = {𝑥 ∈ 𝐼: 𝑥 ≤ 0}. 



 

Having as reference this order relation, it is possible to define a convex 

transformation in the usual way. If the cone ℵ has a non-empty interior, a version of the 

Kuhn-Tucker’s theorem for infinite dimension can be established. 

 

Theorem 3.1 (Kuhn-Tucker in Infinite Dimension) 

Call C a convex subset of a real Hilbert space H and  𝑓(𝑥) a real convex functional 

defined in C.  

Be I a real Hilbert space with a convex closed cone ℘, with non-empty interior, 

and 𝐹(𝑥) a convex transformation from H to I – convex in relation with the order induced 

by the cone ℘. 

Consider 𝑥0, a minimizing of 𝑓(𝑥) in C, constrained to the inequality 𝐹(𝑥) ≤ 0.  

Call ℘∗ = {𝑥: [𝑥, 𝑝] ≥ 0, for any 𝑝 ∈ ℘} - the dual cone. 

Admit that given any 𝑢 ∈ ℘∗  it is possible to determine x in C such that 
[𝑢, 𝐹(𝑥)] < 0. 

So, there is an element v in the dual cone  ℘∗ , such that for x in C  

      

𝑓(𝑥) + [𝑣, 𝐹(𝑥)] ≥ 𝑓(𝑥0) + [𝑣, 𝐹(𝑥0)] ≥ 𝑓(𝑥0) + [𝑢, 𝐹(𝑥0)], 
 

where u is any element of ℘∗. 

Demonstration: 

It is identical to the one of Theorem 2.1. Build A and B, subsets of 𝐸1 × 𝐼: 
 

𝐴 = {(𝑎, 𝑦): 𝑎 ≥ 𝑓(𝑥), 𝑦 ≥ 𝐹(𝑥), for any 𝑥 in 𝐶}, 
𝐵 = {(𝑎, 𝑦): 𝑎 ≤ 𝑓(𝑥0), 𝑦 ≤ 0}. 

 

In the real Hilbert space 𝐸1 × 𝐼, these sets can be separated, since B has non-empty 

interior and 𝐴 ∩ 𝐵 has not any interior point of B. So it is possible to find a number 𝑎0 

and 𝑣 ∈ 𝐼  such that, for any x in C, 𝑎0𝑓(𝑥) + [𝑣, 𝐹(𝑥)] ≥ 𝑎0𝑓(𝑥0) −
[𝑣, 𝑝] for any 𝑝 in ℘. As this inequality left side is lesser than infinite, it follows that 
[𝑣, 𝑝] ≥ 0, for any 𝑝 ∈  ℘ and so 𝑣 ∈ ℘∗. 

The remaining demonstration is a mere copy of the Theorem 2.1’ s. □ 

 

There is also a version in infinite dimension for the Lagrange’s Duality Theorem: 

 

Corollary 3.1 (Lagrange’s Duality Theorem in Infinite Dimension) 

In the conditions of Kuhn-Tucker’s Theorem in Infinite Dimension  

 

 

𝑓(𝑥0) = sup
𝑣∈℘∗

inf
𝒙∈𝐶

(𝑓(𝑥) + [𝑣, 𝐹(𝑥)]). 

4. CONCLUSIONS 

Through subtle, although conceptually complicated, generalization of Kuhn-

Tucker’s theorem it was possible to present the mathematical fundaments of Kuhn-

Tucker’s theorem in infinite dimension. It was necessary to define very carefully the 

domains to be considered: the Hilbert spaces and the adequate cones. And this is a really 

challenging problem from the mathematical point of view.  



To attain such an achievement, it was necessary to use a lot of mathematical tools 

that may be considered in the scope of the functional analysis. So, as in [1] , in 

Kolmogorov and Fomin [4] the chapters used were mainly III and IV; in Balakrishnan 
[5]  1 and 2; in Kantorovich and Akilov [6] II and IV; in Brézis [7] I and V; in Royden 
[8] 10; in Aubin [9] 1, 2, 3 and 4. References [10 − 18] constitute a short collection of 

works on this subject and related ones. 
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