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Abstract—With the development of BCI, the application of
bioelectrical signals have been widely used in various fields.
Currently, the important issues is how to remove the interference
from the signal. In the process of EMG signal acquisition, baseline
drift is one of the most common disturbances. The LSM cannot
remove the filtered baseline drift component within the window.
To address this issue efficiently, a modified least method is
designed in this paper, which remove the baseline drift component
within the window by the curvature of the polynomial. The
designed method can not only retain the advantages of the LSM
small calculation volume, but also improve the baseline drift
removal capability, providing a solution for embedded bioelectric
signal acquisition device. Experimental results show that the
ILSM has 5% improved to the conventional methods.

Index Terms—baseline drift, electromyography, improved least
square method, wavelet decomposition

I. INTRODUCTION

It is Known that there exist many wheelchair users. How-
ever, most of the existing wheelchairs on the market use
joystick control,which is big challenge, for patients with
disabilities in their hands. To address this problem, some
scholars have tried to use voice and blowing as the control
means of wheelchairs. However, in practical usage, it has been
found that these means are affected by the environment,e.g.,
the surrounding noise. Thus, more efficient methods need to
be proposed urgently. Recently, the bioelectrical signal based
on control methods have received a lot attention [1]. The
authors in [2] used the muscle signals from arms to control
wheelchair motion control. The wheelchair streering control is
also achieved by observing the changes of brain waves under
different flickering frequency light stimulation with the help of
Electroencephalogram (EEG) signals [3]. Since both methods
in [2] and [3], use electrical signals as a means of control, the
signal-to-noise ratio of the collected bioelectrical signals has a
great impact on the decision making of the controller. As the
electrical signal is collected by the sensor, the body movement
and the natural stretching of the skin can cause the changes of

friction and pressure between the skin and the myoelectric
acquisition sensor, which results in the fluctuations of the
output signal from the sensor. This fluctuation can cause
the output signal to jitter and drift up and down around
the baseline. It was found by experiments that the baseline
drift varies with the degree of friction between the skin,
and the electromyographic(EMG) sensor is also affected by
breathing, sweating, etc [4] . Since baseline drift causes up and
down jitter in the electrical signal with random variations in
amplitude and frequency, the usage of conventional high-pass
filters is inefficient in addressing the baseline drift problem.
In addition,the existence of baseline drift can also affect the
various time and frequency domain indicators of EMG signal.
Therefore, solving the baseline drift problem is one of the
keys to improve the recognition accuracy of the system [5].
Currently, some schemes have been proposed the baseline
drift problem in EMG signals. For example: 1) Adaptive trap
filter scheme [4]. 2) Butterworth filter [6], [7]. 3) Ensemble
empirical modal method [8], [9]. 4) Wavelet transform [10].5)
Wavelet decomposition. 6) least square method (LSM) [11].

In the above scheme, LSM is very suitable for embedded
medical devices because of its small computation and good ef-
fect. However, the traditional LSM cannot remove the baseline
drift component within the window. To deal with this problem,
this paper designs the improved least square method (ILSM),
which polynomial and removes the baseline drift component
from the EMG signal by the curvature of the polynomial. The
experimental results show that ILSM can effectively remove
the baseline drift component within the window. In addition,
the computational complexity of the designed method is still
low, which can guarantee that the designed method is suitable
for the real-time applications.

We first introduce the relevant principles of the algorithm
in Section II and demonstrate that ILSM has the advantage
of small operation size by time complexity analysis. Experi-
mental results are demonstrated in Section III. A comparative



Fig. 1. The fitting function based on least square method.

analysis of the performance metrics of the algorithms is
presented in Section IV. Finally, the conclusion and future
work are given in Section V.

II. PRINCIPLE AND PROOF OF ALGORITHM

A. Principle of LSM

The traditional LSM is a computational tool widely used in
error estimation, data prediction. It can be used to find trends
in data and is often used for curve fitting.

EMG signal is a one-dimensional time series signal during
the activity of the neuromuscular system. Through the elec-
trical signal acquisition sensor, a set of electrical signals is
recorded, which is denoted by xi, where i = 0, 1, · · · ,m− 1
is the sampling order.

To find a function that can match the trend of recorded data
well, it is necessary compute the summation of distances from
the function to each data point. It is noted that the best function
is typically used, which can formulated as P (x) = a+bx .The
mean square error function can be obtained as:

Q(a, b) =

m−1∑
i=0

(p(xi)− i)2 =

m−1∑
i=0

(a+ bxi − i)2 (1)

If there is a point (a, b) that minimizes Q(a, b), the function
P (x) = a+bx at the point (a, b) is the best-fit function of the
EMG signal. Let a, b be the minimum point of Q(a, b), then
the partial derivative of Q(a, b) with respect to point (a, b)
is 0. After calculation, the fitting function can be obtained as
shown in (2):
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Fig.1 depicts the fitting function based on LSM, where the
red dashed line is the splitting line between the windows,
the orange is the fitting function, and the blue is the original
EMG signal. As can be seen from Figure 1, the orange line
can show the trend of the EMG signal within the window,
However, it cannot show the baseline drift trend of the
EMG signal within the window. To address this problem,
we can reduce the size of window to enhance the removal
performance of baseline drift. However, this operation cannot
totally remove the baseline drift component. According to [11]
the window size is positively correlated with the performance

of baseline drift removal. Decreasing the size of window is a
way of removing the baseline drift component. However, as
the window size increases, the computational complexity will
increase exponentially.

B. Principle of the ILSM

In order to solve the problems of traditional LSM, we
design the ILSM in this subsection. For the ILSM, a quadratic
polynomial fitting is used to replace the linear segment fitting.
Thus, the baseline drift component with the considered win-
dow can be removed by curvature of the quadratic function.
By replacing the linear segment fitting used in the LSM with
the polynomial Ki(x) = aix

2 + bix + ci, and setting each
segment to consist of n(n < m) data, the ILSM equation can
be obtained as follows:

P (x) =


a1x

2 + b1x+ c1, x ∈ (1, N)

a2x
2 + b2x+ c2, x ∈ (N, 2N)

...

aNx2 + bNx+ cN , x ∈ (m−N,m)

(3)

In (3), m is the total number of collected points of the
electromyographic data, and n is the number of sampling
points in each segment. The sum of the square of the distances
between each point on P (x) to each sampling point is called
the cost function denoted as Q(a, b, c), which is expressed as:

Q(a, b, c) =

m−1∑
i=0

(p(xi)− i)2 =

m−1∑
i=0

(ax2
i + bxi + c− i)2 (4)

The best-fit curve is obtained when Q(a, b, c) is minimum,
each partial derivative is 0. Thus, setting the partial derivative
of (4) with respect to a, b, c, to be zero, we have:
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As the determinant equation is not full-rank, more than one
solution can be found for it. Thus, so the gradient descent
algorithm can be used to find the optimal solution.

a′ = a−W × da

a′ = a−W × da

a′ = a−W × da

(6)

In (6), a′, b′, c′ are the updated polynomial coefficients
after calculation, and a, b, and c are the previous polynomial
coefficients. W is the learning rate. da, db, dc are the partial
derivatives of a, b, and c. Using (6) to obtain updated polyno-
mial coefficients a′, b′, c′, we can then update the cost function,
which is given by coefficients. Let the difference between the



cost function calculated from the new polynomial coefficients
and the previous cost function be the gradient , denoted as
Q(a, b, c, a′, b′, c′), which is giving by:

Y (a, b, c, a′, b′, c′) =

m−1∑
i=0

(i− ax2
i − bxi − c)−

m−1∑
i=0

(i− a′x2
i − b′xi − c′)

(7)

By computing (7), we can obtain the updated gradients of
a, b, c. If the gradient is less than 0.01, the updated parameters
a, b, c are considered to be the coefficients of the best-fit curve.
Otherwise, the parameters a, b, c are not considered to be
the optimal solutions at this time, and the above process is
repeated until the optimal solution is found.

C. Comparative Analysis of the time complexity

Since wavelet decomposition and LSM are close to each
other in terms of computation and denoising effect, and the
time complexity of the ILSM is slightly increased, the time
complexity of the two algorithms is compared to demonstrate
the superiority of the ILSM. In order to explore the time
consumed by the two algorithms in the same environment,
this paper models the time complexity of the two algorithms
in order to explore the time efficiency of the two algorithms.
With N, I,A denoting the scale of the algorithm, the input of
the algorithm, and the overall of the algorithm, respectively,
and with T denoting the time complexity of the algorithm,
there should be T = (N, I,A). Since wavelet decomposition
requires decomposing the signal into I layers, removing the
low frequency part and then wavelet reconstruction to get the
processed signal. According to the principle of wavelet de-
composition algorithm, the time complexity model of wavelet
decomposition algorithm can be constructed as:

T = 2n[1− (
1

2
)I ] (8)

In (8), n is the number of sampling points, and I is the num-
ber of wavelet decomposition layers. where 2 ≤ I ≤ log2 n.

Fig. 2 expresses the variation curve of time complexity with
respect to the number of layers of wavelet decomposition I .
Where, the time complexity of wavelet decomposition is a
positive function with respect to I .

In the ILSM, the gradient descent algorithm is used to solve
for the three coefficients of the second order polynomial. To
solve the partial derivatives with respect to the coefficients
it is also necessary to calculate the cumulative sum of each
sampling point, which is used to solve the partial derivatives
of each coefficient during each iteration.

In ILSM, in the process of solving the second-order polyno-
mial coefficients with the help of gradient descent algorithm,
it is necessary to iterate n

A windows cyclically I times, and
the time complexity of this step is denoted as I ∗ n

A . It is also
necessary to calculate the cumulative sum of each sampling
point for use in the partial derivative calculation, and the time

Fig. 2. Time complexity of wavelet decomposition algorithm under different
I condition.

Fig. 3. Time complexity of improved least square method in different I cases.

complexity of this step is n. Therefore, the time complexity
model of ILSM can be obtained as:

T = n+ I ∗ n

A
(9)

where n is the number of sampling points, A is the window
size, and I(10 ≤ I ≤ 30) is the number of iterations.

Fig. 3 expresses the variation curve of time complexity with
respect to the number of wavelet decomposition layers I and
the window size A. Where, as can be seen from Fig. 3, the
time complexity of ILSM is proportional to I and inversely
proportional to A.

Fig. 4 depicts the comparative relationship between the
time complexity of the ILSM and the wavelet decomposition
method. As can be seen in Fig. 4, the time complexity of
the ILSM is smaller than that of the wavelet decomposition
algorithm when the window size is 30 and the number of
iterations is 10.



Fig. 4. Comparison of improved least square and wavelet decomposition
algorithms.

TABLE I
COMPARISON OF DIFFERENT OBFUSCATIONS IN TERMS OF THEIR

TRANSFORMATION CAPABILITIES

CPU I7-9th

Operating Memory 32G

System Win10

Simulation Software VS code

Simulation Environment Python3.0

High-pass filtering order 5

Low-pass filtering order 5

Wavelet decomposition Db1

In summary, when the window size is larger than a certain
value, the time complexity of the ILSM is much smaller than
that of the wavelet decomposition method [12] [13].

III. EXPERIMENT AND PERFORMANCE ANALYSIS

In this chapter, the experimental data set used in the exper-
iments is the humeral radial EMG signal acquired through the
EMG single-lead muscle electrical sensor developed by Brain
Lab. The hardware and software environment is shown in the
following table.

To investigate the algorithm effectiveness, and reproducibil-
ity, experimental analysis is done in this section using own
acquired sEMG signals of the brachioradialis muscle and
sEMG signals from publicly available datasets, respectively
[14] [15]. Since own acquisition of sEMG ensures a low
baseline drift component, a baseline drift component can be
added to investigate the ability of the algorithm to remove
baseline drift and the effect on the useful signal. In the public
dataset, since the signal itself already contains a more obvious
baseline drift problem, it is not possible to add quantitative
addition of baseline drift components to explore the metrics
of the algorithm, only to demonstrate the effectiveness and
generalizability of the algorithm.

Fig. 5. Improved least square method fitting curve with a window size of 30
sampling points.

Fig. 6. Comparison pre and post improved least square method processing
with a window size of 30 sampling points.

A. ILSM to remove baseline drift

Fig. 5 shows the fitted data trend function of ILSM with
a window size of 30 . The blue line is the original EMG
acquisition signal , the orange line is the fitted function for
each segment of the EMG acquisition signal, and the red
vertical segmentation line is the segmentation line for each
segment. As can be seen from Fig. 5, the fitted function can
accurately fit the trend function of the original EMG signal.

As shown in Fig. 6 and Fig. 7, Plots of amplitude versus
time after ILSM processing are shown for window sizes of
10 and 30 sampling points, respectively. From the figures, it
can be seen that the processing effect with a window size of
10 sampling points fits the baseline better than the one with a
window size of 30 sampling points.

Fig. 8 and Fig. 9, respectively, show the relationship be-
tween magnitude and time after LSM processing under the
window size of 10 and 30 sampling points. Comparing Fig. 6
and Fig. 7 with Fig. 8 and Fig. 9, we can see that the baseline
drift still exists in the window of the function after using
LSM processing, and changing the window size can optimize
the problem, but it cannot remove the baseline drift from the
root. After using ILSM, the baseline drift in the window is

Fig. 7. Comparison pre and post improved least square method processing
with a window size of 10 sampling points.



Fig. 8. Comparison of pre and post least square method processing with a
window size of 30 sampling points.

Fig. 9. Comparison of pre and post least square method processing with a
window size of 10 sampling points.

effectively filtered out, so the filtering effect of ILSM is better
than LSM with the same window size.

B. Performance Comparison of Higher Order LSM

In the previous subsection, the 2nd order polynomial ILSM
is compared with the linear fit LSM, and the pictures in
the time and frequency domains show that the 2nd order
polynomial based LSM is better than the ILSM in terms
of effectiveness. In this section, we investigate whether the
LSM based on 3rd order polynomials outperforms the LSM
based on 2nd order polynomials in terms of filtering effect and
performance.

Fig. 10. 3rd order improved least square method curve fitting graph.

Fig. 11. Comparison of the 3rd order improved least square method with the
original data.

TABLE II
COMPARISON OF THE TIMELINESS OF THE TWO ALGORITHMS

Order Time (ms)

2rd order 4.05

3rd order 11.97

Fig.11 shows the effect of the 3rd order ILSM after process-
ing. The orange line in the figure is the processed EMG signal
waveform, and it can be seen that the baseline drift problem
has been effectively improved.

In order to investigate the timeliness of the 2nd and 3rd or-
der ILSM [16] [17], the time consumed by the two algorithms
for processing data with the same window size is tested with
a window size of 30 and 600 sampling points, as shown in
Table II. As shown in Table II, the time required for the 3rd-
order LSM is 2.95 times longer than that required for the 2nd-
order LSM, which is not acceptable in embedded wearable
devices because it consumes too much arithmetic power, so
the performance of higher-order ILSM is not analysed and
discussed in this paper.

IV. PERFORMANCE ANALYSIS

To measure the effectiveness of an algorithm, quantitative
analysis of the signal is usually done in the time and frequency
domains. In the time domain, a quantitative analysis of the
algorithm’s baseline drift removal metrics is done to observe
the time domain metrics before and after the algorithm im-
provement. In the frequency domain, a spectral analysis of
the EMG signal before and after the algorithm processing
is done to observe two metrics whether the baseline drift
component is effectively removed and whether the useful
signal is attenuated. Since the EMG signals provided in the
Ninapro database are unprocessed raw EMG signals, there is
no guarantee that the EMG signals in the Ninapro database do
not contain baseline drift components, so they are not suitable
for quantitative analysis. Therefore, in this paper, an EMG
single-conductor EMG sensor containing a hardware filter was
used to acquire the signals and further filtered by a band-pass
filter to ensure the purity of the raw signals. A sine wave
superimposed at 2 Hz and 5 Hz with 1 signal-to-noise ratio
is added to the original signal as the baseline drift content for
quantitative analysis.

A. Time domain analysis

In the time domain, the degree of signal deviation from the
baseline is mainly analysed. Therefore, Sample Mean Square
Error (sMSE) can be used to observe the overall degree of
variation of the signal and thus the ability of the algorithm to
remove the baseline drift problem.

sMSE =

∑m−1
i=0

(xi − x)2

m− 1
(10)



TABLE III
SAMPLE VARIANCE VALUES BEFORE AND AFTER ALGORITHM

IMPROVEMENT

Signal sMSE

Original signal 5819

Baseline drift signal 10375

LSM with a window size of 10 4381

ILSM with a window size of 10 4150

LSM with a window size of 30 5533

ILSM with a window size of 10 5331

Fig. 12. Comparison of the spectrum of the original signal and the baseline
drift signal.

where m is the number of sampling points, xi is the i
sampled EMG signal value, and x̄ is the average of EMG
signal sampling points.

As shown in Table III, the sMSE value of the EMG signal
with the baseline drift added was 10375 and the sMSE of the
original EMG signal was 5819, which shows that the EMG
signal was significantly deviated after the baseline drift was
added. With a window size of 10, the sMSE value of the
LSM is 231 higher than that of the ILSM, and it can be seen
that the ILSM is more effective in removing the baseline drift
compared to before the improvement.

B. Frequency domain analysis

Fig.12 shows a comparison of the spectrum of the original
signal and the signal with baseline drift, where the orange
color is the spectrum of the original signal and the blue color
is the spectrum of the signal with baseline drift. It can be
observed that both the original signal and the signal with
baseline drift have a high frequency density at 0 Hz, i.e., a
high DC component is present. The signal with baseline drift
has a high energy density at 1-5Hz, which corresponds to the
frequency range where the baseline drift frequency is located.

Fig.13 and Fig.14 show the comparison of the original
signal and the spectrum after processing by LSM for a
window size of 30 and 10 sampling points, respectively. In
the frequency domain of 10 Hz-150 Hz, comparing Fig.10
and Fig.15, it can be found that the original signal and the
processed signal completely overlap in the frequency domain
when the window size is 30 sampling points. In contrast,
when the window size is 10 sampling points, there is a slight
deviation in the frequency domain waveform after the LSM
processing. This phenomenon indicates that LSM has a slight

Fig. 13. Comparison of the original signal and the spectrum after least square
method processing with a window size of 30 sampling points.

Fig. 14. Comparison of the original signal and the least square method
processed spectrum with a window size of 10 sampling points.

effect on the useful signal portion at smaller windows. In
the 0Hz-5Hz frequency domain band, comparing Fig.13 and
Fig.14, it can be found that when the window size is 10
sampling points, the frequency domain content after LSM
processing is smaller than the content after LSM processing
with a window size of 30 sampling points. In summary, it can
be concluded that by reducing the window size, the ability of
the LSM algorithm to remove the baseline drift content can be
improved. However, when the window is smaller than a certain
value, it will have some effect on the useful signal segment.

Fig.15 depicts the comparison of the spectra of the original
signal and the signal containing baseline drift after ILSM
processing at a window size of 30 sampling points. In the
10Hz-150Hz frequency domain, comparing Fig.13 and Fig.15,

Fig. 15. Comparison of the original signal and the spectrum after improved
least square method processing with a window size of 30 sampling points.

Fig. 16. Comparison of 0-20Hz waveforms in Figures 14, 15 and 16.



TABLE IV
SIGNAL REMOVAL RATE BEFORE AND AFTER ALGORITHM IMPROVEMENT

Signal sRR(%)

With baseline drift signal 0

Original signal 100

Window size of 10 LSM 85.9

Window size of 10 ILSM 88.9

Window size of 30 LSM 79.0

Window size of 30 ILSM 81.9

it can be found that neither LSM nor ILSM has any effect on
the useful signal components for the same window size. In the
0Hz-5Hz frequency domain, it can be found from Fig.16 that
the baseline drift component in the ILSM-processed waveform
is smaller than that in the LSM-processed waveform. In
summary, ILSM has no significant effect on the useful signal
compared to LSM with the appropriate window size, but ILSM
has stronger attenuation effect on the baseline drift component
in 0Hz-5Hz. Through Fig.12, Fig.13, Fig.14, and Fig.15, the
advantages of ILSM over the LSM algorithm are perceptually
observed from the spectrum, and the superiority of ILSM
over LSM will be quantitatively analysed by mathematical
equations in the following. In order to measure the ability of
the two algorithms to remove baseline drift, a Signal Removal
Rate (sRR) metric is used in this paper to measure the ability
of the algorithm to remove baseline drift before and after the
improvement of the algorithm, and its expression is:

sRR = 1−
∑5

i=1 (|̂pi| − |pi|)∑5
i=1 (|p̈i| − |pi|)

(11)

Where, pi is the i frequency power density of the original
signal,

∑2
i=1 |̂pi| is the power density of 1 5Hz at which the

baseline drift content is processed by the algorithm, pi is the
i frequency power density of the original signal,

∑2
i=1 p̈i is

the power density of 1-5Hz at which the baseline drift of the
signal with the baseline drift is added.

Table IV shows the signal removal rate of each algorithm
under different window sizes. As can be seen from Table
IV, under the same window, the improved algorithms are all
improved by about 3% compared with the previous ones. In
addition, it can be observed that the removal of baseline drift
is better than before improvement under any window size. In
order to measure whether the useful signal components are
attenuated after the algorithm processing, this paper defines
a Single Attenuation Rate (sAR) indicator to measure the
attenuation of the useful signal, which is defined as:

sAR = 1−
∑n

i=20 |̂pi|∑n
i=20 |pi|

(12)

Where n denotes the number of frequency analyses, pi is
the i frequency power density of the original signal, and p̂i is

TABLE V
SIGNAL ATTENUATION RATE PRE AND POST-ALGORITHM IMPROVEMENT

Signal sAR(%)

Window size of 10 LSM 10.0

Window size of 10 ILSM 10.2

Window size of 30 LSM 1.8

Window size of 30 ILSM 2.1

the i frequency power density after the algorithm removes the
baseline drift problem.

Table V shows the signal attenuation rates of each algorithm
for different window sizes. From Table V, it can be seen that
the effects on the useful signals are similar pre and post-
algorithm improvement with the same window size, and there
is no big difference. However, it can be seen from Table V
that although the smaller the window is, the better the baseline
drift removal effect is, but it will cause some distortion of
the signal and affect the useful signal content. In summary,
from both the time domain and frequency domain, several
indicators are summarized, based on the ILSM for the removal
of baseline drift is about 3% more effective than the LSM, and
the attenuation rate of the signal is similar to that before the
improvement, so it can be seen that the algorithm is better than
before the improvement in all aspects of the comprehensive
indicators, with good baseline drift removal effect.

C. Comparative analysis of wavelet decomposition perfor-
mance

In the previous subsection, it is verified that the performance
index of ILSM is better than that of LSM in all aspects. since
the wavelet decomposition algorithm is similar to LSM in
terms of denoising effect, and the time complexity is close to
that of LSM, this section will explore the performance com-
parison between ILSM and traditional wavelet decomposition
algorithm. In this section, db1 wavelet is used to decompose
the EMG signal, and after obtaining the wavelet coefficients of
each layer, the low frequency content is removed and then the
wavelet reconstruction is performed to analyze the parameters
of the reconstructed EMG signal. According to the wavelet
decomposition principle, the EMG sampling signal can be
decomposed into 9 layers of wavelet coefficients, and the
wavelet coefficients are removed in order from the first to
the highest in the frequency domain, and the baseline drift
problem is effectively filtered out when wavelet coefficients
from 1 to 4 layers are retained.

As can be seen from Fig.17, the signal content at this time
between 1 and 3 Hz is very close to the original signal.

As shown in Table VI, the performance indexes of wavelet
coefficients of each layer are shown. From the data in the
table, it can be found that the 3-layer wavelet coefficients have
the best effect on the removal of baseline drift. Increasing
or decreasing the number of wavelet layers will reduce the
baseline drift removal effect. Therefore, it can be concluded



Fig. 17. Spectrum after reconstruction of 4-layer wavelet coefficients.

TABLE VI
PERFORMANCE INDEX OF WAVELET COEFFICIENTS OF EACH LAYER

layers sMSE sAR(%) Time(ms) sRR(%)

4 5403 4.2 6.18 80.4%

3 4919 8.0 4.98 83.0%

2 4094 10.6 2.95 79.3%

that the number of wavelet layers has a non-linear relationship
with the removal effect of the baseline drift problem. In
terms of processing time and loss rate, the higher the number
of wavelet layers, the more time the algorithm takes, and
conversely the lower the attenuation rate of the useful signal.
In terms of mean square deviation, the lower the number
of layers, the smaller the mean square deviation, indicating
that the lower the number of layers the closer the signal is
to the baseline and the less jitter, at the cost of reducing
the useful signal content. Because of the large signal decay
rate of the two-layer coefficients, the 3- and 4-layer wavelet
coefficients are selected for performance comparison with
LSM with different window sizes. As shown in Table VI.

As shown in Table VII, the 3-layer wavelet coefficients
and the ILSM with a window size of 20 are close to each
other in removing the baseline drift problem, but the wavelet
decomposition algorithm takes less time. The sAR of both the
3-layer wavelet coefficients and the ILSM with a window size
of 20 are large. sAR of both the 4-layer wavelet coefficients
and the ILSM with a window size of 30 are smaller, and the
sAR metric of the ILSM with a window size of 30 is half of
that of the 4-layer wavelet coefficients. In terms of time, the
ILSM is 2.13 ms faster than the four-layer wavelet coefficients,
and the sRR metric is 1.5% higher.

TABLE VII
PERFORMANCE INDEXES OF ILSM AND WAVELET FRACTIONAL

SOLUTION METHOD

Signal sMSE sAR(%) Time(ms) sRR(%)

Window size of 30 ILSM 5331 2.1 4.05 81.9

4 layers of small waves 5403 4.2 6.18 80.4

3 layers of small waves 4919 8.0 4.98 83.0

Window size of 20 ILSM 4816 7.7 7.97 83.9

V. CONCLUSION

In this article, we proposed ILSM to remove baseline
drift, and some achievements are as follows: (1) This method
improves the baseline drift removal rate. (2) The method can
reduce the number of windows. (3)The ILSM used in this
paper is close to the filtering effect of traditional wavelet trans-
form and empirical modal methods in terms of performance,
but the computation is much lower than traditional methods
and the attenuation of useful signals is smaller. (4)And the
method contributes to the less impact on the signal-to-noise
ratio of the output signal.
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