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Abstra
t

This paper des
ribes an extension of Horn 
lause logi
 programs by bounded quanti�ers. Boun-

ded quanti�ers had been extensively used in a part of mathemati
al logi
 
alled the theory of

admissible sets [Barwise 75℄. Later some variants of bounded quanti�ers had been introdu
ed

in logi
 programming languages [Gon
harov 85, S
hwartz 86, Turner 86, Kuper 87, Dovier 91,

Hentenry
k 91℄. We show that an extension of logi
 programs by bounded quanti�ers has several

equivalent logi
al semanti
s and is eÆ
iently implementable using a variant of SLD-resolution,

whi
h we 
all SLDB-resolution. We give examples showing that introdu
tion of bounded quan-

ti�ers results in a high level logi
al spe
i�
ation language. The expressive power of subsets of

Horn 
lauses and subsets of logi
 programs with bounded quanti�ers is 
ompared. We also show

that the use of bounded quanti�ers sheds new light on 
lassi
al negation in logi
 programming.
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1 Introdu
tion

Although Horn 
lause programs are suÆ
iently ri
h to express all 
omputable predi
ates, they

are not suÆ
iently expressive to naturally represent some relations whi
h are easily expressed

in ri
her languages, for example in full �rst order logi
. Sin
e the publi
ation of early papers

on logi
 programming and on Prolog there have been many attempts to extend Horn 
lauses

programs in various ways. Examples of pra
ti
al extensions are numerous in di�erent implemen-

tations of Prolog. These are usually 
ontrol primitives like 
ut or built-in primitives. Among

more theoreti
al extensions are programming with full �rst order logi
, higher order logi
 pro-

gramming, et
.

There are many foundational problems with extensions of Horn 
lauses. The pra
ti
al solutions

are mostly non-logi
al whi
h means that they have no natural logi
al semanti
s. As a 
onse-

quen
e, su
h programs are more diÆ
ult to understand and to verify. The problem with more

theoreti
al extensions is that most of them 
annot be eÆ
iently implemented. In most 
ases the

ineÆ
ien
y is inherent | for example negation 
ombined with re
ursion leads to non-
omputable

predi
ates. Similar problems arise when using universal quanti�ers.

Here we present an extension of logi
 programming with bounded quanti�ers { i.e. quanti�ers

over �nite domains. We prove that this extension 
an be eÆ
iently implemented. Moreover we

show on examples that bounded quanti�ers 
an be used in pra
ti
al 
ases to express iterative

algorithms and to spe
ify the exhaustive sear
h over �nite domains. Our extension is logi
al

in the sense that it enjoys a 
omplete and sound model-theoreti
 semanti
s while still being

eÆ
iently implementable.

This paper extends [Voronkov 92a℄. In [Voronkov 92a℄ we used a di�erent treatment of sorts

whi
h, in parti
ular, allowed us to 
onsider built-in sorts and predi
ates. The extended sorts

require a 
ompli
ated uni�
ation algorithm. Here we do not 
onsider built-in sorts for simpli
ity.

Intuitively, bounded quanti�ers are quanti�ers ranging over �nite domains, in parti
ular over

�nite lists or sets. The domains are stru
tured su
h that bounded quanti�ers re
e
t the stru
ture

of the domains. Expressions 
ontaining bounded quanti�ers give natural and elegant examples

of exe
utable spe
i�
ations. Consider, for example, the spe
i�
ation of disjoint sets

disjoint(S

1

,S

2

) i� (8x

1

2S

1

)(8x

2

2S

2

)x

1

6=x

2

This spe
i�
ation implies an obvious way to 
he
k if two given sets are disjoint. Similar uses

of bounded quanti�ers 
an be found already in the language SETL [S
hwartz 86℄ in whi
h the


on
ept of a set is a �rst-
lass 
on
ept. SETL is an e�ort to in
orporate sets in a logi
al

way into the pro
edural language paradigm. It seems very natural to use expressions with

bounded quanti�ers in logi
 programs as well. Combining the te
hnique of �nite sear
h with the

logi
 programming te
hnique (a variant of SLD-resolution) allows one to use su
h spe
i�
ations

for 
onstru
ting sets with given properties. The use of su
h spe
i�
ations also makes logi


programming more logi
al.

Although the semanti
s of the above expression is quite 
lear, its usual representation in Horn


lause logi
 programming

disjoint([℄,S).

disjoint([A|As℄,S) :-

nonmember(A,S),

disjoint(As,S).
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nonmember(A,[℄).

nonmember(A,[B|Bs℄) :-

A 6=B,

nonmember(A,Bs).

is in 
ontrast not so easy to understand. The Prolog program for disjoint also la
ks in elegan
e


ompared to the spe
i�
ation using bounded quanti�ers.

This paper is 
on
erned with the logi
al justi�
ation of logi
 programming with bounded quanti-

�ers. We restri
ted our attention only to two types of bounded quanti�ers, originally introdu
ed

in [Gon
harov 85℄ following [Moor 81℄, but our te
hnique is quite general and is also appli
able

to other kinds of bounded quanti�ers.

In this Se
tion 2 we give the basi
 de�nitions of sorts, lists and generalized logi
 programs.

Some natural examples of spe
i�
ations using bounded quanti�ers are given in Se
tion 2.3. In

Se
tion 3 we introdu
e several semanti
s of logi
 programs with bounded quanti�ers and prove

their equivalen
e. Se
tion 4 des
ribes the pro
edural semanti
s of the language, whi
h gener-

alizes SLD-resolution. In Se
tion 5 we dis
uss the expressive power of subsets of the language

with bounded quanti�ers. For the 
lass of all generalized logi
 programs it is equivalent to

the expressive power of the Horn 
lauses | both kinds of languages 
an express exa
tly all


omputable predi
ates in the least Herbrand model semanti
s. First in Se
tion 5.1 we show a

natural translation from the language with bounded quanti�ers to Horn 
lauses. This trans-

lation 
an for example be used to automati
ally obtain from the above de�nition of disjoint

with bounded quanti�ers a de�nition of disjoint in the language of Horn 
lauses. Then we


onstru
t a non-re
ursive metainterpreter for Horn 
lause programs, written in the language

with bounded quanti�ers. Se
tion 6 is 
on
erned with the use of negation in logi
 programs.

Finally, in Se
tion 7 we dis
uss some other possible appli
ations of logi
 programming with

bounded quanti�ers.

1.1 Related work

Bounded quanti�ers were 
onsidered among others in the following papers

1

[Gon
harov 85,

Gon
harov 86a, Gon
harov 86b, Kuper 87, Kuper 88, Dovier 91, Hentenry
k 91, Barklund 92℄.

Also related are papers on introdu
ing set 
onstru
ts in logi
 programming [Beeri 87, Kuper 87,

Kuper 88, Jayaraman 89℄. Somewhat similar in spirit are safe formulas [Ni
olas 83, Topor 87℄.

For us the main motivation was the series of papers on �-programming [Gon
harov 85,

Gon
harov 86a, Gon
harov 86b℄ and some of our results on semanti
s of �-programs and on

a translation of �-programs into logi
 programs [Voronkov 86a, Voronkov 87, Voronkov 89℄.

Bounded quanti�ers were already introdu
ed in the �rst of the above-mentioned papers

[Gon
harov 85℄ whi
h was inspired by the Kripke-Platek formalization of the theory of admissi-

ble sets [Barwise 75℄. However there were no satis�able pro
edural semanti
s in [Gon
harov 85℄.

Later ideas for de�ning su
h a semanti
s were introdu
ed in our paper [Voronkov 87℄ based on

the translation of �-programs to Horn 
lause programs des
ribed in [Voronkov 86a, Voronkov 89℄

(some ideas 
ould even be found in even earlier preprints [Voronkov 86
, Voronkov 86d℄, written

in 1985).

Later bounded quanti�er were introdu
ed in [Kuper 87, Kuper 88℄ with the purpose of enri
hing

logi
 programming languages with sets. But the absen
e of the set 
onstru
tor in Kuper's lan-

guage leads to problems with the pro
edural semanti
s of his language. The set 
onstru
tor was

1

Some kind of bounded quanti�ers had been implemented in the seventies in a Prolog-like language developed

in Hungary (we do not have any exa
t referen
es).
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introdu
ed later [Dovier 91℄ where a more satis�able pro
edural semanti
s for a logi
 program-

ming language with �nite sets was de�ned. However sets are not easy to handle: the uni�
ation

problem for �nite sets is NP-
omplete [Dovier 91℄. The language presented in our paper has

a pro
edural semanti
s 
omparable with SLD-resolution for Horn 
lauses. As we try to show,

most of the appli
ations of logi
 programming with sets are easily expressed in our language.

Bounded quanti�ers were also 
onsidered in 
onstraint logi
 programming [Hentenry
k 91℄. In

most of the programming literature they are 
alled restri
ted quanti�ers, but bounded quanti�ers

introdu
ed earlier in the mathemati
al literature (e.g. [Barwise 75℄) seem to better 
apture the

idea of the sear
h on �nite domains.

Bounded quanti�ers are usually quanti�ers over �nite domains represented by lists or sets. In

the papers [Gon
harov 85, Gon
harov 86a, Gon
harov 86b, Kuper 87, Kuper 88℄ lists and sets

are 
onsidered as a superstru
ture of the usual Herbrand universe, whi
h prohibits using terms

like f([℄), sin
e [℄ is a list. Our two-sorted models allow lists to be treated as an ordinary sort.

In [Dovier 91℄ fun
tion symbols are also allowed to have set arguments. In that paper sorts are

not expli
itely introdu
ed but they are used in the uni�
ation algorithm, and without sorts the

pro
edural semanti
s from [Dovier 91℄ be
omes in
orre
t.

The proof theory varies from approa
h to approa
h. In [Gon
harov 85℄ an analog of Kripke-

Platek theory for admissible sets [Barwise 75℄ 
alled GES is used for proving properties of

�-programs. In [Kuper 87℄ the underlying proof system is the 
al
ulus with the extensionality

axiom 8z(z2x�z2y)�x=y. In [Voronkov 92a℄ we used two types of 
al
uli to provide a proof

theory for our language. The �rst is an analog of GES, whi
h treats lists as a spe
ial kind of

obje
ts with indu
tion axioms for lists. The se
ond is a theory of indu
tive de�nitions, whi
h

seems more 
exible for proving properties of programs. For the two-sorted stru
tures of this

paper a theory like GES or the list theory of [Moor 81℄ is more appropriate.

Our approa
h to de�ning a pro
edural semanti
s for our language, whi
h we 
all SLDB-resoluti-

on, is more eÆ
ient 
ompared to the 
ited papers. In [Dovier 91℄ an exponential uni�
ation

algorithm for sets is used. In [Kuper 87℄ no satis�able pro
edural semanti
s is provided. For

example given the program

q :- (8x2Y)fail.

and the query ?-q. Kuper's system has to make a substitution [Y fg℄ during uni�
ation of q

from the query with q from the head of the 
lause. In [Gon
harov 85℄ the proposed pro
edural

semanti
 
omprises an exhaustive sear
h over in�nite universes. A

ording to that paper, the

answer to the query ?-X=5, where X ranges over rational numbers, should be found by the

exhaustive sear
h for the substitution for X over all rational numbers.

However both [Kuper 87℄ and [Dovier 91℄ have other motivations and for some appli
ations �nite

sets 
ould be more appropriate than lists used in our paper.

In [Barklund 92℄ bounded quanti�ers are de�ned via formulas of the form 8xf�[x℄ ! �[x℄g,

where � is a formula, \whi
h is \obviously" true for only a �nite number of values of x". Su
h

quanti�ers may easily be translated to our quanti�ers, if we add the findall predi
ate to the

language. (As far as we understand, \obviousness" should allow the findall 
onstru
tion.) to

be used. An essential di�eren
e of our use of bounded quanti�ers is that it also allows sets

with the given properties to be 
onstru
ted, while the approa
h from [Barklund 92℄ 
an only

be used for given sets. The paper [Barklund 92℄ is interesting, be
ause it 
ontains an extensive

treatment of bounded quanti�ers from the viewpoint of (
on
urrent) implementations.

The advantages of lists over sets are illustrated by examples given in this paper and by results

4



about expressiveness from Se
tion 5, whi
h essentially use bounded quanti�
ation over tails of

lists, whi
h has no analog for sets. It 
an also be noted that lists form a stru
ture extensively

used in programming languages.

Also similar to bounded quanti�ers are some of Zermelo-Frenkel set theory expressions of the

fun
tional programming language Miranda [Turner 86℄.

5



2 Logi
 programs with bounded quanti�ers

In this se
tion we introdu
e main notions of the paper. In our presentation of generalized logi


programs sorts are assigned to terms. In Se
tion 2.1 we introdu
e sorts and lists. Lists are used

in de�ning bounded quanti�ers and generalized logi
 programs in Se
tion 2.2. We give some

examples in Se
tion 2.3 to show the pra
ti
al importan
e of bounded quanti�ers.

2.1 Sorts and lists

Consider a simple expression (8x2l)'(x) 
ontaining a bounded quanti�er. Intuitively this ex-

pressions means that for every element x of the list l '(x) holds. If su
h an expression o

urs

in a query, we need to 
he
k that l is a list. However a

ording to the logi
 programming phi-

losophy l may be any term, for example a variable. Of 
ourse we 
an 
all a predi
ate stating

that l is a list or a predi
ate generating all lists ea
h time when su
h a query is posed. But it

would in general be ineÆ
ient and it would obs
ure the semanti
s of our language. So we need

to distinguish lists from all other elements. To this end we introdu
e a two-sorted language. In

[Voronkov 92a℄ we used 
ompli
ated sort stru
tures with the aim of handling lists and built-in

predi
ates. The sort de�nitions that we used in that paper are similar to sorts of PDC-prolog

[PDC 90℄. However we prefer to use two-sorted language whi
h is suÆ
ient for our purposes.

The use of non-sorted stru
tures for our purposes is ineÆ
ient and leads to some semanti
 prob-

lems. For example, in [Gon
harov 85, Gon
harov 86b℄ it is not 
lear what version of a (many

sorted) predi
ate 
al
ulus is used in the list theory GES introdu
ed there, whi
h makes some


onsiderations quite obs
ure. The operational semanti
s of the extended logi
 programming

language introdu
ed in [Gon
harov 85, Gon
harov 86a℄ is based on model theory and there-

fore 
omprises an exhaustive sear
h over an in�nite universe. The two-sorted language of our

paper helps to provide an eÆ
ient operational semanti
s for the language with bounded quan-

ti�ers. The possibility of uni�
ation-based operational semanti
s was noted in earlier papers

[Voronkov 86a, Voronkov 89℄, but in those papers we used an algorithm verifying if the terms

from the binding expressions are lists.

The �rst order language of this paper 
ontains two sorts: the universal sort univ and the sort of

lists list. We assume that we have 
ountable sets of variables V

univ

and V

list

. Let L be a language


onsisting of two sets C of 
onstants and F of fun
tion symbols with arities. We assume that C


ontains the 
onstant nil and F 
ontains a binary fun
tion symbol 
ons. Below we de�ne the

sets of terms for both sorts.

De�nition 2.1 (The sets Term

univ

and Term

list

of terms of the language L)

1. If t2Term

list

then t2Term

univ

.

2. nil2Term

list

.

3. V

univ

� Term

univ

and V

list

� Term

list

4. C � Term

univ

.

5. If f 2F is an n-ary fun
tion symbol and t

1

; : : : ; t

n

2Term

univ

, then f(t

1

; : : : ; t

n

)2Term

univ

.

6. If s2Term

univ

and t2Term

list

then 
ons(s,t)2Term

list

.

Instead of writing nil and 
ons we shall adopt the standard Prolog notation:

6



[℄ stands for nil;

[s|t℄ stands for 
ons(s,t);

[s

1

,: : : ,s

n

|t℄ stands for 
ons(s

1

,: : : ,
ons(: : : ,
ons(s

n

,t): : : ));

[s

1

,: : : ,s

n

℄ stands for 
ons(s

1

,: : : ,
ons(: : : ,
ons(s

n

,nil): : :)).

De�nition 2.2 (Ground terms and formulas) A term is ground i� no variable o

urs in

it. A formula is ground i� all variables in it are bound.

In mathemati
al logi
 ground formulas are usually 
alled 
losed. We 
all them ground formulas

for the sake of uniformity.

De�nition 2.3 (Herbrand universe HU) The Herbrand universe HU is the set of all

ground terms from Term

univ

.

De�nition 2.4 (Lists) Lists are ground terms of Term

list

.

We do not de�ne here lists as a superstru
ture of the ordinary terms as it was done in

[Gon
harov 85℄ following the theory of admissible sets [Barwise 75℄. Su
h a superstru
ture is


onvenient for more theoreti
al purposes (to distinguish sets from urelements in the theory of

admissible sets), but from the viewpoint of programming it has some disadvantages. In parti
-

ular, it forbids to use terms with subterms 
ontaining lists, e.g. f([℄,[a℄). Our sorts allow to

use su
h terms.

We de�ne two relations 2, v on lists as follows:

De�nition 2.5 (Relations 2 and v)

x2[y

1

; : : : ; y

n

℄ i� for some i2f1; : : : ; ng we have x=y

i

;

xv[y

1

,: : : ,y

n

℄ i� x=[℄ or for some i2f1; : : : ; ng we have x=[y

i

,: : : ,y

n

℄.

2.2 Bounded quanti�ers and generalized logi
 programs

Here we introdu
e bounded quanti�ers. Apart from sorts they are basi
ally equivalent to

bounded quanti�ers introdu
ed in [Gon
harov 85℄.

De�nition 2.6 (Bounded quanti�ers) Bounded quanti�ers are expressions of the form

(8x2t), (9x2t), (8xvt), (9xvt), where the variable x does not o

ur in the term t of the sort list.

De�nition 2.7 (�-formulas and �

0

-formulas) A �-formula is any formula 
onstru
ted

from atoms using ^, _, 9, and bounded quanti�ers. To distinguish the ordinary existential

quanti�er 9 from bounded quanti�ers we shall 
all the former unrestri
ted existential quanti�er.

A �

0

-formula is a �-formula 
ontaining no o

urren
es of the unrestri
ted quanti�er 9.

De�nition 2.8 (Generalized logi
 programs) A generalized logi
 program P is a set of


lauses of the form

P

i

(�x

i

):-'

i

(�x

i

);

where i = 0; : : : ; n, P

i

are predi
ate symbols, '

i

are �-formulas, whose all free variables are in

�x

i

and whose predi
ate symbols are in the set P

0

; : : : ; P

n

;=.

7



To make the generalized logi
 programs shorter and to make the syntax 
loser to that of the

ordinary logi
 programs we introdu
e some notation. The set of expressions

P (

�

t

1

) :- '

1

.

.

.

P (

�

t

n

) :- '

n

will denote the 
lause

P (�x) :- 9�y

1

(�x =

�

t

1

^'

1

)_: : :_9�y

n

(�x =

�

t

n

^'

n

),

where �x are new variables, �y

i

are all the variables of t

i

. This notation is similar to the translation

used in [Clark 78℄.

De�nition 2.9 (Queries) Query to a generalized logi
 program P is any �-formula.

In the literature on logi
 programming with sets only one kind of bounded quanti�ers is used,

namely 82. The quanti�er 8v was introdu
ed in [Gon
harov 85℄ following [Moor 81℄. This

quanti�er is very expressive. For example in Se
tion 5.2 we present a non-re
ursive metainter-

preter for Horn 
lause logi
 programs, whi
h uses only unrestri
ted existential quanti�ers and

the bounded quanti�er 8v. It is diÆ
ult to introdu
e this bounded quanti�er for sets, be
ause

there is no analog of the relation v.

2.3 Examples

To explain the use of the bounded quanti�ers we give some examples below. The interesting

property of these examples is that they are not re
ursive. Before giving the examples we will

make the following agreement about syntax.

In all examples of this paper we use the standard Prolog notation: variable names start

from upper-
ase letters, while all other symbols start from lower-
ase letters.

We also need notation to distinguish sorts of variables in programs. By default we assume the

following:

A variable v is of sort list i� it o

urs in a bounded quanti�er in one of the following

expressions:

1. (Qx2v);

2. (Qx2[t

1

; : : : ; t

n

|v℄);

3. (Qxvv);

4. (Qxv[t

1

; : : : ; t

n

|v℄);

5. (Qvvt).

where Q is 8 or 9
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Example 2.1 A program 
omputing whether a list L is ordered:

ordered(L) :-

(8XvL)(X=[℄_singleton(X)_ordered2(X)).

singleton([X℄).

ordered2([X,Y|Z℄) :-

X�Y.

We assume that � is de�ned separately.

Example 2.2 A program 
omputing whether all elements of a list L satisfy a property p:

allp(L) :-

(8X2L)p(X).

Example 2.3 A program 
omputing the subset relation:

subset(L1,L2) :-

(8X12L1)(9X22L2)X1=X2.

Example 2.4 A program verifying whether a given list L has no repetitions:

norep(L) :-

(8XvL)(X=[℄_norep1(X)).

norep1([A|As℄) :-

(8X2As)A=/X.

Example 2.5 A program �nding a route in a graph. We assume that two verti
es a and b are


onne
ted in the graph i� the fa
t ar
(a,b) is in the program.

route(A,B,C) :-

path(C)^start(A,C)^finish(B,C).

path(P) :-

(8SvP)(S=[℄_singleton(S)_
onne
ted(S)).

singleton([X℄).


onne
ted([X,Y|Z℄) :-

ar
(X,Y).

start(X,[X|Xs℄).

finish(X,Xs) :-

(9SvXs)(S=[X℄).

9



3 Semanti
s of generalized logi
 programs

The theory of logi
 programming is based on the fundamental fa
t that the (de
larative) model-

theoreti
 semanti
s 
oin
ides with the provability by SLD-resolution and some other kinds of

provabilities, e.g. those of intuitionisti
 and 
lassi
al logi
s.

In this se
tion we shall adapt these semanti
s to generalized logi
 programs. The feature spe
i�


to generalized logi
 programs are bounded quanti�ers. The semanti
s of Horn 
lause programs

must be modi�ed so as to handle them.

In Se
tion 3.1 we introdu
e a model-theoreti
 semanti
s for generalized logi
 programs, whi
h

simply expresses the intended de
larative meaning of programs with bounded quanti�ers. In

Se
tion 3.2 a least �xedpoint semanti
s is introdu
ed whi
h serves as a bridge between the

de
larative model-theoreti
 semanti
s and the pro
edural interpretation introdu
ed later. Then,

in Se
tions 3.3 and 3.4, we de�ne two types of 
lassi
al and 
onstru
tive provabilities | one

with axioms for lists from [Gon
harov 85℄, and another one whi
h 
onsiders lists as elements

generated by indu
tive de�nitions.

Se
tion 3.5 presents the so 
alled natural semanti
s for generalized logi
 programs whi
h was

originally introdu
ed in [Voronkov 87℄. The 
al
ulus Nat(P) from this se
tion represents in a

de
larative way ideas from the pro
edural semanti
s introdu
ed in Se
tion 4.

3.1 Model-theoreti
 semanti
s

The main semanti
s of generalized logi
 programs is the model theoreti
 semanti
s whi
h allows

for a de
larative reading of programs. Our semanti
s is similar to the semanti
s introdu
ed in

the papers [Gon
harov 85, Kuper 87, Dovier 91℄. The main di�eren
e between our semanti
s

and that of [Gon
harov 85℄ is that we allow fun
tion symbols to be 
onstru
tors, whi
h means

that we 
an de�ne new terms, whereas in [Gon
harov 85℄ the model is �xed | the set of all lists

with atoms from the basi
 model.

To treat lists we have to restri
t the 
lass of models. To this end we introdu
e so 
alled admissible

models:

De�nition 3.1 (Admissible models) Let M be a two-sorted model with sorts univ and list.

Let atoms be either [℄ or elements of M whi
h are not of the sort list. The model M is admissible

i� the following statements are true:

1. The interpretation of the relation = is equality.

2. The interpretation of the sort list is a subset of the interpretation of the sort univ.

3. All elements of M of the sort list either are [℄ or 
an be built from atoms by a �nite

number of appli
ations of 
ons.

4. M [x|y℄=[u|v℄�x=u^y=v.

5. M :[x|y℄=[℄.

In other words, admissible models are models the sort list is generated by free 
onstru
tors nil

and 
ons.

10



Now to introdu
e the model-theoreti
 semanti
s of our programs we have to de�ne the meaning

of quanti�ed expressions. First let us note that it is possible to introdu
e the relations 2 and v

on admissible models in the same way as in De�nition 2.5.

De�nition 3.2 (Truth) Let M be an admissible model. The notion of truth for formulas with

bounded quanti�ers is de�ned similar to the standard de�nition [Chang 77℄ with the following

items for quanti�ers:

1. M 8x'(x) i� for every element a of M of the same sort as x we have M '(a).

2. M 9x'(x) i� for some element a of M of the same sort as x we have M '(a).

3. M (8x2t)'(x) i� M 8x(x2t�'(x)).

4. M (9x2t)'(x) i� M 9x(x2t^'(x)).

5. M (8xvt)'(x) i� M 8x(xvt�'(x)).

6. M (9xvt)'(x) i� M 9x(xvt^'(x)).

De�nition 3.3 A 
lause A(�x):-'(�x) is true on a model N i� the formula 8�x('(�x)�A(�x)) is

true on M.

De�nition 3.4 (Model of a program) A model M is a model of the program P i� all 
lauses

from P are true on M.

De�nition 3.5 (Relation �) Relation � between models of a program P is de�ned in the

following way: N

1

� N

2

i� for any ground �-formula ', N

1

j= ' implies N

2

j= '.

The main notion for this se
tion is Herbrand models.

De�nition 3.6 (Herbrand models) An admissible model M is a Herbrand model i� the in-

terpretation of the sort univ on M is the set HU of all ground terms and the relation = is

interpreted as identity on the set of terms.

Lemma 3.1 Let N

1

;N

2

be Herbrand models of a program P. Then N

1

� N

2

i� for any ground

atomi
 formula ', from N

1

j= ' follows N

2

j= '.

Proof. In one dire
tion obvious, be
ause ea
h atomi
 formula is a �-formula. In the

other dire
tion follows from the fa
t that on Herbrand models the truth of a ground

quanti�ed expression Qx'(x), where Q is either 8 or 9, is fully determined by the

truth of ground formulas of the form '(t).

Generalized logi
 programs do not have the model interse
tion property for �-formulas. Indeed,

if is straightforward to 
onstru
t two Herbrand models, su
h that the formula A_B is true on

both, but neither A nor B are.

However we 
an prove that the model interse
tion property holds for atomi
 formulas, using the

following two lemmas.
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De�nition 3.7 (Interse
tion of models) Let fM

i

j i2 Ig be Herbrand models. The interse
-

tion

T

i2 I

M

i

of M

i

is the model M su
h that for any atomi
 ground formula ', we have M '

i� M

i

', for all i2 I.

Lemma 3.2 Let ' be a ground �-formula whi
h is false on M

i

, for some i2 I. Then

T

i2 I

M

i

'.

Proof. Denote

T

i2 I

M

i

by M. We will use indu
tion on the depth of '.

1. For atomi
 ', straightforward from de�nitions.

2. Let ' take the form  _� and M

i

 _�. Then M

i

 and M

i

�. The indu
-

tion hypothesis gives M  and M � and hen
e M '_�.

3. Let ' take the form  ^� andM

i

 ^�. ThenM

i

 orM

i

�. The indu
tion

hypothesis gives M  or M � and hen
e M '^�.

4. Let ' take the form 9x (x) and M

i

9x (x). Then, M

i

 (t), for all ground

terms t. The indu
tion hypothesis gives M  (t), for all ground terms t. Sin
e

M is a Herbrand model, then M 9x (x).

5. Let ' take the form (9x2[t

1

; : : : ; t

n

℄) (x). Then ' is equivalent to disjun
tion

 (t

1

)_ : : :_ (t

n

) and the proof is equivalent to 
ase 2.

The other 
ases are similar.

Lemma 3.3 Let fM

i

j i2 Ig be Herbrand models of a generalized logi
 program P. Then

T

i2 I

M

i

is also a model of P.

Proof. Denote

T

i2 I

M

i

by M. Let P (�x):-'(�x) be a 
lause from P . We have to

show M '(

�

t)�P (

�

t), for every tuple

�

t of ground terms. Assume that M '(

�

t)�P (

�

t).

Then M '(

�

t) and M P (

�

t). By Lemma 3.2 we have that M

i

'(

�

t), for all i2 I.

From M P (

�

t) it follows that for some j 2 I, M

j

P (

�

t). Hen
e M

j

is not a model

for P .

Theorem 1 For every generalized logi
 program P there exists a Herbrand model M of P whi
h

is minimal among Herbrand models w.r.t. �.

Proof. By Lemma 3.3 the interse
tion of all Herbrand models of P is a model of P .

Obviously this model is minimal.

De�nition 3.8 (Mod(P)) Given a generalized logi
 program P, let Mod(P) denote the set

of all ground �-formulas whi
h are true in the minimal Herbrand model of P.

We shall use the following de�nition extensively throughout the paper:

De�nition 3.9 Let P be a program. Then predi
ate P 
omputes or de�nes the set S in P i�

S = ft j P (t)2Mod(P)g.

12



3.2 Least �xedpoint semanti
s

The de�nition of the least �xedpoint semanti
s is similar to the de�nitions given in

[Gon
harov 85℄ and to the formalization of logi
 programming proposed in [Apt 82℄: a (gen-

eralized) logi
 program is 
onsidered as a monotoni
 mapping from interpretations to interpre-

tations.

De�nition 3.10 (Interpretations) An interpretation I is any set of ground �-formulas sat-

isfying the following properties:

1. For all terms s; t, s=t2I i� s is identi
al to t.

2. '^ 2I i� '2 I and  2I;

3. '_ 2I i� '2 I or  2 I;

4. 9x'(x)2I i� for some term t of the same sort as x, '(t)2 I;

5. (9x2s)'(x)2I i� for some term t2s of the same sort as x, '(t)2I;

6. (8x2s)'(x)2 I i� for every term t2s of the same sort as x, '(t)2 I;

7. (9xvs)'(x)2I i� for some term tvs we have '(t)2 I;

8. (8xvs)'(x)2I i� for every term tvs we have '(t)2 I;

De�nition 3.11 (Atom(I)) For an interpretation I, we denote by Atom(I) the set of all atomi


formulas from I.

Lemma 3.4 Let I, J be two interpretations. Then I � J i� Atom(I) � Atom(J).

Proof. Straightforward.

Lemma 3.5 Any interpretation is uniquely 
hara
terized by the set of its atomi
 formulas.

Proof. Dire
tly from Lemma 3.4.

De�nition 3.12 (P

�

) Let P be a program. We use P

�

to denote the set of all ground instan
es

of 
lauses from P.

De�nition 3.13 (The immediate 
onsequen
e operator I

P

) The immediate 
onsequen
e

operator de�ned by a program P is the fun
tion I

P

on the set of all interpretations de�ned as

follows: for an interpretation I and a ground atomi
 formula  ,  2 I

P

(I) i� P

�


ontains a


lause '� su
h that '2 I.

13



Lemma 3.6 The operator I

P

is monotoni
, i.e. for any two interpretations I,J, from I � J it

follows that I

P

(I) � I

P

(J).

Proof. Straightforward from Lemma 3.4.

De�nition 3.14 (The minimal interpretation I

0

) The minimal interpretation I

0

is de�ned

by

Atom(I

0

) = ft=t j t is a ground termg

From Lemma 3.5 follows that I

0

is unique.

Theorem 2 There is the least �xed point Lfp(P) of the operator I

P

among all interpretations


ontaining I

0

. It 
an be 
omputed as

Atom(Lfp(P)) =

1

[

i=0

Atom(I

i

);

where I

0

is as de�ned, and Atom(I

i+1

) = Atom(I

i

)

S

Atom(I

P

(I

i

)). Moreover Lfp(P) 
oin-


ides with Mod(P).

Proof.

1. Lfp(P) is a �xedpoint.

(a) Obviously, I

P

(I

i

) � I

i+1

, and thus I

P

(Lfp(P)) � Lfp(P).

(b) By the de�nition of I

j

and by Lemma 3.6, we have I

i

� I

i+1

, and thus

Lfp(P) � I

P

(Lfp(P)).

2. Lfp(P) is a least �xedpoint. Let J be any �xedpoint of I

P

, 
ontaining I

0

. Then,

by repeated appli
ations of the monotoni
ity of I

P

(Lemma 3.6), we have that

I

i

� J, and hen
e Lfp(P) � J.

3. Lfp(P) = Mod(P). By indu
tion on i one 
an prove that all atoms from I

i

belong to any model of P. It is straightforward to prove that any �xedpoint is

a model.

3.3 Classi
al provability

Classi
al proof systems for lists are obtained from the 
lassi
al predi
ate 
al
ulus by adding

axioms expressing properties of lists. In [Voronkov 92a℄ we used two ways to de�ne appropriate

extensions of the predi
ate 
al
ulus. The �rst approa
h is similar to the approa
h used in

[Barwise 75℄ for hereditarily �nite sets, in [Gon
harov 85℄ for lists and in [Kuper 88℄ for �nite

sets. A

ording to this approa
h all elements ex
ept lists are 
onsidered as urelements and some

axioms expressing properties of list are added to the predi
ate 
al
ulus. The se
ond approa
h

from [Voronkov 92a℄ is to treat sort de�nitions (in
luding the de�nition of lists) as indu
tive

14



Figure 3.1: List theories Clt(P) and Ilt(P)

1. Axioms for P . If a 
lause P (�x) :- '(x) belongs to P , then the formula 8�x('(�x)�P (�x))

is an axiom of Clt(P);

2. Axioms for lists:

[s

1

|t

1

℄=[s

2

|t

2

℄�s

1

=s

2

^t

1

=t

2

:s=[℄

r2[s|t℄�(r=s_r2t)

tv[℄�t=[℄

t

1

v[s|t

2

℄�t

1

=[s|t

2

℄_t

1

vt

2

where s

i

,r

i

are arbitrary terms of the sort univ, t

i

arbitrary terms of the sort list.

3. Indu
tion axioms:

'([℄)^8x8y('(y)�'([xjy℄))�8y'(y),

where ' is any formula, x a variable of the sort univ, y a variable of the sort list.

de�nitions. Indu
tive de�nitions for sorts de�ne universes for these sorts and also give indu
tion

rules for proving properties of elements of the sorts. Here we have only two sorts, so the �rst

approa
h is more appropriate.

The order-sorted predi
ate 
al
ulus we use di�ers from the ordinary non-sorted predi
ate 
al
ulus

in the following restri
tions on the axioms for the quanti�ers. In the axioms 8x'(x)�'(t) and

'(t)�9x'(x), if the variable x is of the sort �, then t must be a term of the same sort.

We also do not 
onsider in this se
tion bounded quanti�ers as primitives, but as notations:

(8x�t)'(x) stands for 8x(x�t � '(x)),

(9x�t)'(x) stands for 9x(x�t^'(x)),

where � denotes 2 or v.

De�nition 3.15 (Cal
ulus Clt(P)) The 
al
ulus Clt(P) (the 
lassi
al list theory) is obtained

from the 
lassi
al predi
ate 
al
ulus with equality by adding the axioms given in Figure 3.1 on

page 15.

This theory is almost identi
al to GES de�ned in [Gon
harov 85℄. We have omitted the founda-

tion axiom from [Gon
harov 85℄. The use of the foundation axiom requires 
hanging the system

of sorts. One possibility is to use one-sorted logi
 as in [Barwise 75℄ whi
h is not 
onvenient for

our purposes. Another possibility a use of the foundation axiom is the introdu
tion of a more


ompli
ated sort stru
ture as in [Voronkov 92a℄.

Theory Clt(P) 
an be used as the proof theory for logi
 programming with bounded quanti�ers.

Using this theory one 
an prove properties of lists and programs. The following theorem shows


ompleteness and 
orre
tness of Clt(P) w.r.t. other semanti
s.
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Theorem 3 A ground �-formula ' is provable in Clt(P) i� '2Mod(P).

Proof.

1. In one dire
tion straightforward: it is easy to see that a formula, provable in

Clt(P), is true in any model of P.

2. We shall the use 
hara
terization of the minimal model proved in Theorem 2:

a ground �-formula ' is true in the minimal model i� '2I

i

, for some i. Thus

it suÆ
es to show that all formulas from I

i

are provable in Clt(P), for all i.

Using axioms for lists and the indu
tion axiom of Clt(P), one 
an prove the

following properties of Clt(P)(
ompare with De�nition 3.10).

(a) For every ground term t we have Clt(P)` t=t.

(b) Clt(P)`'^ , if Clt(P)`' and Clt(P)` .

(
) Clt(P)`'_ , if Clt(P)`' or Clt(P)` .

(d) Clt(P)`9x'(x), if for some term t of the same sort as x, Clt(P)`'(t).

(e) Clt(P)` (9x2s)'(x), if Clt(P)`'(t) for some term t2s.

(f) Clt(P)` (8x2s)'(x), if Clt(P)`'(t) for every term t2s.

(g) Clt(P)` (9xvs)'(x), if Clt(P)`'(t) for some term tvs.

(h) Clt(P)` (8xvs)'(x), if Clt(P)`'(t) for every term tvs.

Using these properties, one 
an prove that Clt(P)`', for all '2 I

0

. Similarly,

from the axioms for P and the above mentioned properties, one 
an prove, that

if Clt(P)`', for all '2 I

i

, then Clt(P)`', for all '2I

i+1

.

This theorem has an interesting 
orollary whi
h shows that Clt(P), being based on 
lassi
al

logi
, has some 
onstru
tive properties:

Corrollary 3.1 (Disjun
tion property and expli
it de�nability property of Clt(P))

1. If '_ is a ground �-formula, and Clt(P)`'_ , then Clt(P)`' or Clt(P)` .

2. If 9x'(x) is a ground �-formula, and Clt(P)`9x'(x), then Clt(P)`'(t), for a ground

term t.

Proof. Straightforward from Theorem 3.

3.4 Constru
tive provability

De�nition 3.16 (System Ilt(P)) The system Ilt(P) (intuitionisti
 list theory) has the same

axioms and rules as Clt(P) but is based on intuitionisti
 predi
ate logi
 instead of the 
lassi
al

one.

The intuitionisti
 variant of list theory was introdu
ed in [Voronkov 86b℄. In [Voronkov 91℄ we

proved that it is 
onstru
tive from the viewpoint of a 
onstru
tive semanti
s, whi
h in parti
ular

means that it has a variant of the expli
it de�nability property: if a ground formula 9x'(x)
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is provable then it is possible to e�e
tively �nd a term t su
h that '(t) holds. Below we shall

prove a stronger form of this property.

For (suitably represented) Horn 
lauses, provability in 
lassi
al logi
 
oin
ides with the prov-

ability in intuitionisti
 logi
. We 
an prove the same result for the generalized programs, if we


onsider Ilt(P) instead of the intuitionisti
 predi
ate 
al
ulus.

Theorem 4 For a ground atomi
 �-formula ', Ilt(P) ' i� '2Mod(P).

Proof. The same as for Theorem 3.

The theory Clt(P) has the disjun
tion property and the expli
it de�nability property for ground

�-formulas. Below we show that Ilt(P) has this important properties for arbitrary formulas.

The 
onstru
tiveness of Ilt(P) is important, be
ause it allows one to synthesize logi
 programs

from proofs in this theory, in the style of [Voronkov 86
, Voronkov 86d℄ or [Wiggins 91℄.

Theorem 5 (Disjun
tion property and expli
it de�nability property of Ilt(P))

1. If '_ is a ground formula, and Ilt(P)`'_ , then Ilt(P)`' or Ilt(P)` .

2. If 9x'(x) is a ground formula, and Ilt(P)`9x'(x), then Ilt(P)`'(t), for a ground term

t.

Proof. We shall use the te
hnique, introdu
ed by Kleene [Kleene 62℄. First we

introdu
e a few de�nitions.

The set of Harrop formulas [Harrop 60℄ is de�ned as follows.

De�nition 3.17 (Harrop formulas)

1. Any atomi
 formula is a Harrop formula;

2. If '; are Harrop formulae and � is an arbitrary formula then the formulae

'^ , 8x', �� , :� are Harrop formulae.

The relation j (Kleene's slash) between sets of formulae and formulae is de�ned

in the following way. During the de�nition we assume that T ' means T j' and

T `', where ` stands for the provability in intuitionisti
 logi
.

De�nition 3.18 (Kleene's slash j)

1. For atomi
 formulas ', T j' i� T `';

2. T j'^ i� T j' and T j ;

3. T j'_ i� T ' or T  ;

4. T j'� i� from T ' follows T j ;

5. T j:' i� not T ';

6. T j8x'(x) i� for every ground term t we have T j'(t);

7. T j9x'(x) i� for some ground term t, we have T '(t).
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The relation is identi
al to Kleene's slash from [Kleene 62℄ ex
ept for minor


hanges for the quanti�er 
ases.

As in [Kleene 62℄ it is possible to prove that logi
 obtained from intuitionisti


logi
 by adding a set of formulae S as axioms has the disjun
tion property and the

expli
it de�nability property i� for any '2S we have S j'.

Thus it suÆ
es to show that for any axiom ' of Ilt(P) we have Ilt(P) j'.

1. All axioms for P are Harrop formulas. For Harrop formulas the proof is trivial

as in e.g. [Kleene 62℄.

2. Axioms for lists. Consider, for example, the formula r2[s|t℄ � (r=s_r2t). It

suÆ
es to show that Ilt(P) jr2[s|t℄ � (r=s_r2t), for any ground terms r; s; t

of appropriate sorts. To this end assume Ilt(P) r2[s|t℄. Thus, in parti
ular,

Ilt(P)` r2[s|t℄. By Theorem 4 the formula r2[s|t℄ is true in the minimal

model. Hen
e, either r is identi
al to s, or r2t. Applying Theorem 4 on
e more,

we get that either Ilt(P)` r=s or Ilt(P)` r2t. In both 
ases Ilt(P) jr=s_r2t.

3. Indu
tion axioms. One has to show that Ilt(P) j'([℄)^8x8y('(y)�'([x|y℄))�

8y'(y). To this end assume Ilt(P) '([℄) and Ilt(P) 8x8y('(y)�'([x|y℄)),

and prove Ilt(P) j'(t) for every ground term t of the sort list.

The proof is by indu
tion on the length of t.

(a) t=[℄. Straightforward from assumptions.

(b) t=[r|s℄. The indu
tion hypothesis gives Ilt(P) '(s). From this and

Ilt(P) 8x8y('(y)�'([x|y℄)) one 
an easily show Ilt(P) j'([r|s℄).

The other 
ases are 
onsidered similarly.

If we extend the system of sorts to in
lude sorts from [Voronkov 92a℄, we may also prove these

properties for the system with the foundation axiom [Barwise 75, Gon
harov 85℄.

3.5 The natural 
al
ulus

We 
all this 
al
ulus natural be
ause it gives a natural semanti
s to the formulas with bounded

quanti�ers. The rules of the natural 
al
ulus treat these formulas in a very natural and elegant

way. The 
al
ulus Nat(P) introdu
ed below is similar to the ground positive hyperresolution

on Horn 
lauses. At the same time the natural 
al
ulus serves as a basis for the pro
edural

semanti
s of generalized logi
 programs. The natural semanti
s for �-programs [Gon
harov 85℄

was introdu
ed in [Voronkov 87℄ with the aim of showing that �-programs 
an be eÆ
iently

exe
uted using uni�
ation instead of the exhaustive sear
h.

Another reason for introdu
ing the natural 
al
ulus as an intermediate semanti
s between the

denotational (model theoreti
) semanti
s and the pro
edural (SLDB-resolution of Se
tion 4)

semanti
s, is that the least �xedpoint 
onstru
tion does not dire
tly 
orrespond to 
omputations,

as in the 
ase of SLD-resolution [Lloyd 84℄. Indeed, from the results of Se
tion 5 it follows that

there are non-re
ursive generalized logi
 programs, 
onsisting of only one de�nition, whi
h 
an

express arbitrary 
omputable sets. For su
h programs the least �xedpoint 
onstru
tion stabilizes

on the �rst step (I

1

), whi
h does not 
orrespond to real 
omputations. The natural semanti
s

introdu
ed here does re
e
t 
omputations by SLDB-resolution, whi
h is the main pro
edure to

exe
ute generalized logi
 programs.

De�nition 3.19 (Cal
ulus Nat(P)) Cal
ulus Nat(P) 
onsists of the axioms and inferen
e

rules given in Figure 3.2 on page 19.
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Figure 3.2: Natural 
al
ulus Nat(P)

1. Axioms are all formulas of the form t=t, where t is a ground term.

2. Rules for P :

'

A

;

if A:-' belongs to P

�

.

3. Rules for the logi
al 
onne
tives:

'

'_ 

 

'_ 

'  

'^ 

4. A rule for the existential quanti�er:

'(t)

9x'(x)

where x is a variable of a sort �, t is a term of the same sort.

5. Rules for the bounded quanti�ers (here t is a term of the sort list, s is an arbitrary

term):

'(s)

(9x2[s|t℄)'(x)

(9x2t)'(x)

(9x2[s|t℄)'(x)

(8x2[℄)'(x)

'(s) (8x2t)'(x)

(8x2[s|t℄)'(x)

'(t)

(9xvt)'(x)

(9xvt)'(x)

(9xv[s|t℄)'(x)

'([℄)

(8xv[℄)'(x)

'([s|t℄) (8xvt)'(x)

(8xv[s|t℄)'(x)
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Theorem 6 For any ground �-formula ', '2Mod(P) i� Nat(P)` '.

Proof.

1. It is easy to see that the rules of Nat(P) are admissible in Clt(P). Thus by

Theorem 3 we have that Nat(P)`' implies '2Mod(P).

2. Consider interpretations I

i

from Theorem 2. Obviously, all atomi
 formulas

from I

0

are provable in Nat(P) (by axioms for equality). Rules for the 
on-

ne
tives, the existential quanti�er and bounded quanti�ers allow all �-formulas

from an interpretation to be proved from atomi
 formulas, true in this inter-

pretation (see De�nition 3.10 of interpretations). Finally, rules for P allow all

atomi
 formulas of I

i+1

to be obtained from formulas of I

i

. Appli
ation of

Theorem 2 on 
oin
iden
e of Lfp(P) with Mod(P) 
on
ludes the proof.
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4 Pro
edural semanti
s: SLDB-resolution

The natural 
al
ulus of Se
tion 3.5 represents in a de
larative way the main ideas of the op-

erational semanti
s. This 
al
ulus treats only ground formulas. To produ
e the operational

semanti
s from the 
al
ulus it is suÆ
ient to show how to treat non-ground formulas and how to

formalize the top-down sear
h. To this end we introdu
e a uni�
ation algorithm for two-sorted

terms in Se
tion 4.1 and SLDB-resolution in Se
tion 4.2.

4.1 Uni�
ation

The sorts introdu
ed here require a spe
ial uni�
ation algorithm, whi
h re
e
ts two-sorted stru
-

tures. However the algorithm is not very di�erent from the standard uni�
ation algorithm, and

we shall only sket
h the di�eren
es. These are:

1. Uni�
ation of a variable v of the sort list with a variable u of the sort univ gives the

substitution [u v℄ (but not [v u℄).

2. Uni�
ation of a variable v of the sort list with a non-variable term di�erent from [℄ and

[s|t℄ fails.

One 
an easily prove standard statements about uni�
ation [Eder 85℄ for our two-sorted stru
-

tures

1

.

4.2 SLDB-resolution

In this se
tion we give a pro
edural semanti
s of our language whi
h generalizes SLD-resolution

for Horn 
lause programs. We 
all it SLDB-resolution (SLD-resolution with Bounded quanti-

�ers). There is no di�eren
e between SLDB-resolution and SLD-resolution in the treatment of

program 
lauses, but there are spe
ial features in pro
essing built-in predi
ates and 
omplex

formulas.

De�nition 4.1 (Goals) A goal is any list of �-formulas.

We assume that the reader is familiar with the notion of SLD-resolution (see e.g. [Lloyd 84℄).

De�nition 4.2 (Computation rule) The 
omputation rule is a fun
tion from the set of all

non-empty goals to the set of �-formulas su
h that the value of the fun
tion on a goal is a

formula, 
alled the sele
ted formula, in that goal.

De�nition 4.3 (Su

essor) Let '

1

; : : : ; '

n

be a goal, R a 
omputation rule and '

i

be the

sele
ted formula in that goal under R. Then the goal ('

1

; : : : ; '

i�1

;�; '

i+1

; : : : ; '

n

)�, where �

is a substitution and � is a list of �-formulas, is a su

essor of the goal '

1

; : : : ; '

n

with the

substitution � under the 
omputation tule R i� one of the following 
onditions holds:

1. '

i

is an atom t

1

=t

2

, � is empty, � is a most general uni�er of t

1

and t

2

.

1

See also [Walther 90℄ for more referen
es on order-sorted uni�
ation
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2. '

i

takes the form  

1

_ : : :_ 

n

, � is  

i

, i2f1; : : : ; ng, � is the empty substitution.

3. '

i

takes the form  

1

^ : : :^ 

n

, � is  

1

; : : : ;  

n

, � the empty substitution.

4. '

i

takes the form 9x (�x), � is  (�y), � the empty substitution, �y are new variables of the

same sort as �x.

In the following y is a new (not o

urring in the original goal) variable of the sort list, z

a new variable of the sort univ.

5. '

i

takes the form (9x2t) (x), � is  (z), � a most general uni�er of t and [z|y℄.

6. '

i

takes the form (9x2t) (x), � is (9x2y) (x), � is a most general uni�er of t and [z|y℄.

7. '

i

takes the form (8x2t) (x), � is empty, � is a most general uni�er of t and [℄.

8. '

i

takes the form (8x2t) (x), � is  (z);(8x2y) (x), � is a most general uni�er of the pair

(x; t) and (z; [z|y℄).

9. '

i

takes the form (9xvt) (x), � is  (x), � is the substitution [x t℄.

10. '

i

takes the form (9xvt) (x), � is (9xvy) (x), � is a most general uni�er of t and [z|y℄.

11. '

i

takes the form (8xvt) (x), � is  ([℄), � is a most general uni�er of t and [℄.

12. '

i

takes the form (8xvt) (x), � is  ([z|y℄);(8xvy) (x), � is a most general uni�er of the

pair (x; t) and ([z|y℄; [z|y℄).

13. '

i

is an atom P (

�

t), � is '(

�

t), � is the empty substitution, if P 
ontains a 
lause of the

form P (�x):-'(�x).

De�nition 4.4 (SLDB-derivation) Let R be a 
omputation rule. An SLDB-derivation under

R is any sequen
e of pairs h�

0

; �

0

i; : : : ;

h�

n

; �

n

i of goals and substitutions su
h that for every i2f1; : : : ; ng there exists a substitution �

su
h that

1. �

i

is a su

essor of �

i�1

with the substitution � under R;

2. �

i

= � Æ �

i�1

.

De�nition 4.5 (Provability by SLDB-resolution) We say that a goal � is provable under

a 
omputation rule R with the answer substitution � i� there is an SLDB-derivation under this


omputation rule, whi
h starts from h�; "i and ends at h�; �i, where " is the empty substitution

and � is the empty goal.

SLDB-resolution is di�erent from SLD-resolution in several aspe
ts. Firstly, spe
ial rules for

handling bounded quanti�ers are added, and se
ondly, some steps of SLDB-resolution are not

expli
itly mentioned in the usual de�nitions of SLD-resolution. These 
orrespond to steps whi
h

are impli
it in SLD-resolution.

Let us give an example of SLDB-derivation.

Example 4.1 Let P be the program obtained from the program from Example 2.5 by adding two

fa
ts
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ar
(a,b).

ar
(b,
).

We remember that these 
lauses denote the program

route(A,B,C) :-

path(C)^start(A,C)^finish(B,C).

path(P) :-

(8SvP)(S=[℄_singleton(S)_
onne
ted(S)).

singleton(Y) :-

9X(Y=[X℄).


onne
ted(U) :-

9X9Y9Z(U=[X,Y|Z℄^ar
(X,Y)).

start(X,Y) :-

9Xs(Y=[X|Xs℄).

finish(X,Xs) :-

(9SvXs)(S=[X℄).

ar
(X,Y) :-

(X=a^Y=b) _ (X=b^Y=
).

Then, given the query

?-route(X,
,Y).

the following is an SLDB-derivation. The 
omputed answer substitution is written at the end of

ea
h goal. The sele
ted formula is put in a box.

1. route(X,
,Y) [℄

2. path(Y)^start(X,Y)^finish(
,Y) [℄

3. path(Y),

start(X,Y) ,

finish(
,Y) [℄

4. path(Y),

9Xs(Y=[X|Xs℄) ,

finish(
,Y) [℄

5. path(Y),

Y=[X|Z℄ ,

finish(
,Y) [℄

6. path([X|Z℄) ,

finish(
,[X|Z℄) [Y [X|Z℄℄

7. (8Sv[X|Z℄)(S=[℄_singleton(S)_
onne
ted(S)) ,

finish(
,[X|Z℄) [Y [X|Z℄℄
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8. [X|Z℄=[℄_singleton([X|Z℄)_
onne
ted([X|Z℄) ,

(8SvZ)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[X|Z℄) [Y [X|Z℄℄

9. 
onne
ted([X|Z℄) ,

(8SvZ)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[X|Z℄) [Y [X|Z℄℄

10. 9U9V9W([X|Z℄=[U,V|W℄^ar
(U,V)) ,

(8SvZ)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[X|Z℄) [Y [X|Z℄℄

11. [X|Z℄=[U,V|W℄^ar
(U,V) ,

(8SvZ)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[X|Z℄) [Y [X|Z℄℄

12. [X|Z℄=[U,V|W℄ ,

ar
(U,V),

(8SvZ)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[X|Z℄) [Y [X|Z℄℄

13. ar
(U,V) ,

(8Sv[V|W℄)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[U,V|W℄) [Y [U,V|W℄,X U℄

14. (U=a^V=b)_(U=b^V=
) ,

(8Sv[V|W℄)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[U,V|W℄) [Y [U,V|W℄,X U℄

15. (U=a^V=b) ,

(8Sv[V|W℄)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[U,V|W℄) [Y [U,V|W℄,X U℄

16. U=a ,

V=b,

(8Sv[V|W℄)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[U,V|W℄) [Y [U,V|W℄,X U℄

17. V=b ,

(8Sv[V|W℄)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[a,V|W℄) [Y [a,V|W℄,X a℄

18. (8Sv[b|W℄)(S=[℄_singleton(S)_
onne
ted(S)) ,

finish(
,[a,b|W℄) [Y [a,b|W℄,X a℄

19. [b|W℄=[℄_singleton([b|W℄)_
onne
ted([b|W℄) ,

(8SvW)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[a,b|W℄) [Y [a,b|W℄,X a℄

20. 
onne
ted([b|W℄) ,

(8SvW)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[a,b|W℄) [Y [a,b|W℄,X a℄

21. 9X9Y9Z([b|W℄=[X,Y|Z℄^ar
(X,Y)) ,

(8SvW)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[a,b|W℄) [Y [a,b|W℄,X a℄
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22. [b|W℄=[X1,Y1|Z1℄^ar
(X1,Y1) ,

(8SvW)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[a,b|W℄) [Y [a,b|W℄,X a℄

23. [b|W℄=[X1,Y1|Z1℄ ,

ar
(X1,Y1),

(8SvW)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[a,b|W℄) [Y [a,b|W℄,X a℄

24. ar
(b,Y1) ,

(8Sv[Y1|Z1℄)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[a,b,Y1|Z1℄) [Y [a,b,Y1|Z1℄,X a℄

25. (b=a^Y1=b)_(b=b^Y1=
) ,

(8Sv[Y1|Z1℄)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[a,b,Y1|Z1℄) [Y [a,b,Y1|Z1℄,X a℄

26. b=b^Y1=
 ,

(8Sv[Y1|Z1℄)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[a,b,Y1|Z1℄) [Y [a,b,Y1|Z1℄,X a℄

27. b=b ,

Y1=
,

(8Sv[Y1|Z1℄)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[a,b,Y1|Z1℄) [Y [a,b,Y1|Z1℄,X a℄

28. Y1=
 ,

(8Sv[Y1|Z1℄)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[a,b,Y1|Z1℄) [Y [a,b,Y1|Z1℄,X a℄

29. (8Sv[
|Z1℄)(S=[℄_singleton(S)_
onne
ted(S)) ,

finish(
,[a,b,
|Z1℄) [Y [a,b,
|Z1℄,X a℄

30. [
|Z1℄=[℄_singleton([
|Z1℄)_
onne
ted([
|Z1℄) ,

(8SvZ1)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[a,b,
|Z1℄) [Y [a,b,
|Z1℄,X a℄

31. singleton([
|Z1℄) ,

(8SvZ1)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[a,b,
|Z1℄) [Y [a,b,
|Z1℄,X a℄

32. 9X([
|Z1℄=[X℄) ,

(8SvZ1)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[a,b,
|Z1℄) [Y [a,b,
|Z1℄,X a℄

33. [
|Z1℄=[X1℄ ,

(8SvZ1)(S=[℄_singleton(S)_
onne
ted(S)),

finish(
,[a,b,
|Z1℄) [Y [a,b,
|Z1℄,X a℄

34. (8Sv[℄)(S=[℄_singleton(S)_
onne
ted(S)) ,

finish(
,[a,b,
℄) [Y [a,b,
℄,X a℄

35. [℄=[℄_singleton([℄)_
onne
ted([℄)) ,

finish(
,[a,b,
℄) [Y [a,b,
℄,X a℄

36. [℄=[℄ ,

finish(
,[a,b,
℄) [Y [a,b,
℄,X a℄

37. finish(
,[a,b,
℄) [Y [a,b,
℄,X a℄
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38. (9Sv[a,b,
℄)(S=[
℄) [Y [a,b,
℄,X a℄

39. (9Sv[b,
℄)(S=[
℄) [Y [a,b,
℄,X a℄

40. (9Sv[
℄)(S=[
℄) [Y [a,b,
℄,X a℄

41. [
℄=[
℄ [Y [a,b,
℄,X a℄

42. � [Y [a,b,
℄,X a℄

The derivation is quite lengthy for the reasons explained above: some steps of SLDB-resolution


orrespond to steps hidden in SLD-derivations. One 
an use WAM-based 
ompilation

[Ait Ka
i 90℄ or partial evaluation [PE 91℄ for more eÆ
ient exe
ution models. It is interesting

to build a WAM-based implementation of logi
 programming with bounded quanti�ers.

Theorem 7 below states that SLDB-resolution is independent of the 
omputation rule. Proof

will be similar to that of [Lloyd 84℄. Before proving this theorem we shall prove a te
hni
al

lemma.

Lemma 4.1 (Swit
hing lemma) Let G = �; ';  be a goal provable by SLDB-resolution. Let

R

1

;R

2

be two 
omputation rules su
h that R

1

(�; ';  ) = ' and R

2

(�; ';  ) =  . Let G

1

=

(�;�;  )�

1

be a su

essor of G under R

1

, whi
h is provable by SLDB-resolution. Then there

exist 
omputation rules R

0

1

and R

0

2

su
h that for every su

essor G

12

of G

1

under R

0

1

there is

a su

essor G

2

= (�; ';�)�

2

of G under R

2

su
h that G

12

is also a su

essor of G

2

under R

0

2

.

(See the pi
ture below).

G G

? ?

R

1

; �

1

R

2

; �

2

G

1

G

2

�

�

�

�

�

�

�

�

�R

�

�	

R

0

1

R

0

2

G

12

Proof. Straightforward, but tedious, by 
ase analysis on the stru
ture of the formulas

'; . In all the 
ases we let R

0

1

be any 
omputation rule with R

1

(G

1

) =  �

1

and R

0

2

be any 
omputation rule with R

2

(G

2

) = '�

2

.

�; ' ;  

�; ';  

? ?

R

1

; �

1

R

2

; �

2

(��

1

;��

1

;  �

1

) (��

2

; '�

2

;��

2

)

�

�

�

�

�

�

�

�

�R

�

�	

R

0

1

R

0

2

(��;��;��)
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We 
onsider only some 
ases out of the 81 possible 
ombinations.

1. Both '; are equalities s

1

=s

2

and t

1

=t

2

. In this 
ase �

1

is a most general uni�er

of s

1

; s

2

. Terms t

1

�

1

and t

2

�

1

are uni�able, sin
e G

1

is provable. Thus, t

1

and

t

2

are uni�able (with a most general uni�er �

2

). Let � be a most general uni�er

of pairs hs

1

; t

1

i and hs

2

; t

2

i. By taking G

12

= �� we 
on
lude the proof.

2. ' takes the form t

1

=t

2

,  takes the form (8x2t)�(x). Let �

1

be a most general

uni�er of t

1

and t

2

. Consider all possible 
ases.

(a) t�

1

= [℄. Let �

2

be a most general uni�er of x and [℄. Take G

2

=

(�; '; �(x))�

2

.

(b) t�

1

= [r|s℄. Let �

2

be a most general uni�er of x and [y|z℄ with new y; z.

Take G

2

= (�; '; �(x); (8x2z)�(x))�

2

.

(
) t�

1

is a variable v of the sort list. In this 
ase there are two possible

su

essors of G

1

under R

1

.

i. � = �([℄). In this 
ase take �

2

;G

2

as in 
ase 2a.

ii. � = �([y|z℄); (8x2z)�(x). In this 
ase take �

2

;G

2

as in 
ase 2b.

3. ' takes the form '

1

_ : : :_'

n

and � is '

i

. In this 
ase for every possible

su

essor G

12

= (�;�;�)� of G

1

under R

0

1

take G

2

= (�; ';�)�.

The other 
ases are 
onsidered more or less similarly.

Theorem 7 (Independen
e of the 
omputation rule) If a goal G is provable with a sub-

stitution � under a 
omputation rule R

1

, than G is provable with � under any other 
omputation

rule R

2

.

Proof. We shall prove an even stronger statement: if there is a proof of G under R

1

with � of length n, then there is a proof of G under R

2

with � of length n. The proof

is by indu
tion on n.

1. n = 0; 1. In this 
ase G 
onsists of at most one formula, and all 
omputation

rules behave equally on G.

2. n > 1. We assume that for all m < n the statement is true. Let G takes

the form �; ';  , and let R

1

(�; ';  ) = ' and R

2

(�; ';  ) =  . Then there is a

su

essor G

1

= (�;�;  )�

1

of G under R

1

, whi
h is provable by SLDB-resolution

in n�1 steps under any 
omputation rule. Apply Lemma 4.1 and take as G

2

the

su

essor of G

1

under R

0

1

whi
h o

urs in the SLDB-derivation of G

1

of length

n � 1. Then we have that G

2

has an SLDB-derivation of length n � 1 under

some 
omputation rule, and hen
e under R

2

. Thus, G has an SLDB-derivation

of length n under R

2

.

We shall introdu
e a te
hni
al de�nition and prove several lemmas whi
h are needed to prove

soundness and 
ompleteness of SLDB-derivations.

De�nition 4.6 Let G

1

;G

2

be two goals. Then we write G

1

� G

2

i� there is a substitution �

su
h that G

2

� 
oin
ides with G

1

.
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Lemma 4.2 Let G

1

;G

2

be two goals and G

1

� G

2

. Then for every su

essor G

0

1

of G

1

under

some 
omputation rule there is a su

essor G

0

2

of G

2

under a (possibly di�erent) 
omputation

rule, su
h that G

0

1

� G

0

2

.

Proof. Straightforward by 
ase analysis on the de�nition of a su

essor.

Lemma 4.3 Let the goal G

0

be a su

essor of G with the substitution �

1

. Then for every sub-

stitution �

2

, the goal G

0

�

2

is a su

essor of G�

1

�

2

with the empty substitution.

Proof. Consider, for example, the 
ase when the G takes the form �; t

1

=t

2

. In this


ase �

1

is a most general uni�er of t

1

and t

2

. We have that t

1

�

1

�

2

= t

2

�

1

�

2

. The

other 
ases are similar.

Lemma 4.4 Let a goal G be provable by SLDB-resolution with a substitution �. Then any goal

G

0

with G

0

� G� is provable with the empty substitution.

Proof. Straightforward by repeated appli
ations of Lemma 4.3.

Let, for any formula ', 8' denote the formula 8�x', where �x is the sequen
e of all free variables

of '. The following theorem states soundness and 
ompleteness of SLDB-derivations:

Theorem 8 (Soundness and 
ompleteness of SLDB-resolution) The following state-

ments are true:

Soundness If a �-formula ' is provable with the answer substitution �, then the formula 8('�)

is true in Mod(P).

Completeness If ' is a �-formula and  is its ground instan
e true in Mod(P), then there

are substitutions �; �

1

, su
h that ' is provable with the answer substitution � and '��

1

is

identi
al to  .

Proof.

Soundness By Theorem 6 it is suÆ
ient to prove that every ground instan
e of '

is provable in Nat(P). It is easy to see that for the ground formulas all steps

of SLDB-resolution, ex
ept for the 
ase of unrestri
ted quanti�ers, 
orrespond

to the rules of the natural 
al
ulus. Assume now that a goal G takes the form

�;9x (x), and  (x) is the sele
ted formula. In this 
ase the su

essor of the

goal is �;  (y). Let it be provable with the answer substitution �

1

. Let �

2

be

any substitution su
h that y�

1

�

2

is a ground term, say, t. Then, by Lemma 4.4,

�;  (t) is provable. In this 
ase we 
an apply the rule for the unrestri
ted

quanti�ers of Nat(P).
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Completeness Applying Theorem 6 we obtain that ' is provable in Nat(P). The

rest of the proof is straightforward by indu
tion on lengths of derivations in

Nat(P) using Theorem 7 and Lemma 4.2.

Corrollary 4.1 If ' is a ground �-formula, then the following 
onditions are equivalent.

1. ' is provable (with the empty substitution ");

2. ' is true in Mod(P).

Proof. Straightforward from Theorem 8 and the fa
t that a ground formula 
an be

provable only with the empty substitution.
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5 Expressive power

In this se
tion we prove some results about the expressive power of generalized logi
 programs.

In Se
tion 5.1 we show a natural translation of generalized logi
 programs into Horn 
lause

programs. During the translation some new predi
ates may be de�ned in the programs. However

the Horn 
lause programs obtained may be re
ursive, while the initial generalized programs are

not re
ursive. In Se
tion 5.2 we 
onstru
t a non-re
ursive metainterpreter for Horn 
lauses

in the language of generalized logi
 programs. It shows the expressive power of generalized

logi
 programs | every 
omputable predi
ate 
an be expressed by a non-re
ursive generalized

program, whi
h means that it 
an be expressed by a generalized program 
onsisting of only

one nonre
ursive de�nition. We also prove that this 
annot be a
hieved using only bounded

quanti�ers or only unrestri
ted existential quanti�ers.

5.1 Translation to Horn 
lauses

In this se
tion we will show that generalized logi
 programs 
an naturally be translated into Horn


lause programs by adding new predi
ate symbols. A similar translation 
an be done for the

flogg language of [Dovier 91℄, but in this language the only allowed bounded quanti�er is that

over elements of a set, whi
h 
orresponds to our (8x2t). We prove 
orre
tness and 
ompleteness

of the translation. The existen
e of the translation is not surprising, be
ause Horn 
lauses

form a universal programming language (a language in whi
h all 
omputable predi
ates 
an

be expressed). The interesting features of our translation are that it is quite natural and that

non-re
ursive programs with the bounded quanti�ers may be translated into re
ursive Horn


lause programs. In Se
tion 5.2 we show that it 
annot be avoided in general. The original

program and the translated program are equivalent in a strong sense: w.r.t. 
omputed answer

substitutions.

This equivalen
e is similar to the equivalen
e in S-semanti
s, introdu
ed in [Falashi 89℄. The

equivalen
e in S-semanti
s entails a weaker equivalen
e in the sense of truth in the least Herbrand

models.

Sin
e our programs are sorted, then we shall assume that the 
orresponding Horn 
lause pro-

grams are sorted in the same way, and that their semanti
s is a restri
tion of our semanti
s

when we omit bounded quanti�ers.

The details of the translation are well known in 
ases of disjun
tion, 
onjun
tion and the unre-

stri
ted existential quanti�er. Bounded quanti�ers will be translated using iterative de�nitions.

Suppose that we have a generalized logi
 program P. We shall de�ne its translation | a Horn


lause program

b

P in the following way. If there is a non-Horn de�nition in P , we 
hange it to

one or more de�nitions a

ording to the rules given in Figure 5.1 on page 31 until we get a Horn


lause program.

Theorem 9 For any generalized logi
 program P, P is equivalent to

b

P in the following sense.

For any �-formula ' in the language of the �rst program, ' is provable by SLDB-resolution from

P with the substitution � i� it is provable by SLDB-resolution from

b

P with the same substitution.

Proof. Let  (�x) be an arbitrary formula o

urring in the body of a 
lause in P. We

note that there is a unique predi
ate symbol, 
orresponding to it in the translated

program. (For example, in the 
ase of 
onjun
tion ^, D,E 
orrespond to B,C). We

denote these predi
ate symbols by P

 

. By indu
tion on the lengths of derivations
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Figure 5.1: Translation of bounded quanti�ers into Horn 
lause logi
 programs

Senten
e: Its translation:

A(�x) :- B(�x)^C(�x) A(�x) :- D(�x),E(�x).

D(�x) :- B(�x).

E(�x) :- C(�x).

A(�x) :- B(�x)_C(�x) A(�x) :- B(�x).

A(�x) :- C(�x).

A(�x) :- 9vB(�x,v) A(�x) :- B(�x,v).

A(�x) :- (9y2t)B(�x,y) A(�x) :- D(�x,t).

D(�x,[y|z℄) :- B(�x,y).

D(�x,[y|z℄) :- D(�x,z).

A(�x) :- (8y2t)B(�x,y) A(�x) :- D(�x,t).

D(�x,[℄).

D(�x,[y|z℄) :- B(�x,y),D(�x,z).

A(�x) :- (9yvt)B(�x,y) A(�x) :- D(�x,t).

D(�x,z) :- B(�x,z).

D(�x,[y|z℄) :- D(�x,z).

A(�x) :- (8yvt)B(�x,y) A(�x) :- D(�x,t).

D(�x,[℄) :- B(�x,[℄).

D(�x,[y|z℄) :- B(�x,[y|z℄),D(�x,z).

Here D,E are new predi
ate symbols, �x are all free variables of 
lauses in the left 
olumn. In

the right 
olumn, y is a new variable of the sort univ and z is a new variable of the sort list.
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and using independen
e of the 
omputation rule it is easy to prove the following

statement about bisimulation of derivations:

Let  

1

(�x); : : : ;  

n

(�x) be formulas o

urring in bodies of 
lauses of P . Then

the goal  

1

(

�

t

1

); : : : ;  

n

(

�

t

n

) is provable by SLDB-resolution with a substitution

� in P i� the goal P

 

1

(�x)

(

�

t

1

); : : : ; P

 

n

(�x)

(

�

t

n

) is provable by SLDB-resolution

with � in

b

P.

The theorem easily follows from this statement.

Let us note that this equivalen
e implies semanti
 equivalen
e | the least models of the two

programs are identi
al. To extend this result to SLD-resolution one has to add the fa
t x=x

expressing the equality relation.

5.2 A metainterpreter for Horn 
lause programs

In the examples from Se
tion 2.3 we have already shown that many iterative programs, whi
h are

usually expressed in Prolog via re
ursion, have simple non-re
ursive de�nitions using bounded

quanti�ers. Here we give a more interesting example: a non-re
ursive metainterpreter for Horn


lause programs. We assume that the 
lauses of the obje
t level Horn 
lause program of the

form A:-B

1

,: : : ,B

n

are represented as fa
ts of the form rule(A,[B

1

,: : : ,B

n

℄), and fa
ts of the

form A are represented as fa
ts of the form rule(A,[℄). The de�nition of the metainterpreter

is shown on Figure 5.2 on page 33.

Theorem 10 Let P be a Horn 
lause logi
 program. Let R is obtained from P by repla
ing

ea
h rule A:-B

1

,: : : ,B

n

(ea
h fa
t A resp.) with fa
ts rule(A,[B

1

,: : : ,B

n

℄) (fa
ts rule(A,[℄)

resp.) and by adding the 
lauses from Figure 5.2. Then for any atomi
 ', ' is provable by

SLDB-resolution from P with a substitution � i� the goal 
all(') is provable from R with the

same substitution.

Proof. One 
an verify the following statements:

1. tra
e of append(L1,L2,L3,L) is true i�

(a) L is a list every two 
onse
utive elements of whi
h take the forms

[[X|Xs℄,[Y|Ys℄℄ and [Xs,Ys℄, for some terms X,Xs,Y,Ys.

(b) The �rst and the last elements of L are [L3,L1℄ and [[℄,L2℄.

2. append(L1,L2,L3) is true i� L3 is obtained by 
on
atenating L1 and L2.

3. Let S1 be a tuple of atomi
 formulas. Then step of exe
ution([S1,X2|X3℄,

where X2,X3 are variables not o

urring in S1, is derivable with the substitu-

tion � i� X2� is a su

essor of S1 in the SLDB-derivation with the leftmost


omputation rule and X3� is a variable not o

urring in X2�,S1�.

4. Let S be a tuple of atomi
 formulas. Then tra
e of exe
ution([S|X℄), where

X is a variable not o

urring in S, is derivable with the substitution � i� there

is an SLD-derivation of the empty goal starting from S with the answer substi-

tution 
 whi
h 
oin
ides with � on the set of variables of S.

5. 
all(G) is provable with the substitution � i� G is provable by SLD-resolution

with the answer substitution �.
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Figure 5.2: Non-re
ursive metainterpreter for Horn 
lause programs


all(Goal) :-

(9List)(tra
e of exe
ution(List,[℄)^starts(List,[Goal℄)).

starts([X|Xs℄,X).

tra
e of exe
ution(List,Last element) :-

(8SublistvList)(Sublist=[℄

_Sublist=[Last element℄

_step of exe
ution(Sublist)).

step of exe
ution([State1,State2|States℄) :-

transition(State1,State2).

transition([Atom|Atoms℄,NewAtoms) :-

rule(Atom,Tail) ^

append(Tail,Atoms,NewAtoms).

append(L1,L2,L3) :-

(9List)tra
e of append(L1,L2,L3,List).

tra
e of append(L1,L2,L3,List) :-

starts(List,[L3,L1℄) ^

(8LvList))(L=[℄_L=[[[℄,L2℄℄_step of append(L)).

step of append([[X|Xs℄,[X|Ys℄℄,[Xs,Ys|States℄).
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From this theorem we 
an easily infer that any 
omputable predi
ate 
an be expressed by a

non-re
ursive generalized logi
 program (and hen
e by a non-re
ursive generalized logi
 program


onsisting of only one de�nition):

Corrollary 5.1 For every 
omputable set S � HU there exists a non-re
ursive generalized logi


program P, de�ning a predi
ate P, su
h that for every t2HU we have P(t)2Mod(P), t2S.

Proof. For Horn 
lause logi
 programs in was proved in [T�arnlund 77℄ for a Herbrand

universe representing natural numbers and in [Andr�eka 78, Voronkov 92b℄ for arbi-

trary Herbrand universes. Using this fa
t, we apply Theorem 10 to �nd a generalized

logi
 program with the required properties.

We 
an prove an even stronger property, 
onne
ting 
omputability and answer substitutions


omputed by generalized logi
 programs.

Corrollary 5.2 Let S be a set of tuples of terms of a �nite signature �. Then the following


onditions are equivalent:

1. S is 
omputable and 
losed under renaming of variables.

2. There exists a non-re
ursive generalized logi
 program P, de�ning a predi
ate P, su
h that

�

t2S i� [�x 

�

t℄ is an answer substitution to P(�x).

Proof. For Horn 
lause logi
 programs it was proved in [Voronkov 92b℄. Then apply

Theorem 10.

This 
orollary means that generalize logi
 programs 
an 
ompute all 
omputable predi
ates on

the set of terms with variables, or w.r.t. S-semanti
s of [Falashi 89℄.

The metainterpreter from Figure 5.2 is in no way natural. One 
an more natural metainterpreter,

using re
ursion:


all(G) :-

rule(G,Gs) ^

(8X2Gs)
all(X).


all(X=Y) :-

X = Y.

It is easy to see that the expressive power of Horn 
lause logi
 programs without re
ursion is

very weak:

Lemma 5.1 Let P be a Horn 
lause logi
 program without re
ursion. Then there is a Horn


lause program P

1

, 
onsisting only of fa
ts, whi
h 
omputes the same answer substitutions.
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Proof. Straightforward from the �xedpoint 
hara
terization of Horn 
lause logi


programs [Apt 82, Lloyd 84℄.

Theorem 11 Let P be a non-re
ursive Horn 
lause program. Then the minimal model 
omputed

by P is de
idable (i.e. there is an algorithm verifying if a given ground atomi
 formula belongs

to the model).

Proof. Straightforward from Lemma 5.1.

Corrollary 5.3 The 
lass of predi
ates that are 
omputable by non-re
ursive generalized logi


programs is stri
tly larger then the 
lass of predi
ates 
omputable by non-re
ursive Horn 
lause

programs.

Proof. Straightforward from Corollary 5.1 and Theorem 11.

It is interesting to �nd out the sour
e of the expressive power of non-re
ursive generalized logi


programs. The following theorem shows that the use of bounded quanti�ers is essential:

Theorem 12 The 
lass of predi
ates 
omputable by non-re
ursive Horn 
lause programs 
oin-


ides with the 
lass of programs 
omputable by non-re
ursive generalized logi
 programs without

bounded quanti�ers.

Proof. Note that a non-re
ursive generalized logi
 program without bounded quan-

ti�ers will be translated into a non-re
ursive Horn 
lause logi
 program (Figure 5.1).

Then apply Theorem 9.

However, bounded quanti�ers only are not suÆ
ient to express all 
omputable predi
ates. To

prove it, we 
onsider now the expressive power of programs, all quanti�ers of whi
h are bounded.

They are de�ned similar to �

0

-programs [Gon
harov 85℄:

De�nition 5.1 (Totally restri
ted programs) A totally restri
ted program is a program


ontaining no o

urren
es of the unrestri
ted existential quanti�er.

Totally restri
ted programs are also interesting be
ause they admit 
lassi
al negation as ex-

plained below in Se
tion 6. The next theorem shows that in presen
e of re
ursion we 
an still

express all 
omputable predi
ates without the use of unrestri
ted quanti�ers:

Theorem 13

1

For every 
omputable set S of ground terms there is a totally restri
ted program

P de�ning a predi
ate P su
h that for every ground term t, P (t) belongs to Mod(P) i� t2S.

1

This theorem had been proved by Star
henko and myself
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Proof. By Corollary 5.1 and theorem on re
ursive 
ompleteness of Horn 
lause

logi
 programs [T�arnlund 77, Voronkov 92b℄ all 
omputable predi
ates on HU 
an

be expressed by a non-re
ursive generalized logi
 program P . It is suÆ
ient to show

how to 
onstru
t a generalized logi
 program P

1

without unrestri
ted quanti�ers,

whi
h 
omputes the same relation P . To this end we will show how to transform

ea
h de�nition, whi
h uses unrestri
ted quanti�
ation, into a de�nition without su
h

quanti�
ation. To obtain P

1

, one should apply this transformation until we get rid

of all unrestri
ted quanti�ers. Using the transformation similar to that of Figure 5.1

we 
an restri
t ourselves to 
lauses, in whi
h all unrestri
ted quanti�ers are not in

the range of any other quanti�ers or 
onne
tives.

Let

A(�x) :- 9y(B(�x; y)).

be su
h a 
lause. Let a

1

; : : : ; a

n

be all 
onstants and f

1

; : : : ; f

m

all fun
tion symbols

o

urring in P (in
luding [℄,[ | ℄). Let C be a new predi
ate symbol. Consider

the program, obtained from P by repla
ing the above 
lause by 
lauses with

A(�x) :- C(�x; [℄).

C(�x; l) :- (9y2l)B(�x; y) _

C([a

1

|l℄ _

� � �

C([a

n

|l℄) _

(9y

1

2l) : : : (9y

k

2l)C([f

1

(y

1

; : : : ; y

k

)|l℄) _

� � �

(9y

1

2l) : : : (9y

p

2l)C([f

m

(y

1

; : : : ; y

p

)|l℄).

Let, for a list of terms l, ord(l) means the number of o

urren
es of fun
tion symbols

and 
onstants in l. By de�nition of C, one 
an prove the following statement:

If C(

�

t; l) is true for a list l with ord(l) = j > 0, then C(

�

t; l

1

) is true for a list

l

1

with ord(l

1

) < j.

From this it follows that if C(

�

t; l) is true for a list of terms l, then C(

�

t; [℄) is also

true. Let A(

�

t) be true in the original program. Then there is a term s su
h that

B(

�

t; s). From the de�nition of C we have that C(

�

t; [s℄) is also true. Hen
e, C(

�

t; [℄)

is true, and from the de�nition of A in the new program, A(

�

t) is true in the new

program.

It is straightforward to see also that, if C(

�

t; l) is true in the se
ond program, then

B(

�

t; s) is true for some s.

Now we 
onsider the non-re
ursive 
ase:

Theorem 14 Let P be a totally restri
ted program without re
ursion. Then the set Mod(P) is

de
idable.

Proof. It follows from the fa
t that in the absen
e of re
ursion and unrestri
ted

quanti�ers the lengths of SLD-derivations for any ground formula are limited.

However, totally restri
ted programs without re
ursion 
an be more expressive then Horn 
lause

programs without re
ursion:
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Theorem 15 There exists a non-re
ursive totally restri
ted program P su
h that for any non-

re
ursive Horn 
lause program P' we have

fP (t) j P (t)2Mod(P)g 6= fP (t) j P (t)2Mod(P')g

Proof. Consider the program P 
onsisting of only one de�nition

P(x):-(8y2x)y=a

Assume that a non-re
ursive Horn 
lause program P ' gives the same minimal model.

A

ording to Lemma 5.1 we 
an assume that P ' 
onsists only of fa
ts. There is an

in�nite number of fa
ts in Mod(P) of the form

P([℄)

P([a℄)

P([a,a℄)

P([a,a,a℄)

: : :

Thus there is a fa
t in P', for whi
h an in�nite number of these fa
ts are instan
es.

This fa
t must be of the form

P([t

1

,: : : ,t

n

|x℄),

where x is a variable. Substituting [[℄℄ for x, we obtain a fa
t, whi
h is in the least

model for P', but not P .

Horn 
lause programs without re
ursion 
an, in turn, be more expressive than totally restri
ted

programs without re
ursion.

Theorem 16 There exists a non-re
ursive Horn 
lause program P su
h that for any non-

re
ursive totally restri
ted program R we have

fP (t) j P (t)2Mod(P)g 6= fP (t) j P (t)2Mod(R)g

Proof. Consider the Horn 
lause logi
 program 
onsisting of the fa
t

P(f(x))

Its minimal model 
onsists of all terms of the form P(f(t)) for a suitable ground

term t. Thus, there is an in�nite number of terms on whi
h P is true, and an in�nite

number of terms on whi
h P is false. Assume that P ' gives the same minimal model.

Sin
e it is non-re
ursive, we 
an assume that it 
onsists of only one de�nition

P(x) :- '(x)

Sin
e the variable x must be of the sort univ, the only bounded quanti�ers in '

have to be over �nite lists [t

1

,: : : ,t

n

℄, whi
h may be 
hanged to �nite disjun
tions

and 
onjun
tions. Thus, we 
an assume that ' 
onsists only of disjun
tions and


onjun
tions of equalities with the only free variable x. It is easy to prove that su
h

' is either true on only �nite number of ground terms or is false on a �nite number

of ground terms.

The results of this se
tion are summarized in Figure 5.3 on page 38.
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Figure 5.3: Expressibility of subsets of Horn 
lause logi
 programs and generalized logi


programs

Horn 
lause

programs

Generalized

programs

Generalized programs

without

re
ursion

Generalized programs

without

unrestri
ted quanti�ers

Generalized programs

without

bounded quanti�ers

�

�

�

�

�

�

�

�

��
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H

H

H

H

H

H

H

Hj

Totally restri
ted

programs without

re
ursion

�

�

�

�

�

�

Generalized programs

without re
ursion and

bounded quanti�ers

Horn 
lause

programs

without re
ursion

Here

L

1

L

2

denotes \L

1

is equivalent to L

2

";

L

1

-

L

2

denotes \L

1

is more expressive than L

2

";

L

1

�

�

�

�

�

�

L

2

denotes \L

1

and L

2

are not 
ompatible".
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6 Negation

Throughout this se
tion negation means 
lassi
al negation, unless the inverse is expli
itly stated.

By 
lassi
al negation we mean the following: the negation of a formula is true on some elements,

i� the formula is not true on these elements.

Approa
hes to handling 
lassi
al negation in logi
 programming are not (and 
annot be) satis-

fa
tory. (An ex
ellent survey of negation and 
omputability 
an be found in [Sheperdson 87℄).

The main reason is very easy | there 
annot be a sound and 
omplete implementation of 
las-

si
al negation in logi
 programs. In the literature 
on
erning negation usually some 
onditions

are given whi
h show when the negation of a predi
ate de�ned by Horn 
lauses satis�es some

desirable properties. There are two aspe
ts of using negation: the �rst 
on
erns 
omputability

and the se
ond 
on
erns semanti
 issues. Let us brie
y 
onsider the two aspe
ts.

1. Negation is hostile to 
omputability. The main reason is the universality of the Horn 
lause

language. Any 
omputable predi
ate 
an be represented as a Horn 
lause program, whi
h

means that the negation of a predi
ate de�ned by Horn 
lauses may be not 
omputable.

The usual solution of the 
omputability problem is negation as failure, whi
h is in
omplete

for 
lassi
al negation.

2. As for the semanti
 aspe
ts, one of the usual solutions is to restri
t the 
lass of admissible

programs to so 
alled strati�ed programs or some other 
lasses. These programs have a

(strati�ed) least model, but this model is not 
omputable in general.

Let us informally 
all predi
ates with the 
omputable negation negatable predi
ates. The de-

sirable solution of the two aspe
ts 
an be summarized as follows: to �nd a 
lass of programs

whi
h is suÆ
iently ri
h, but whi
h de�nes only negatable predi
ates. From the viewpoint of re-


ursion theory negatable predi
ates are exa
tly de
idable predi
ates [Rogers 67℄. However there

is no synta
ti
 
riterion to re
ognize programs whi
h de�ne de
idable predi
ates in the 
lass of

all programs. We shall introdu
e below a sub
lass of generalized logi
 programs whi
h always

de�nes only 
omputable predi
ates. This 
lass of programs is suÆ
iently ri
h, for instan
e, all

examples of Se
tion 2.3 are in this 
lass.

Bounded quanti�ers 
an easily be negated using the following equivalen
es:

:(8x2t)' � (9x2t):'

:(9x2t)' � (8x2t):'

:(8xvt)' � (9xvt):'

:(9xvt)' � (8xvt):'

Let us note, that this property is already suÆ
ient to use negation for a wide 
lass of predi
ates.

For instan
e, all examples of Se
tion 2.3 
an easily be transformed into non-re
ursive programs

without unrestri
ted quanti�ers. Some of the 
lauses of the examples 
ontain unrestri
ted quan-

ti�ers, e.g.

ordered2([X,Y|Z℄) :-

X�Y.

whi
h is a notation for

ordered2(L) :-

9X9Y9Z(L=[X,Y|Z℄^X�Y).
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However, this 
lause is equivalent to the 
lause

ordered2(L) :-

(9X2L)(9Y2L)(9ZvL)(L=[X,Y|Z℄^X�Y).

whi
h 
ontains only bounded quanti�ers.

It is interesting, that we 
an validate su
h a use of patterns in heads of 
lauses without turning

them into expressions with bounded quanti�ers, using Theorem 17 proved below.

Let us �rst give pre
ise de�nitions.

De�nition 6.1 (Negatable predi
ates) A predi
ate P de�ned by a generalized logi
 program

P is 
alled negatable i� there is a generalized logi
 program R 
omputing the negation R of P ,

i.e. the predi
ate R su
h that for any tuple

�

t of ground terms from the Herbrand universe of P,

P (

�

t) is true in the minimal model for P i� R(

�

t) is false in the minimal model for R.

We assume that =/ is the negation of =.

Corrollary 6.1 Let P be a totally restri
ted program without re
ursion and the equality = is

negatable. Then any predi
ate, de�ned in P, is negatable.

Proof. Using the equivalen
es of negations of bounded quanti�ers from page 39

one 
an redu
e all de�nitions of P to non-re
ursive de�nitions, where equality and

inequality o

ur as the only unde�ned symbols.

We also note that the negation =/ of equality = is negatable in every �xed Herbrand universe, so

we shall freely use it in the rest of this se
tion.

Theorem 17 Let N be the 
lass of the generalized logi
 programs with the following properties:

1. No re
ursion is used in the programs from N;

2. All o

urren
es of the unrestri
ted existential quanti�er in the programs from N take the

form

9y('(�x,y)^ (�x,y)),

where �x; y are all free variables of '; and for any tuple of ground terms �s there is exa
tly

one term t su
h that '(�s; t).

Then every de�ned in N predi
ate is negatable.

Proof. We have to show how to negate expressions 
ontaining existential quanti-

�ers, i.e. how to express :9y('(�x; y)^ (�x; y)) in the language of generalized logi


programs. This negation is equivalent to 8y('(�x; y)�: (�x; y)). Let

�

t be a tuple

of ground terms. Then 8y('(

�

t; y)�: (

�

t; y)) means that : (

�

t; y)) is true for the y

for whi
h '(

�

t; y) is true. Thus, the formula 8y('(

�

t; y)�: (

�

t; y)) is equivalent to

9y('(

�

t; y)^: (

�

t; y)). Sin
e it holds for every tuple of ground terms

�

t, we 
on
lude

that :9y('(�x; y)^ (�x; y)) is equivalent to 9y('(�x; y)^: (�x; y)).
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Theorem 17 is essentially related to fun
tional 
omputations. A similar treatment of negation


an be found in [Naish 86℄.

Now we apply Theorem 17 to extensions of totally restri
ted programs.

De�nition 6.2 (Class TR

1

) Class TR

1

of generalized logi
 programs is the 
lass of programs

whose 
lauses take the form

A(

�

t) :- '.

where ' is a �

0

-formula,

�

t a tuple of terms (not ne
essarily variables).

The 
lass TR

1

in
ludes all totally restri
ted programs. However, there are programs in TR

1

,

whi
h are not totally restri
ted (when

�

t in
ludes non-variable terms). Theorem 16 from the

previous se
tion shows that TR

1

is more expressible than the 
lass of all totally restri
ted

programs.

Theorem 18 Let P be a non-re
ursive generalized logi
 program from TR

1

. Then every predi-


ate P de�ned in P is negatable.

Proof. De�nitions of the form

A(

�

t) :-  .

denote

A(�y) :- 9�x(�y=

�

t^ ).

We note that the predi
ate

nunif

s

(t) , t is not uni�able with s


an be expressed by a generalized Prolog program. For example, if all the symbols

from the language are a,f,h, then nunif

f(X,X)


an be de�ned by

nunif

f(X,X)

(a).

nunif

f(X,X)

(h(Y)).

nunif

f(X,X)

(f(Y,Z)) :- Y =/ Z.

The 
lause de�ning A is equivalent to

A(�y) :- :nunif

t

(�y)^9�x(�y=

�

t^ ).

Take = for ' in Theorem 17.

Theorem 13 shows that there 
an be no 
orre
t and 
omplete implementations of negation for

totally restri
ted programs in general. However the (re
ursive) totally restri
ted programs have

interesting properties related to negation as failure. In traditional logi
 programming there

are approa
hes to solve the problem of negation by 
onstru
ting programs whi
h 
ompute the

�nite failure set of a given Horn 
lause program (see e.g. [Sato 84℄). However the programs

generated in su
h a way may be very 
ompli
ated even when the original programs are very

simple. Programs with bounded quanti�ers admit an elegant solution for 
onstru
ting su
h a

dual program.

First we de�ne the �nite failure set for a program P:
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De�nition 6.3 (Finite failure set FF(P)) The �nite failure set FF(P) of a program P is de-

�ned as follows. A goal G belongs to FF(P) i� there is a 
omputation rule R su
h that any

SLDB-derivation under this 
omputation rule, starting from the goal G with the empty substitu-

tion, fails in a �nite number of steps.

For a predi
ate P de�ned in a program P, the �nite failure set FF

P

(P ) of P in P is the set

f

�

t j P (

�

t)2FF(P)g.

The notion of an SLDB-tree for a goal � and a 
omputation rule R is de�ned similar to that of

SLD-tree [Lloyd 84℄:

De�nition 6.4 (SLDB-tree) Let P be a program, G a goal and R a 
omputation rule. Then

the SLDB-tree for P ; G under R is de�ned as follows:

1. Ea
h node of the tree is a goal.

2. The root node is G.

3. For every node in the tree, its immediate su

essors are all su

essors of this node under

R (up to variable renaming).

As in the 
ase of SLD-trees, one 
an 
hara
terize the �nite failure set in terms of SLDB-trees:

Lemma 6.1 For an atom A, A2FF(P) i� A is not provable by SLDB-resolution and there is

a 
omputation rule R su
h that the SLDB-tree for G;P under R is �nite.

Proof.

1. Assume that there is an in�nite SLDB-tree for a �nitely failed goal G. Sin
e

the number of bran
es is �nite for every node, we have that the SLDB-tree is

�nite, by K�onig's lemma.

2. In the reverse dire
tion trivial, sin
e an SLDB-tree represents all possible 
om-

putations under a 
omputation rule.

Now we de�ne the notion of an AND-tree for a given totally restri
ted program P and a given

ground formula '. AND-trees are orthogonal to SLDB-trees, whi
h are essentially OR-trees.

De�nition 6.5 (AND-tree) An AND-tree for a given totally restri
ted program P and a given

ground formula ' is de�ned as follows:

1. If ' has no su

essors, or ' takes the form t=/t then the AND-tree for ' 
onsists of one

leaf labeled by '. In this 
ase we say that this leaf fails.

2. If ' has the empty su

essor or takes the form t

1

=/t

2

for unequal terms t

1

,t

2

, then the

AND-tree for ' 
onsist of one leaf labeled by '. In this 
ase we say that this leaf su

eeds.

3. Assume that there is a su

essor of the goal ', 
onsisting of formulas '

1

; : : : ; '

n

. An

AND-tree for ' 
onsists of the root labeled by ' and having AND-trees for all '

i

as its

immediate subtrees.
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Using this de�nition we 
an give another 
hara
terization of the su

ess set and the �nite failure

set:

Lemma 6.2 Let ' be a ground formula and P a totally restri
ted program. Then

1. ' is provable i� there is an AND-tree for ', whose all leaves su

eed.

2. ' �nitely fails i� there is a natural number n, su
h that every AND-tree for ' has a failed

leaf on depth � n.

Proof.

1. The �rst statement 
an be proved by a simple modi�
ation of Theorem 6 on


ompleteness of Nat(P): it is easy to see that an AND-tree for a goal G rep-

resents a proof of G in Nat(P) (ex
ept for the 
ase of =/, whi
h 
an be easily

handled, too).

2. To prove the se
ond statement, we shall introdu
e a de�nition and prove a few

intermediate statements.

An n-thread in an AND-tree is a set of nodes in this tree, de�ned

indu
tively as follows.

(a) If G is the root of the tree, then fGg is a 0-thread.

(b) Let G;' be an n-thread and G

1

be the immediate su

essors of ' in

the tree. Then G;G

1

is an n+ 1-thread.

(
) Let G;' be an n-thread, ' either takes the form t=t or takes the

form r=/s for not-identi
al r,s. Then G is an n+ 1-thread.

Using de�nitions of trees and threads, one 
an easily prove the following:

A set of formulas '

1

; : : : ; '

n

is an n-thread i� it is a goal, whi
h 
an be

obtained from the top goal ' by SLDB-resolution under some 
omputation

rule R in n steps.

The next statement to prove is

For any 
omputation rule R, for any AND-tree T for the goal ' and

for any natural number n either

(a) there exist a goal G in the SLDB-tree for ' under R on depth n, whi
h

is also an n-thread in T

or

(b) there is a leaf G in the SLDB-tree for ' on depth m � n, whi
h is

also an m-thread in T .

This statement is proved by indu
tion on n. For n = 0 it is trivial. For n > 0,


onsider the n�1-thread, satisfying the 
ondition. Let it be the goal '

1

; : : : ; '

n

.

Let R('

1

; : : : ; '

n

) = '

i

. If '

i

is a failed leaf in T , then the se
ond statement is

trivially satis�ed. If not, then let  

1

; : : : ;  

k

be all the immediate su

essors of

'

i

in T . Then '

1

; : : : ; '

i�1

;  

1

; : : : ;  

k

; '

i+1

; : : : ; '

n


an be taken as the G.

Now we 
an prove one part of the statement. Let ' �nitely fail. By Lemma 6.1

there is a �nite SLDB-tree S for ' under a 
omputation rule R, whose all leaves

fail. Take as n the depth of S. Consider any AND-tree T . Let G be the goal

whi
h is both a leaf in S and an m-thread in T . Let  be the formula 
hosen

by R in G. Then  is a failed leaf in T on depth � n.

The 
onverse will be proved by indu
tion on n. Let any AND-tree for ' has a

failed leaf on depth � n. We have to �nd a 
omputation rule R whi
h gives a
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�nite SLDB-tree for G. Let G

1

; : : : ; G

n

be all the possible su

essors of ' under

SLDB-resolution. Consider any G

i

. Let it be '

1

; : : : ; '

n

. If ea
h of the '

j

has

an AND-tree of depth � n with no failing leaves, then there is an AND-tree for

' of depth � n + 1 with no failing leaves, whi
h 
ontradi
ts the assumption.

Thus there is a '

j

i

, for whi
h all AND-trees has a failing leaf on depth < n.

Let R

i

be 
omputation rules whi
h lead to �nite SLDB-trees for '

j

i

. Consider

the 
omputation rule R, whi
h 
hooses '

j

i

from G

i

and behaves as R

i

on all

the su

essors of G

i

. It is easy to see that R gives a �nite SLDB-tree for '.

We shall use AND-trees as the main te
hni
al tool in the rest of this se
tion.

De�nition 6.6 (Dual formula, 
lause and program) Let P be a totally restri
ted program

whi
h de�nes predi
ates P

1

; : : : ; P

n

. Let

b

P

1

; : : : ;

b

P

n

be some new predi
ate symbols. For ea
h

formula ' the dual formula

b

' is 
onstru
ted as follows: all atomi
 formulas R(

�

t) are repla
ed

by

b

R(

�

t), t

1

=t

2

by t

1

=/t

2

, ^ by _, _ by ^, all o

urren
es of 9 by 8, and all o

urren
es of 8 by 9.

For a 
lause C of the form R(�x):-'(�x) the dual 
lause

b

C is

d

R(�x):-

d

'(�x). The dual program

b

P

to P 
onsist of the 
lauses dual to the 
lauses of P.

For example, the dual 
lause to

ordered(L) :-

(8XvL)(X=[℄_singleton(X)_ordered2(X)).

is

not ordered(L) :-

(9XvL)(X6=[℄^not singleton(X)^not ordered2(X)).

where we denoted the dual predi
ate symbols with the pre�x not . The dual program

b

P to P


onsists of all su
h dual 
lauses together with a de�nition of =/.

Theorem 19 For any predi
ate P de�ned in the program P the predi
ate

b

P from the program

b

P 
omputes the �nite failure set FF

P

(P ) for P in P.

Proof. Let us introdu
e a few te
hni
al de�nitions whi
h we use in the proof. A

path in a tree is de�ned as usual. A bran
h is a path whi
h 
annot be extended to a

longer path. We 
all a path B

1

in an AND-tree T

1

dual to a path B

2

in an AND-tree

T

2

i� B

1


onsists of formulas dual to the formulas from B

2

. We prove the following

statement by indu
tion on the length of bran
hes in SLDB-trees:

Let T

1

; T

2

be AND-trees for the formulas ';

b

'. Then there exist bran
hes

B

1

in T

1

and B

2

in T

2

su
h that B

1

is dual to B

2

.

For example, the dual bran
hes for two trees for formulas (8x2[a,b℄)(9y2[b,a℄)x=y

and (9x2[a,b℄)(8y2[b,a℄)x=/y are shown on the following pi
ture:
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(8x2[a,b℄)(9y2[b,a℄)x=y

�




�

	

Q

Q

Q

Q

Q

Qs

(8x2[b℄)(9y2[b,a℄)x=y

�




�

	

�

�

�

�

�

�+

(9y2[b,a℄)a=y

?

(9y2[a℄)a=y)

?

a=a

�

�

�

�	

(9y2[b,a℄)b=y

�




�

	

?

b=b

�




�

	

�

�

�

�R

(8x2[℄)(9y2[b,a℄)x=y

(9x2[a,b℄)(8y2[b,a℄)x=/y

�




�

	

?

(9x2[b℄)(8y2[b,a℄)x=/y

�




�

	

?

(8y2[b,a℄)b=/y

�




�

	

�

�

�

�	

b=/b

�




�

	

�

�

�

�R

(8y2[a℄)b=/y

�

�

�

�	

b=/a

�

�

�

�R

(8y2[℄)b=/y

To prove this statement we 
onsider several 
ases. We assume that ' is the

bottom formula of the path B

1

, the path B

2

is dual to B

1

and prove that either ' is

a leaf or B

1

; B

2


an be 
ontinued to longer dual paths.

1. ' is an atomi
 formula P (

�

t), where P is neither = nor =/. Then P 
ontains a


lause P (�x):- (�x) and the bran
h B

1


an be 
ontinued by  (

�

t). In this 
ase the

dual program

b

P 
ontains the dual 
lause

b

P (�x):-

d

 (�x), and B

2


an be 
ontinued

by

d

 (�x).

2. ' takes the form '

1

^ : : :^'

n

. In this 
ase the dual formula to ' is




'

1

_ : : :




'

n

.

Thus any path 
ontinuing B

2

has one of the formulas




'

i

as the immediate

su

essor of

b

'. Thus we 
an 
ontinue B

1

by '

i

.

3. ' takes the form (9x2[s|t℄) (x). In this 
ase B

2

�nishes at (8x2[s|t℄)

b

 (x).

In this 
ase B

1

is 
ontinued either by  (s) or by (9x2[t℄) (x). In the former


ase 
ontinue B

2

by

b

 (s), in the latter by (8x2[t℄)

b

 (x).

The other 
ases are similar. Now we 
an prove one part of the theorem:

Let the formula ' be provable in P. Then

b

' �nitely fails in

b

P .

To prove this we use the 
hara
terization of provability and �nite failure in terms

of AND-trees from Lemma 6.2. Sin
e ' is provable, than there is an AND-tree T

1

,

whose all bran
hes �nish at leaves, whi
h su

eeds. Let n be the depth of this tree

(i.e. the length of a longest bran
h in T

1

). Take any AND-tree T

2

for

b

'. Then there

are bran
hes B

1

; B

2

in T

1

; T

2

, whi
h are dual. Sin
e B

1

�nishes at a su

eeding leaf,

then B

2

�nishes at a failing leaf. Sin
e the length of B

2

is the same as the length of

B

1

, whi
h is � n, then

b

' �nitely fails.

To prove the 
onverse, it is enough to prove the following statement:

if every AND-tree for a formula

b

' has a failed leaf on depth � n, then '

has an AND-tree of depth � n, whose all leaves su

eed.

The proof is by indu
tion on n and 
ase analysis.

1. Assume that ' takes the form '

1

^ : : :^'

n

. Then

b

' takes the form




'

1

_ : : :_




'

n

.

Then all AND-trees for

b

' have one of the formulas




'

i

as the immediate su

essor

of

b

'. All these trees �nitely fail on depth � n� 1. Thus for every formula '

i

one 
an 
onstru
t a su

essful AND-tree of depth � n � 1. Combining these

trees, we obtain the required AND-tree for '.
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2. Assume that ' takes the form (9x2[s|t℄) (x). Then

b

' takes the form

(8x2[s|t℄)

b

 (x). Then all AND-trees for

b

' have the formulas

b

 (s) and

(8x2t)

b

 (x) as the immediate su

essors of

b

'. All this trees �nitely fail on

depth � n � 1. From this one 
an prove that either all AND-trees for

b

 (s)

�nitely fail on depth � n� 1 or all SLDB-trees for (8x2t)

b

 (x) �nitely fail on

depth � n� 1. Consider, for instan
e, the former 
ase. Then  (s) has a su
-


essful AND-tree of the depth � n� 1, and thus ' has the required AND-tree.

The other 
ases are similar. As one 
an see from the proof, the required AND-tree

for ' 
an be 
onstru
ted from the failing bran
hes of the trees for dual formulas,

as illustrated below for the formulas from the previous example. In this 
ase all

AND-trees take one of the following forms:

(9x2[a,b℄)(8y2[b,a℄)x=/y

?

(9x2[b℄)(8y2[b,a℄)x=/y

?

(9x2[℄)(8y2[b,a℄)x=/y

(9x2[a,b℄)(8y2[b,a℄)x=/y

?

(9x2[b℄)(8y2[b,a℄)x=/y

?

(8y2[b,a℄)b=/y

�

�

�

�	

b=/b

�

�

�

�R

� � �

(9x2[a,b℄)(8y2[b,a℄)x=/y

?

(8y2[b,a℄)a=/y

�

�

�

�	

� � �

�

�

�

�R

(8y2[a℄)a=/y

�

�

�

�	

a=/a

�

�

�

�R

� � �

The bran
hes dual to the failed bran
hes are the following:

(8x2[a,b℄)(9y2[b,a℄)x=y

?

(8x2[b℄)(9y2[b,a℄)x=y

?

(8x2[℄)(9y2[b,a℄)x=y

(8x2[a,b℄)(9y2[b,a℄)x=y

?

(8x2[b℄)(9y2[b,a℄)x=y

?

(9y2[b,a℄)b=y

?

b=b

(8x2[a,b℄)(9y2[b,a℄)x=y

?

(9y2[b,a℄)a=y

?

(9y2[a℄)a=y

?

a=a

One 
an 
ombine these bran
hes into the su

essful AND-tree step by step as

follows:
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(8x2[a,b℄)(9y2[b,a℄)x=y

?

(9y2[b,a℄)a=y

?

(9y2[a℄)a=y)

?

a=a

(8x2[a,b℄)(9y2[b,a℄)x=y

?

(8x2[b℄)(9y2[b,a℄)x=y

�

�

�

�	

(9y2[b,a℄)b=y

?

b=b

�

�

�

�R

(8x2[℄)(9y2[b,a℄)x=y

and

(8x2[a,b℄)(9y2[b,a℄)x=y

Q

Q

Q

Q

Q

Qs

(8x2[b℄)(9y2[b,a℄)x=y

�

�

�

�

�

�+

(9y2[b,a℄)a=y

?

(9y2[a℄)a=y)

?

a=a

�

�

�

�	

(9y2[b,a℄)b=y

?

b=b

�

�

�

�R

(8x2[℄)(9y2[b,a℄)x=y

This theorem is appli
able to the 
lass of all totally restri
ted programs whi
h is equivalent to

the 
lass of all generalized logi
 programs, as has been shown in Theorem 13.
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7 Con
luding remarks

There are other aspe
ts of programming with bounded quanti�ers, whi
h are not 
onsidered in

this paper. In this se
tion we brie
y mention some possible resear
h issues on logi
 programming

with bounded quanti�ers.

7.1 Other kinds of bounded quanti�ers

Intuitively, from the viewpoint of programming bounded quanti�ers represent the idea of an

iterative sear
h over �nite domains. There are domains that have not been 
onsidered in this

paper. For example, the quanti�
ation over subsets of a �nite set may be needed. If we represent

sets by lists, then all our results 
an be easily generalized for bounded quanti�ers over subsets.

For example, the step of the translation of the following expression, 
ontaining 8�-quanti�er,

where � is the subset relation

A(�x) :- (8y�t)'(�x,y).

to Horn 
lauses gives

A(�x) :- D(�x,[℄,t).

D(�x,l,[℄) :- '(�x,l).

D(�x,l,[y|z℄) :- D(�x,l,z), D(�x,[y|l℄,z).

Bounded quanti�
ation over an integer interval [k..n℄ 
onsisting of numbers from k to n:

A(�x) :- (8m2[k..n℄)'(�x,m).


an be translated to

A(�x) :- D(�x,k,n).

D(�x,k,n) :- k>n.

D(�x,k,n) :- k�n,

'(�x,k),

k1 is k+1,

D(�x,k1,n).

The other results of this paper 
an be formulated for the integer intervals as well, with the

di�eren
e that integers are 
onsidered as a prede�ned sort in the style of [Voronkov 92a℄.

7.2 Constraint logi
 programming

The above 
onsiderations suggest that di�erent kinds of bounded quanti�ers may be used to

spe
ify 
onstraint problems. Somewhat similar 
onstru
tions have been used in the language



(FD) for 
onstraint logi
 programming over �nite domains [Hentenry
k 91℄. Constraints using

bounded quanti�ers 
an be used to keep the set of 
onstraints in a smaller size. To this end

it is interesting to develop resolution-like 
al
ulus for the formulas with bounded quanti�ers to

resolve upon 
onstraints similar to the theorem proving te
hnique developed in [B�urkert 90℄.

We are going to illustrate this in a future paper.

The following example spe
i�es a generalized logi
 program for the N-queens problem:
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Example 7.1 (N-queens problem) The following example de�nes N-queens problem.

queens(L,N) :-

length(L,N) ^

admissible(L,N) ^

(8lvL)(l=[℄_safelist(l)).

length( [℄, 0).

length( [ |As℄, N) :-

length( As, N1),

N is N + 1.

safelist([P|Ps℄) :-

(8p2Ps)safe(P,p).

safe((A,B),(C,D)) :-

A n= C ^

B n= D ^

A+B n= C+D ^

A-B n= C-D.

admissible(L,N):-

(8x2[1..N℄)(9y2[1..N℄)(9z2L)(z=(x,y)).

An interesting feature of this example is that one 
an modify SLDB-resolution rules for handling

the bounded quanti�ers to implement di�erent strategies of solving the problem. Moreover, one


an build an intelligent problem solver for the spe
i�
ations with bounded quanti�ers, whi
h

will en
ompass some known strategies of problem solving for �nite domains, for example the

�rst fail prin
iple, whi
h will be shown in a forth
oming paper.

7.3 Other appli
ations

There are many other appli
ations of bounded quanti�ers. An obvious appli
ation of bounded

quanti�ers is parallel and 
on
urrent logi
 programming, as was also noted in [Barklund 92℄. The

bounded universal quanti�er 
aptures AND-parallelism, while the bounded existential quanti�er

| OR-parallelism. The kind of AND-parallelism inherent to bounded universal quanti�ers

is similar to FORALL-parallelism from [Kowalski 83℄. As for bounded existential quanti�ers,

their pro
edural interpretation is 
ompletely di�erent from the interpretation of unrestri
ted

existential quanti�ers, whi
h usually serves only for uni�
ation purposes. It shows that the

bounded quanti�ers 
an also be used for expressing in a de
larative way the 
ontrol of program

exe
ution.

In our opinion bounded quanti�ers 
an also be applied in dedu
tive and relational databases. If

we 
onsider databases as �nite obje
ts, then bounded quanti�ers seems to 
apture the intuitive

semanti
s of databases better then unrestri
ted quanti�ers. Variants of SLDB-resolution 
an

be also used to formalize di�erent kinds of �nite sear
h in databases. If we allow bounded

quanti�
ation and disjun
tions also in the heads of 
lauses, then formulas 
ontaining bounded

quanti�ers 
an be used e.g. to express null values in disjun
tive databases [Liu 90, Lobo 92℄.

For example, the query

?-(9y2x)p(y)
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where x is a variable, 
orresponds to the query \�nd an inde�nite (or null) value for y for

whi
h p(y) is true", whi
h is not expressible via range-restri
ted 
lauses in dedu
tive databases.

In a forth
oming paper we intend to show how bounded quanti�ers 
an be used to spe
ify

an inde�nite information in dedu
tive databases, whi
h 
annot be expressed in the ordinary

disjun
tive databases. An example of su
h a spe
i�
ation is

(9x2G)group leader(x,G) :- group(G).

whi
h express the information that ea
h group has a group leader. Su
h spe
i�
ations are usually

pro
essed as integrity 
onstraints. A spe
ial proof pro
edure will allow to 
onsider them also as


lauses.

It has been shown elsewhere that varying the stru
ture of bounded quanti�ers, one 
an represent

predi
ates or fun
tions from di�erent 
omplexity 
lasses [Buss 86, Sazonov 91℄.
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