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Abstract—Research about image fusion has grown in 

the last three decades, essentially because there's a need to 

improve the data used for computerized post-processing 

and human visualization, being medical imaging a natural 

application for it. One of the latest used algorithms is the 

discrete wavelet transform (DWT) that is used for the 

analysis of non-stationary signals or those with 

discontinuities. Nevertheless, there are several wavelets 

that can be used as bases over which to do the transform. 

The preference of one over the other is determined 

experimentally and is heavily dependent on the application; 

in this case, the fusion of images obtained by magnetic 

resonance and computerized tomography. The fusion 

process with the 2D-DWT was done on MATLAB 9.3 CLI, 

using three pairs of slices for one, two, three and four levels 

of decomposition. The tested wavelets are symlet5, 

daubechies5 and discrete Meyer. The symlet5 filters 

showed the best (higher) mutual information (with 

superiority of ~0.07%) for all slices and almost all levels of 

decomposition except for level 2, in which discrete meyer 

wavelets were superior by 0.17%. For every pair of slices, 

symlet5 showed the best (lower) joint entropy. The results 

can be ascertained for T2 MRI and CT images. 

Keywords—DWT; Image fusion; Computed tomography; 

Magnetic resonance imaging 

I.  INTRODUCTION  

The adoption of digital signal processing in the 
healthcare industry has been allowed due to the great 
degree of accuracy, affordability and speed achieved by 
the imaging technology and by the interpretation abilities 
spread by the health professionals. Amidst all the 
developed modalities, the most popular are the 
tomographic ones, particularly CT and MRI images, 
because of the complementary anatomic information they 
provide. Simple visualization of both image modalities in 
one can be achieved by register and blending techniques; 
fusion, on the other hand, is desirable for classification 
and tumor detection, registering the progress of a disease, 
tracking of brachytherapy devices, surgery planning, 
voxel fusion, intensity- and object-based segmentation 
and 3D simulations.  

Some of the most recent algorithms are the DWT-
based ones, which allow the separation of the image in 
frequency bands, each one with different details, which 
eases extraction of border information, compression, 
transmission, and noise-reduction. For image treatment, 
variations of the 1D DWT have been developed. 2D-
DWT has been shown to keep more spectral content of 
the source images, up to 85%, in contrast with 
conventional techniques like IHS, Brovey transform and 
PCA, which keep 43%, 53% and 62.5% respectively [14]. 
The problem lies in the fact that the superiority of one 
wavelet family over another cannot be determined solely 
by inspection of it but is determined greatly by the nature 
of the signal being analyzed; thus, the need to specify a 
wavelet for each signal, being CT-MRI fusion an 
application that must not be ignored.  

II. WAVELET TRASFORM 

A. Continuous wavelet transform 

The continuous wavelet transform (CWT) is developed 
as a response to the problem of representing signals with 
discontinuities in the frequency domain, particularly 
because the Fourier Transform uses sines and cosines 
which are smooth, analytic, and infinite and may not 
characterize properly erratic real signals. The CWT is 
implemented, as many other transforms, as the inner 
product of the signal and the base function, in the 
following manner: 

       𝐶𝑊𝑇(𝑠, 𝜏) = 〈𝜓𝑠,𝜏, 𝑠(𝑡)〉 =
1
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 Where the signal to be represented is s(t), * denotes 
the complex conjugate and CWT is the coefficient of the 
expansion. It has the property of multiresolution 
representation, which means that, through the factor s, the 
wavelet may be stretched or compressed, allowing for 
different scales. With the factor τ the wavelet basis can be 
translated in position with respect to the signal and thus 
obtain a more detailed description.   



B. Discrete wavelet transform 

There are three main issues in the implementation of 
the CWT, pointed out by Valens [3]. Because each 
scaling s and slide τ is a continuous value, the number of 
wavelet coefficients obtainable is theoretically limitless. 
It also suffers from the redundancy of mapping a signal 
in one variable, t, to two variables, s and τ. Finally, the 
CWT as introduced in (1), has only numerical solutions, 
when what is needed for the implementation are fast 
algorithms. To solve the redundancy issue, there are 
critical sampling values, which will reduce the number of 
translations and dilations to the minimum needed for 
reconstruction. These turn out to be values in octave or in 
dyadic scaling [2], as shown in (2). 

 

𝜓𝑗,𝑘(𝑡) =
1

√2𝑗
 𝜓(2−𝑗𝑡 − 𝑘)                         (2) 

 
 Moreover, this high pass filter —limited in the upper 
bound by the frequency content of the signal— has the 
disadvantage that whenever it is stretched in the time 
domain by a factor of 2, its bandwidth is reduced by the 
same factor, thus being unable to properly cover the 
signal’s content down to the 0-frequency component. 
Hence the need of a low pass filter, called the father 
wavelet or scaling function ϕ, which provides the 
approximation or scaling coefficients of the transform, 
while 𝜓 provides the detail or wavelet coefficients. The 
representation of ϕ is analogous to the one in (2), while 
the transform is directly obtained as in (3). 

𝑓(𝑡) =  ∑ 𝑎𝑗0(𝑘)𝜑𝑗𝑜,𝑘(𝑡) + ∑ ∑ 𝑑𝑗(𝑘)𝜓𝑗,𝑘(𝑡)𝑘
∞
𝑗=𝑗0𝑘      

(3) 

 
In the above equation, k is the translation parameter, 

j is an arbitrary resolution level or scale in which one 
would want to examine the signal and 𝑎𝑗 (𝑘), 𝑑𝑗(𝑘) are 

the approximation and detail coefficients, respectively. 
They are obtained as per the properties of orthogonal 
bases [12], with the inner product of the bases and the 
signal of interest f(t), i.e., calculating the transform itself: 

 

𝑎𝑗−1(𝑘) = 〈𝑓(𝑡), 𝜑𝑗,𝑘(𝑡)〉 ;   𝑑𝑗−1(𝑘) = 〈𝑓(𝑡), 𝜓𝑗,𝑘(𝑡)〉 

C. Fast wavelet transform 

With the above discretization, the transform is easier 
to obtain since the wavelet and scaling functions can be 
implemented as filter taps, but it is nevertheless 

computationally expensive. Mallat [12] showed that the 
wavelet transform can be represented as with 
multiresolution analysis, meaning that each resolution or 
scale can be represented in terms of the previous scale, 
being the scale j a subspace of scale j+1. Equation 5 
shows that it is possible to calculate any coefficient of 
greater level by doing the convolution of the 
approximation coefficient of the level before with the 
high pass and low pass filter points —h and g, 
respectively—, sparing the need to calculate the inner 
product for each approximation and detail coefficient 
with the signal. 
 

  𝑎𝑘
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= ∑ ℎ𝑛−2𝑘𝑎𝑛
(𝑗)

𝑛      𝑑𝑘
(𝑗+1)

= ∑ 𝑔𝑛−2𝑘𝑎𝑛
(𝑗)

𝑛       (5) 

 

III. IMAGE FUSION ALGORITHM  

The fusion process is done directly on the wavelet 
domain, wherein the coefficients of each frequency band 
must be fused with the corresponding coefficients of the 
other image. Up to the moment the transform has been 
expressed for one-dimensional signals, so now an 
expansion to two dimensional signals must be done. A 
schematic of the process is shown in Fig. 1. 

A. Analysis 

The signal of interest is an image, which is composed 
of rows and columns of a finite size. For two dimensions, 
then, a similar algorithm to the one-dimensional case can 
be used, in which the scaling (low-pass) and wavelet 
(high-pass) filter must be applied successively to rows 
and to the columns. In the analysis process, each low and 
high pass filter cut the frequency band of the signal in 
half, which means that the number of samples needed to 
represent it are less; particularly, half the number of 
original samples, as per the sampling theorem.  

Successive filtering must be applied for the rows and 
columns in all the different permutations, namely: low-
pass filter the rows and then low-pass the columns; low-
pass filter the rows and high-pass filter the columns; 
high-pass filter the rows and low-pass filter the columns; 
and high-pass filter both rows and columns. The result of 
this four-filtering process are four different frequency 
bands, as in Fig. 1, wherein the low-low filtered band 
corresponds to an approximation or lower size version of 
the original image, and the other bands give the vertical, 
horizontal, and diagonal details, respectively. Doing this 
process once yields the first level of analysis or 

 

Fig.  1. Schematic of fusion process using DWT 



decomposition, while repeatedly doing this process on 
the approximation band of the previous level results in 
more levels of analysis, with a total of 3N+1 bands, 
where the +1 corresponds to the approximation band of 
the first level. 

B. Fusion rules 

Any fusion process needs to decide how to merge, 
what parts to keep and how to modify the original data 
into only one. Since the fusion process using DWT is 
done on the transform domain, the easiest approach is to 
merge using simple arithmetic rules, like to keep the 
coefficient of smaller value in a pixel or to average the 
values. The maximum value rule strives to keep the 
coefficient of greater value, which should, in turn, mean 
that there is a high correlation of the original signal with 
the high “frequency” wavelet, and is useful to keep the 
details of any of the original data sequences, since high 
frequency components are related to abrupt changes in 
intensity, signaling a border or detail.  

C. Synthesis 

The synthesis process, posterior to the coefficient’s 
fusion, is the exact reverse of the analysis process. It is 
necessary to up-sample the coefficients by the same 
factor by which it was decimated, namely a factor of two. 
Then the corresponding low-pass and high-
reconstruction filters are applied on columns and rows 
the same number of times (N levels). 

IV. QUALITY ASSESSMENT  

All fusion methods strive to preserve spectral content 
and perhaps increase resolution without introducing, and 
even eliminating, artifacts and inconsistencies. The main 
difficulty lies in defining a criterion for quantitative 
assessment because there’s not an ideal fused image 
reference to compare the results with. For the medical 
image fusion application, the goal is to maintain the soft 
tissue information of the MRI and the clear bone tissue 
information provided by the CT image.  

A. Qualitative evaluation 

The qualitative evaluation is to be done through 
visual inspection and appreciation of a medical and tech 
team. The quality is to be compared both between the 
fused images themselves and with the original images, 
using parameters such as spatial detail, resolution, 
geometric patterns, color, etc. Of course, this method 
doesn’t rely on numerical models and is mainly 
dependent on the observer’s experience, being that its 
main disadvantage.  

B. Entropy and Mutual Information 

The entropy of a discrete random variable X with a 

probability distribution p(x) is defined as: 

 

H(X) = − ∑ 𝑝(𝑥)𝑙𝑜𝑔 𝑝(𝑥)
𝑥

                       (6) 

 

It indicates the average information contained in an 

image [4], in such a way that if the intensity value of the 

image is equal for all pixels, p(x)=1 and entropy is zero; 

and if the probability of a pixel intensity is very low, it 

means that it is a very ‘meaningful’ event, and the 

entropy is higher. To know the information conveyed by 

two random variables X and Y, joint entropy is used. To 

calculate it, similarly to (6), one must find the joint 

probability distribution p(x, y). If the joint entropy is 

low, then uncertainty between two images is low too. 

 

H(X, Y) = − ∑ ∑ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔 𝑝(𝑥, 𝑦)𝑦∈𝑌𝑥∈𝑋           (7) 

 
From joint entropy, mutual information (MI) is 

calculated as the Kullback-Leibler divergence of the 
product of the marginal distributions p(x) and p(y) from 
the joint distribution p(x, y). It reflects how much 
uncertainty is reduced in a variable due to the knowledge 
of the other one.  

 

I(X; Y) = ∑ ∑ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑦∈𝑌𝑥∈𝑋                (8) 

 
In relation to image fusion evaluation, joint entropy 

should indicate the similarity of the fused image with the 
original signals, if there were no artifacts introduced in 
the fusion process; the lower it is, the “better” it should 
be. On the other hand, the higher MI is, the better a pixel 
x predicts the value of the corresponding pixel y; it 
evaluates both the wavelet’s and the fusion algorithm’s 
quality.  It should be noted from (7) and (8) that the 
computation of mutual information involves the 
computation of joint entropy. 

 

V. IMPLEMENTATION 

The MRI brain images used were obtained in axial 
direction and belong to T2 weighting, with a thickness of 
5 mm, repetition time of 5000 ms and echo time of 105.4 
ms. Specifically, the fast recovery fast spin echo (FRFSE) 
sequence was used since it showed great contrast to noise 
ratio and just a small deterioration in signal to noise ratio 
despite the big matrix size (512x512). The CT slices 
chosen had a thickness of 0.6 mm, with 439 mA, 120 
KVp and standard reconstruction kernel. They were 
converted from RGB to grayscale for easier processing. 
The slice positions (SP) pairs are shown in Table I. Fig.2 
and Fig. 3 show original data sets for a SP of 78 mm. 

TABLE I.  DOMAIN OF SOURCE IMAGES 

Pair number Slice position (mm) 
CT MRI 

1 7.125 7.142 

2 50.875 51.121 

3 78.375 78.608 

 



 

Fig.2. MRI T2-weighted image at SP 78 mm 

 

Fig.3. CT image at SP 78mm 

A. MATLAB 

MATLAB is a programming environment based on 
C, C++ and Java that works with data arranged as 
matrices. It is useful to manipulate and perform 
mathematical operations on big amounts of data, to 
implement numerical analysis algorithms, to do plots 
and to develop graphical interfaces. Its latest stable 
release is MATLAB R2018a, available for Windows, 
macOS and Linux. It possesses toolboxes and 
predetermined functions, among which are the Wavelet 
Toolbox and the Image Processing Toolbox, with their 
functions to do 1D & 2D-DWT and to import dicom 
images, which is the standard for medical images. 

B. Joint entropy and MI algorithm 

For the calculation of mutual information, the feature 
mutual information algorithm was chosen, in its fast-
mutual information variant published in [5], with no 
feature extraction parameters selected. This algorithm 
takes as input the original two images and the fused one, 
then it calculates the two MIs and averages them. The 
result is normalized to yield a maximum of 100%.  For 
the joint entropy, the calculus of joint histogram 
provided by [8] was used. For reference, the joint 
entropy of a CT image with itself is in the range of 
3.0846 to 3.4512, and of an MRI with itself is in between 
5.0646 and 5.4610, while MI of an image with itself and 
a CT one doesn’t exceed 93.67%, for the present input 
data. 

C. Image Registration 

Image registration was done using MATLAB 
intensity-based image registration function [7], which 
already suggests an optimizer and metric for the case of 
multimodal image registration. The parameters of the 
metric —which uses Bayes mutual information— were 
taken from the multimodal default settings, while the 
parameters for the optimizer (OnePlusOneEvolutionary) 
were modified as to avoid local maxima of mutual 
information for both images and to guarantee 
convergence of the algorithm, shown in Table II. The 
transform type allowed was limited to rigid since the 
images follow the positioning protocol that guarantees 
parallelism among slices. The superimposed original 
images and the result of the registration are shown in 
falsecolor mode on Fig. 4 and Fig.5, respectively, for a 
SP of 78 mm. 

TABLE II.  OPTIMIZER PARAMETERS 

Parameters Values 

Initial Radius 0.010 

Minimal radius  1.008e-8 

Iteraciones máximas 700 

Factor de crecimiento 1.0001 

 

 

Fig. 4. Falsecolor superimposed original slices 

 

Fig. 5. Falsecolor superimposed registered slices 

D. Wavelet families 

The term wavelet family refers to the pair of scaling 
φ and wavelet ψ filters, which are inherently related to 



each other by a time reversal and an alternating sign, 
conforming quadrature mirror filters [11]. When the data 
to be analyzed is decomposed using DWT, the adequate 
representation of the characteristics of the signal depends 
on the shape of the wavelet. The coefficients generated 
by the best suited filter family should represent a more 
faithful feature and detail extraction, because while more 
modifications are inflicted upon the original coefficients 
–as in an image fusion process— the more the 
reconstruction quality will depend on the inherent 
properties of φ y ψ filters. 

In different papers, different wavelet families 
showed the best performance for the fusion of MRI & 
CT images: symlet [1], daubechies [10] and discrete 
meyer [6]. The daubechies family was designed for 
maximum number of vanishing moments for a given 
support; the symlet was designed similarly, with special 
emphasis on achieving symmetry; and the discrete meyer 
is a discretization of an originally continuous and 
infinitely differentiable wavelet. Both the symlet and 
daubechies are compactly supported orthonormal 
wavelets; filters of 10 points (order 9) were chosen for 
computational ease and because of the good 
experimental results observed. For the filters’ design, 
MATLAB’s default db5, sym5 and dmey wavelets were 
selected.  

VI. RESULTS 

The three pairs of images were fused for levels 1, 2, 
3 and 4 for all three selected wavelet families: discrete 
meyer, daubechies with 5 vanishing moments and symlet 
5, as well. 

A. Fusion algorithm 

Validation of the performance of the decomposition 
and reconstruction process was done using an ad hoc 
blurred gray scale picture, as to simulate multifocal 
image fusion, shown in Fig. 6 for the dmey family. 

 

 

Fig. 6. Original multifocal pictures (top row). DWT fused image 

(bottom left row) and original unblurred picture. 

B. Quantitative comparison 

MI turned out to be greater (0.17%) for levels 1, 3 

and 4 in the fusion done with the symlet wavelet, being 

this behavior consistent for all SPs. In level 2, MI for the 

discrete meyer wavelet was significantly higher (0.17%) 

than the symlet’s. Joint entropy was, similarly, lower for 

the symlet family in all levels and slices. The resulting 

fusion for all levels is shown in Table III (next page) for 

the data at SP 78 mm. There is a noticeable decline in MI 

for increasing levels, as well as an increasing joint 

entropy. This is due to the increasing presence of high 

frequency artifacts, that probably stem from the 

quantization process, the DWT limitations [8], and 

aliasing arising from the disturbance —i.e., the fusion 

process— in the QMF balance.  

C. Qualitative assessment 

Four doctors, four radiology practitioners and four 
radiology technicians were interviewed about the 
outcomes of the fusion process. The doctors mentioned 
that they did not notice a significant difference between 
each family for a given level, while the radiology 
technicians preferred in 50% of the samples the result 
given by the symelt family, choosing other family 
randomly the other half of the time, mentioning that they 
didn’t notice any significant difference in resolution and 
contrast. The radiology practitioners all immediately 
choose the symlet family as the preferred one, because it 
looked “more real”. This judgement is probably related to 
the gray scale fidelity of the fused images to the original 
ones, thus providing a different and valuable criterion 
from someone exposed daily to this type of signals. 
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TABLE III.  FUSION RESULTS FOR CT AND MRI BRAIN SLICES 

 Sym5 Db5 Dmey 
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