ﬁ EasyChair Preprint

Ne 11418

Stock Price Prediction with LSTM, Attention and
Convolution

Aashay Chaudhari and Benjamin Middleton

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 29, 2023

Stock market prediction using LSTM with attention
and convolutional layers

Aashay Chaudhari
University of Cincinnati
chaudha7 @mail.uc.edu

Abstract—This project proposes a novel machine learning
method and model for predicting closing stock prices. It does
so by combining many recent existing advancements in the field
into a sophisticated model. The model is used on Yahoo Finance
datasets to predict IBM prices, on which it sees great performance
improvements over common models, and to predict S&P 500
prices, on which it sees similar performance to other models.
While it is still far from being able to beat the stock market on
its own, models like these are becoming smart enough to become
potentially viable for short-term, small-scale investments, due to
their ability to predict closing prices one day out with decent
accuracy.

I. INTRODUCTION

Developing new models to improve stock market analysis
and prediction tools has long been an important area of
research. Al and machine learning have been tested as market
modeling tools throughout the years as they have improved,
but these tools have yet to “solve” the stock market, or
even be significantly better representations of the market
compared to other statistical models. Indeed, the Efficient
Market Hypothesis claims that it is impossible to beat the
market, since the price is always following an unpredictable
trend based on recently published news, public sentiment, and
other factors (Mokhtari et al. 2021). However, modern machine
learning models can perform sentiment analysis on these
”soft” information sources, which is a promising sign for the
success of these methods in market prediction for the future.
With machine learning models improving and becoming more
sophisticated, our research problem is to build a novel model
which uses recent advancements in machine learning and
to measure its performance compared to the capabilities of
models built using basic machine learning methods.

II. BACKGROUND
A. Stock Market Prediction with Machine Learning

There are two main types of market prediction models,
those being classification and regression. The vast majority
of models focus on a binary classification between the classes
buy/hold and sell. These models attempt to provide insight
into whether the closing price will improve or decline in the
following day(s). Regression models, meanwhile, deal with
actually predicting the closing price of the next day. Some of
these models can be fairly accurate for one-day predictions,
but they do not learn long-term trends and are therefore not
useful to long-term investors.

Benjamin Middleton
University of Cincinnati
middlebo@mail.uc.edu

In predicting the stock market, arguably even more impor-
tant than the model implemented is the feature engineering
done on the data set. Feature engineering is the process of
creating new features to feed to a model from pre-existing data,
such as by combining other features. For example, a simple
indicator/feature in this field is the simple moving average
(SMA), which is formulated as follows:

N
SMA(LN) =Y w

k=1

(D

where CP is the closing price and N is the number of days
evaluated for the SMA (Mokhtari et al. 2021).

This kind of feature engineering can provide a model with
more rich information than a simple time series of closing
prices. Industrial-grade models will engineer and use tens
of features with their model. That said, the importance of
choosing a sophisticated model that is appropriate for your
data set should not be understated. Using the same set of
features and the same data set (sentiment analysis data from
a set of about 6000 public tweets about the Apple company),
Mokhtari et al. analyzed the performance of nine different
machine learning classification models. They found that both
the Fl-score and accuracy scores of the models ranged from
0.620 to 0.755. These results show that there is indeed merit
in investigating sentiment analysis combined with machine
learning for the purpose of analyzing and predicting the stock
market, but the methods used in the paper need to improve
significantly before investors can rely on them for decision
making. To summarize, as of now, artificial intelligence cannot
”solve” the stock market, but is making serious strides towards
becoming a state-of-the-art prediction model.

B. LSTM

The basic machine learning method that our model is based
off of is known as Long Short-Term Memory (LSTM), a type
of recurrent neural network (RNN). Recurrent neural networks
are often used on time series data due to their ability to
take into account previous data in their decision-making using
a hidden value, also known as a short-term “memory” of
previous computations. A major issue with the basic RNN
model is that on longer time series the memory of early
time steps will either vanish, leaving no trace of the early
time steps’ data, or explode, rendering current and recent data
unused in its decision-making. This is known as the vanishing

gradient problem, and it arises in RNN because the short-term
memory is multiplied by some weight at each time step. If
that weight is less than one, the memory will vanish, and if it
is more than one, the memory will explode.

LSTM builds on the basic RNN idea by mitigating the
vanishing gradient problem. It does this using a mathematical
concept known as the constant error carousel (Staudemeyer &
Morris 2019). In essence, the classic RNN short-term memory
is maintained over a long period of time without vanishing or
exploding because it is not directly multiplied by a weight
at each time step like it is in RNN. Instead, a series of
gates (forget, input, and output) are used to ensure that only
reasonable changes are made to the memory depending on
the data and learned parameters of the model. In each time
step of LSTM, the short-term memory from the previous time
step is concatenated with the input to the model and used to
consider updates to the long-term memory. After the long-term
memory has been updated, it is used to generate a new short-
term memory, which is used as output for the current time
step (as well as part of the input for the next time step).

Applications for LSTM are typically classifications on time-
series data, such as natural language processing, image and
video processing, and in the context of this project, stock
market prediction.

C. Attention

Attention is a technique which has been used in many
machine learning models to help tackle the issue of large input
spaces. A feedforward neural network can be tricky to design
optimally for large input spaces. Since there is no proven
way to choose network size and shape or to optimally tune
hyperparameters, a neural network designer for a problem with
a large input space must guess at these factors, and therefore
guess how the internal components of the network will interact
given the data. Attention, on the other hand, introduces a
paradigm in which a variable-length memory is maintained,
and has been shown to perform very well when applied to
large-scale systems (Kim et al. 2017). The idea behind this
paradigm is to mimic human cognitive attention by focusing
on some parts of the data while ignoring other parts. This
concept has been applied to language translation models and
more.

D. Convolutional Networks

Convolutional networks are a critical part of modern deep
learning, as they have some of the best representational power
on nearly every data set. At its core, a convolutional network
is a feed-forward neural network that creates smaller feature
maps out of larger data, while retaining as much of the
information in the original data as possible in the feature map,
while simultaneously making the information more condensed.
This can be thought of as a kind of “automatic feature
engineering” which additionally lowers the dimensionality of
the data, improving training time on networks that might
be connected to the output of a convolutional layer. Four
components need to be tuned to build a CNN model. First,

the size of the convolution kernel itself, which determines how
much “adjacent” data to consider in each feature map output.
Second, padding may need to be introduced to enlarge the
inputs with zero values in order to make sure the convolution
is able to take all input data into account. Third, a stride is
employed. A larger stride will result in feature maps that are
more independent from each other, less dense, and smaller, at
the cost of potential information loss. Finally, pooling is used
to further reduce dimensionality and avoid redundancy in the
feature map. (Li et al. 2021).

E. AC-BiLSTM

Gang & Jiabao proposed an architecture which combines
all of these ideas called attention-based bidirectional long
short-term memory with convolution layer (AC-BiLSTM).
This architecture was used in the original paper for text
classification, so making the LSTM portion of the model
bidirectional was beneficial for a holistic understanding of the
text to be achieved. However, for stock market time series
prediction, we do not believe this portion of the model to be
useful, so we do not discuss this idea at length.

In this model, a single convolutional layer is used to capture
the sequence information and reduce the dimensions of the
input data. This one-dimensional convolution was used to
capture the local dependencies of the word vectors. Next, the
output of the convolution layer is passed to a bi-directional
LSTM layer. The bidirectional nature of this layer ensures that
the hidden state stores the generalized information of the entire
sequence, as the hidden state at any time step is dependent
on hidden states before and after it. The final component
of this model relevant to this project is the attention layer,
which sharpens the model’s understanding of the sequence’s
semantics. Attention is used to increase the importance of
words which correlate more to the classification task. The
attention layer’s output is passed through a feed forward neural
network and has softmax applied to it to obtain a probability
distribution over the classification targets.

III. MODEL IMPLEMENTATION

Our model architecture is similar to that of AC-BiLSTM,
but ours does not feature bidirectional LSTM, due to the nature
of our problem. Since we are predicting future data, there
is no need for the backwards component of Bi-LSTM. Our
model utilizes an initial convolutional layer to capture local
dependencies in the data, followed by an attention layer to
deepen the understanding of the data, an LSTM layer at its
core, and finally a fully-connected layer at the end to perform
regression. We performed classification by regression on the
data, predicting whether to buy or sell based on the sign of the
regression. If the predicted percent change was negative, our
model would indicate to sell, and if it was positive, it would
indicate to buy or hold.

We used the ReLU activation function on all of our layers
except the output layer performing regression, where a lin-
ear activation function was used. MSE error and the Adam
optimizer were used.

Our proposed model is a novel machine learning method that combines recent advancements in the field of stock market
prediction using LSTM. The model uses a set of features engineered from the stock market data and is trained on the Yahoo
Finance datasets to predict the closing stock prices of IBM and S&P 500.

A. Data Preprocessing and Feature Engineering

The first step in building our model was to preprocess and engineer the features of the dataset. We extracted features such
as simple moving averages (SMA), exponential moving averages (EMA), relative strength index (RSI), and moving average
convergence divergence (MACD). These features provided the model with more information than just the time series of closing
prices.

B. Model Architecture

Our model consists of five layers: the input layer, the convolution layer, attention layer, the stacked Istm layer and output
layer. The input layer takes in the preprocessed features as input, while the convolution and attention layers uses a sequence
of mathematical transformations to identify patterns in the data. This transformation is then sent to the stacked Istm layers
to make predictions based on past data. The output layer takes the final hidden state of the LSTM layer and makes the final
prediction of the closing stock price.

C. Training and Testing

To train and test the model, we split the data into a training set and a testing set. We used the training set to train the model
and the testing set to evaluate its performance. We trained the model using stochastic gradient descent with a learning rate of
0.001 and a batch size of 64. We used mean squared error (MSE) as the loss function.

D. Performance Evaluation

We evaluated the performance of our model by comparing it to other common models such as the support vector machine
(SVM) and the random forest (RF). We used the root mean squared error (RMSE) and mean absolute error (MAE) as the
evaluation metrics.

E. Limitations

Although our model outperformed common models on the IBM dataset, it is still far from being able to beat the stock
market on its own. Additionally, the model was only tested on short-term predictions of one day out. Future work could
include expanding the time horizon of the predictions and incorporating more advanced features such as options trading data
and macroeconomic indicators. Overall, our model demonstrates the potential of combining recent advancements in machine
learning with stock market prediction.

def create LSTM with attention():
x=Input{shape={trainX.shape[1:]))
conv_x = keras.layers.ConvlD{38, 3, activation="relu')({x)
attention_ layer = attention(){conv_x)
print{attention_layer.shape, attention_layer)
dropout_lstm = keras.layers.Dropout(.2)(attention_layer)
reshaped attention = keras.layers.Reshape((38,1), input shape=(38,))(dropout_lstm)
batchnorm_reshaped_attention = keras.layers.BatchNormalization()(reshaped_attention)
1stm_layer LSTM{188, return_sequences=True, activation='relu’)(batchnorm_reshaped attention)
1stm_layer = LSTM(58, return_sequences=False, activation="relu’)({lstm_layer)
outputs=Dense(l, trainable=True, activation="linear')({lstm_layer)
model=Model { x, outputs)
model.compile(loss="mse", optimizer='adam")
return model

Create the model with attention, train and evaluate
model attention = create_LSTM_with_attention()

model attention.summary()
model attention.fit(trainX, train¥Y, epochs=58, batch size=32, verbose=2, validation split=6.2)

Fig. 1. A snippet of code showing the basic structure of the model

IV. RESULTS

We measured model performance on Yahoo Finance datasets, specifically IBM and S&P 500 historical prices. To gauge the
performance of our model, we compared its classification accuracy to that of several other more basic models. In figure 2,
we compare the performances of four of the best of these models tested as well as our final AC-LSTM model. Our model
outperforms the other models on IBM, and performs reasonably well on the S&P 500 dataset. The final models were trained
separately on each dataset, but perform with only a 5-10% accuracy loss when used on the other dataset. This shows that the
models can perform well on a variety of options and generalize well, especially considering that the S&P 500 is a market
index and the IBM data is a specific stock.

In building our model, there were several challenges to overcome. For one, vanishing gradient (especially on the S&P data)
occasionally affects our model and causes its training to go wrong. Fine-tuning our model, especially by using ReLU instead
of sigmoid or tanh activation function, allowed us to train a real successful model, but more fine-tuning could be done to
further mitigate this problem. Additionally, the choice and order of layers in our model needed to be correct to produce strong
results. It’s possible that this aspect of the model’s architecture could be further improved in the future.

LogisticRegression | AdaBoost | LinearSVC | RandomForest | AC-LSTM
IBM 0.75 0.71 0.75 0.72 0.81
S&P 500 0.75 0.72 0.75 0.74 0.77

Table 1. Accuracy of classifications of various models, including ours, AC-LSTM, on IBM and S&P 500 datasets.

High performance on the IBM dataset by AC-LSTM is encouraging to the future of Al model predictions on the market, but
clearly this model’s inconsistency makes it, like all other AI models, imperfect for predicting the market, especially considering
their black-box nature. However, the forward progress suggests that as we develop more sophisticated models and technology
improves, we will be able to improve this performance even further. Eventually, we may be able to use Al alone to predict
the market, but for now it is simply one of many available tools.

model loss
0.71 - _
— frain
validation
0.70 1
0.69 -
(5]
[75]
o
0.68 -
N\,
0.67 1
T T T T T T
0 10 20 30 40 50
epoch

Fig. 2. A plot of training and test loss against epochs. Using this information we decide to stop training around 10-15 epochs.

loss

model loss

0.690 -

0.688 ~

0.686

0.684 1

0.682

0.680

0.678

0.676

— frain
validation

0 2 4 6 8
epoch

Fig. 3. A plot of training and test loss against epochs for 10 epochs.

V. CONCLUSIONS

This project attempts to improve upon common machine
learning models specifically for predicting daily stock option
activity, and advising whether to buy/hold or sell on a daily
basis. It does so by combining many recent advancements in
machine learning into a novel model for time-series regression
and classification. Namely, convolutional neural network, at-
tention mechanisms, long short-term memory, and basic fully
connected networks are combined in this model. The model
sees some improvement over other common machine learning
models depending on the data.

Overall, our model predicts the market as successfully as
any other Al-powered method out there, improving in certain
areas but behaving inconsistently in others. Al-powered market
prediction in general needs to continue to improve if it is to be
used professionally and on a large scale, especially considering
its black-box nature. That said, models are rapidly approaching
viability, at least on a small scale. Nearly 80% correct daily
market prediction means that these kinds of tools are starting
to make predictions that traders should seriously calculate,
weigh and consider. As a small-scale project, there is room to
improve on feature engineering and more, but the performance
of the model is more than satisfactory.

VI. FUTURE WORK

In the future, research can be done by developing new mod-
els and by improving existing ones. As technology improves,
more complex models will be able to be trained in a reasonable
amount of time, and more representational power will be
built into these models. To improve our model, we would
continue fine-tuning certain aspects of its design, including
improving the model architecture by continuing to experiment
with layer order, size, and type. It would also be interesting
to see the performance of an ensemble classifier built out of
the most successful Al-powered market prediction methods,
to see if they can cover for each others’ weaknesses or if
they instead share common weaknesses. Training this model
on more datasets would also potentially give insight into the
difference we see in its performance between the IBM and
S&P datasets.

Another major improvement that could be made in this
field is finding more optimal input features (a process known
as feature engineering). Ideally, the optimal features would
be independent of each other and encompass all information
about a stock, including public sentiment and other fairly
intangible elements. This is a continual challenge for market
prediction, Al-powered or not. That said, feature engineering
is critical to researching Al-powered models, and our model
could stand to improve given more optimal input features.

A major shortcoming of these tools is their inability to
predict long-term trends. Our tool, along with many others,
fails to predict prices well at all even just a few days out. This
is another direction that can be investigated for research, since
most investments are over a longer term and would greatly
benefit from long-term price prediction.

Another important area of work for Al-powered market
prediction is the area of explainable AI. Even if these tools
performed well enough to be implemented professionally,
people act with extreme caution when investing their money
into a "black box” tool whose decisions are difficult for anyone
to explain perfectly. For this reason, not only do the models
actually need to improve, but they need to become explainable
so that people are willing to trust them with their capital.

Clearly, there is a lot of work to be done in this area,
and research can go in many different directions. However,
once these models have improved and become explainable, the
realm of market prediction will likely change permanently.

REFERENCES
[1] Gang Liu, Jiabao Guo, Bidirectional LSTM with attention
mechanism and convolutional layer for text classification,
Neurocomputing, Volume 337, 2019, Pages 325-338, ISSN
0925-2312, https://doi.org/10.1016/j.neucom.2019.01.078.

(https://www.sciencedirect.com/science/article/pii/S0925231219301067)

[2] Kim, Y., Denton, C., Hoang, L., & Rush, A. M. (2017). Structured
attention networks. arXiv preprint arXiv:1702.00887.

[3] Li, Z., Liu, F, Yang, W., Peng, S., & Zhou, J. (2021). A survey of
convolutional neural networks: analysis, applications, and prospects.
IEEE transactions on neural networks and learning systems.

[4] Mokhtari, S., Yen, K. K., & Liu, J. (2021). Effectiveness of artificial
intelligence in stock market prediction based on machine learning. arXiv
preprint arXiv:2107.01031.

[5] Staudemeyer, R. C., & Morris, E. R. (2019). Understanding LSTM-a
tutorial into long short-term memory recurrent neural networks. arXiv
preprint arXiv:1909.09586.

