
EasyChair Preprint
№ 9588

Building Intelligent Machines: Logic

Maxim Tarasov

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 18, 2023



Building Intelligent Machines: Logic

Maxim Tarasov

www.intelligentmachines.io

Abstract. Swift implementation of Pei Wang’s Non-Axiomatic Logic.
In his 2013 book, Dr. Wang defines intelligence as ”the ability for a sys-
tem to adapt to its environment and to work with insufficient knowledge
and resources.” [1] The system he describes is called NARS and it is
an attempt at creating artificial general intelligence in the framework
of a reasoning system. This paper focuses on the logic of intelligence as
described in the book, and is augmented with additional functionalities
such as pattern matching provided by miniKanren.

Keywords: Non-Axiomatic Logic · AGI · Intelligent Machines.

1 Overview

A typical NARS system consists of two parts – logic and control – with the latter
dependent on logic. This paper discusses the logic part of the system called NAL
and the details of its implementation in Swift [2]. It is assumed that the reader
is already familiar with NARS and some of its other implementations [7–11].

In [1], three types of language are used to describe the system: (1) English,
used in the book and in this paper to describe the system at the meta-level;
(2) Narsese, used for internal representation and external communication; (3)
a computer programming language like Java or Prolog, in which the system is
implemented. Additionally, it is stated that ”these three types of language have
different properties, and do not include one another as subsets” [1].

In NARS-Swift [3], we depart from that last notion and embed Narsese in
the programming language of the system (Swift) as a DSL or Domain Specific
Language, so statements in Swift Narsese dialect are both valid Narsese and valid
Swift code. In this way, there are only two languages – the meta-language and
the programming language. Our system uses the programming language both
for its internal representation and external communication. Section 3 describes
the extension to the core system providing the ability to parse strings of text
representing Narsese sentences for interoperability and ease of communication
with other systems including human users.

1.1 Project structure

NARS-Swift
Code.playground



2 Maxim Tarasov

Sources
NAL – this paper
NARS

Sources
Narsese
nar

Swift examples from this paper and full project code are available on GitHub [3].

2 Logic

In Narsese, statements represent relations between terms, and inference rules are
applied to statements when they share a common term. The simplest type of
term is a word, a Copula connects two terms to form a statement, and you can
use a Connector to create a compound containing two or more terms (except for
certain cases where compounds consist of only one term). In addition to these
basic terms, there are also variable and operation terms.

Basic Narsese terms

enum Term {

case statement(Term, Copula, Term)

case symbol(String) // <word>

Primary Narsese copulas

enum Copula {

case inheritance = "->"

case similarity = "<->"

case implication = "=>"

case equivalence = "<=>"



Building Intelligent Machines: Logic 3

2.1 DSL

Several extensions to the Swift language provide the necessary additions to allow
writing Narsese statements like (bird --> animal), which are simultaneously
valid Swift code. This Swift Narsese dialect is used in the interface of the system
and for internal representation.

func --> (s: Term, p: Term) -> { .statement(s, .inheritance, p) }

func <-> (s: Term, p: Term) -> { .statement(s, .similarity, p) }

func => (s: Term, p: Term) -> { .statement(s, .implication, p) }

func <=> (s: Term, p: Term) -> { .statement(s, .equivalence, p) }

2.2 Rules

Embedding Narsese as a DSL in Swift allows us to demonstrate another benefit
of combining these representations. It is now possible to express the inference
rules and theorems of NAL directly without any intermediate representations.

Inference rules of Narsese

case .deduction:

return [(M --> P, S --> M, S --> P, tf),

(P --> M, M --> S, P --> S, tfi)]

case .induction:

return [(M --> P, M --> S, S --> P, tf),

(M --> P, M --> S, P --> S, tfi)]

2.3 Inference

During inference, additional extensions transform Narsese into logic terms, and
the solver from miniKanren [6] produces a set of substitutions matching the
rule’s pattern. To accomplish this, the solver uses a form of unification to help
decide which rules apply to any two statements. Later, we reverse the process
to obtain Narsese statements from logic terms.

miniKanren is a relational programming language designed to be small and
embeddable, and in NARS-Swift, we use Dimitri Racordon’s implementation [4].
It works by giving the solver a LogicGoal for which it returns valid substitutions.



4 Maxim Tarasov

extension Term {

func logic() -> LogicTerm {

switch self {

case .symbol:

return self

case .statement(let s, let c, let p):

return List.cons(c, [s, p].toList())

func from(logic: LogicTerm) -> Term {

if let term = logic as? Term {

return term

}

if case .cons(let head, let tail) = logic as? List {

if let copula = head as? Copula { // s t a t e m e n t

let terms = process(list: tail)

return .statement(terms[0], copula, terms[1])

func logicReasoning(_ t: Term) -> Term? {

var result = t

let g1: LogicGoal = (p1.logic() ≡ j1.statement.logic())

let g2: LogicGoal = (p2.logic() ≡ j2.statement.logic())

let substitution = solve(g1 && g2).makeIterator().next()

for item in substitution {

result.replace(termName: item.LogicVariable.name,

term: .from(logic: item.LogicTerm))

3 Parsing

For external communication, it is often convenient to express Narsese as a string
of text. While technically not part of the core system, this functionality is highly
desirable and it is implemented as part of NARS+ [1], extending the system’s
capabilities. A third-party library Covfefe [5] by Palle Klewitz translates Narsese
grammar defined in Backus-Naur Form (see Fig. 1) into an Abstract Syntax Tree
(AST) which we then convert to Narsese data structures.

extension Term {

init(s: String, parser: Narsese) throws {

let ast = try parser.parse(s)

func convert(tree: SyntaxTree) throws -> Term {

switch tree {

case .node(let key, let children):

switch key.name {



Building Intelligent Machines: Logic 5

case "statement":

let s = try convert(tree: children[0])

let p = try convert(tree: children[4])

let c = String(s[children[2].leafs.first!])

let copula = Copula(rawValue: c)!

return .statement(s, copula, p)

case "term":

return try convert(tree: children.first!)

Fig. 1. Narsese grammar.



6 Maxim Tarasov

4 Discussion

In this paper, we described the Swift implementation of Non-Axiomatic Logic,
which is just one part of the reasoning system called NARS. The other is the
control mechanism, which is the subject of ongoing research. We demonstrated
how embedding Narsese in the programming language of the system can simplify
the implementation, allowing for near one-to-one correspondence of computer
code to the meta-language description of the logic.

NARS-Swift is only one possible implementation of a NARS-like system
(some examples in the bibliography), and our primary focus for this project
is on simplicity and modularity. Currently, it can handle basic inference, and
you can find examples in the project’s repository. Additional work is planned1

to implement all of the inference and meta-rules of NAL, but the basic building
blocks are all there.

As already mentioned, the control strategy is the next big open question.
You can find the beginnings of one implementation in the repository. Similar to
the logic, the control part should be simple and modular. One of the benefits of
extracting the logic into a separate module is that we can now experiment with
different attention and control strategies and compare them with each other.

1 Contributors are welcome (see project’s GitHub).



Building Intelligent Machines: Logic 7

References

1. Wang, P.: Non-Axiomatic Logic: A Model Of Intelligent Reasoning. World Scientific
Publishing Co. Pte. Ltd. (2013)

2. Swift Programming Language, https://www.swift.org
3. NARS-Swift, https://github.com/maxeeem/NARS-Swift
4. SwiftKanren by Dimitri Racordon, https://github.com/kyouko-taiga/SwiftKanren
5. Covfefe by Palle Klewitz, https://github.com/palle-k/Covfefe
6. miniKanren, http://minikanren.org
7. OpenNARS, https://github.com/opennars/opennars
8. ONA, https://github.com/opennars/OpenNARS-for-Applications
9. ALANN2018, https://github.com/opennars/ALANN2018
10. Narjure, https://github.com/opennars/Narjure
11. NARS-Python, https://github.com/ccrock4t/NARS-Python


