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CLOSED-FORM CONVERSION BETWEEN MEAN AND
OSCULATING ELEMENTS IN VECTORIAL FORM

Martin Lara∗

For the zonal part of the gravitational potential, the closed-form conversion be-
tween mean and osculating variables is derived from a generating function up to
an arbitrary degree. We show that this scalar generator can be constructed directly
in vectorial elements. At difference from alternative solutions in the literature,
the closed-form generating function is forced to be purely periodic by the appro-
priate determination of the arbitrary integration function that is inherent to the
procedure. By providing also the frozen-orbit condition for the vectorial case, two
relevant facts of the frozen orbits solutions are clearly highlighted. Namely, the
rotating-frame nature of frozen orbits and the need of a purely short-period con-
version to establish the equivalence between frozen orbits and periodic orbits in
the orbital plane.

INTRODUCTION

The traditional decomposition of perturbed Keplerian motion into secular, long- and short-period
effects, shows the dominance of the zonal harmonics terms of the gravitational potential in the long-
term evolution of non-resonant orbits of artificial-satellite theory.1–3 On average, the zonal model
yields a coupled differential system in the eccentricity and argument of the periapsis, whose sta-
tionary solutions disclose a noteworthy class of orbits for their application to a variety of missions.
Namely, the orbits with frozen periapsis and almost constant eccentricity, which are customarily
denoted as frozen orbits.

Beyond the traditional truncation of the gravitational potential to the zonal harmonics of the sec-
ond and third degree, customarily used in the preliminary design of mapping orbits,4–6 the frozen
orbit design may require much higher order truncations of the zonal potential,7, 8 which, besides,
disclose important qualitative changes in the frozen orbits’ dynamics.9, 10 Still, since typical map-
ping orbits have low eccentricities, truncation to the lower powers of the eccentricity eases the
computation of general expressions for the frozen orbit condition.11–13 Alternatively, the condition
for steady-state eccentricity can be obtained in closed form, in this way reducing the computational
burden, on the one hand, and extending the application of the theory to the case of high-eccentricity
orbits, on the other hand. Explicit expressions computed by brut-force are, of course, permitted,
but may make software development troublesome due to the need of programming additional code
for each new term required. Rather, available recursion formulas that allow for dealing with an
arbitrary number of zonal harmonics—based on either Kaula’s linear theory2, 3 or the method of
Lie transforms14, 15—allow for a much efficient software implementation.16, 17 While the methods
of Kaula and the Lie transforms yield equivalent results regarding the mean-element dynamics in
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the linear approximation, the way of arranging the solution is fundamental in the implementation of
the linear theory as computer code, in which case Kaula’s efficient recursions have been reported to
provide clearly advantages.18

The time average of the gravitational potential, or a disturbing function in general, that yields
the long-term dynamics is mathematically supported by a transformation from mean to osculating
elements.19, 20 This connection between the mean and osculating dynamics is important for orbit
monitoring too,21 as well as for maneuver planning,22, 23 in which case full gravitational models
may be needed in the conversion between osculating and mean elements in order to meet accuracy
requirements of particular missions.24, 25 Existing algorithms achieving the conversion between os-
culating and mean elements based on either Kaula’s or the Lie transform approach, rely on the usual
expansions of the elliptic motion,26, 27 yet such conversion can be achieved in closed form when con-
straining to the zonal part of the gravitational potential. In particular, the generating function of the
mean to osculating transformation has been computed by the method of Lie transforms in Ref. 17.
However, the fact that this generating function is computed in Delaunay variables may cause trouble
in the evaluation of the transformation equations it spawns due to the singularity of these variables
for circular orbits. On the other hand, it is known that vectorial formulations of the variation equa-
tions, while redundant, enjoy real merits. This is not only due to their non-singular character as well
as the symmetry they provide to the variation equations,28–30 but also for the stability of numerical
integrations based on them.31

We take advantage of the vectorial approach, and derive the generating function of the mean to
osculating transformation of the zonal potential in vectorial form, yet constrained to the linear terms.
More precisely, we present it in terms of the eccentricity vector and the usual non-dimensional
version of the angular momentum vector, a set of non-singular elements that is sometimes termed
as the Milankovitch variables.32–35 To be complete, we also derive the frozen orbit condition in the
same set of vectorial variables, which, to our knowledge, is missing in the literature.

The linear theory is adequate for almost spherical bodies, like Venus or the Moon. However,
second order effects of the zonal harmonic of degree two are needed in the case of artificial-satellite
orbits of Earth-like planets. While these effects are taken into account in classical analytical orbit
theories,36–38 the computations of mean elements from them requires iterative procedures.39–41 On
the contrary, the explicit osculating-to-mean transformation is readily derived with the method of
Lie transforms. Because the relevant higher-order effects commonly constrain to the contribution
of a single zonal harmonic, these additional terms, when needed, are simply added to the linear
theory from available expressions in the literature, which, besides, can be limited to the short-period
corrections of the semimajor axis.42–44

The inclusion of additional effects stemming from the three-body dynamics is most times required
for realistic mission orbit design.45–52 In that case, the generating function must be supplemented
with the additional terms considered in the perturbation model. Beyond particular, low-degree trun-
cations of the third-body disturbing potential commonly discussed in the literature,35, 53–55 the vecto-
rial formulation of third-body perturbations up to an arbitrary degree has been thoroughly discussed
in Ref. 56, from which specific terms can be directly borrowed when needed.

ZONAL POTENTIAL WITHOUT PARALLACTIC TERMS

The gravitational potential is usually derived from Laplace’s equation in terms of the spherical
variables pr, ϕ, λq, denoting the distance, latitude and longitude, respectively. For spheroidal bodies,
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the potential is constrained to the contribution of the zonal harmonics, which do not depend on
longitude.57, 58 Thus,

V “ ´
µ

r
` Upr, ϕq, (1)

in which µ denotes the gravitational parameter, and the disturbing zonal potential is

U “
µ

r

ÿ

iě2

RiC
ri
JiPipsinϕq, (2)

where RC is the equatorial radius of the attracting body, Ji are the zonal harmonic coefficients of
the gravitational potential, and Pi denote the Legendre polynomial of degree i.

Potential functions involving only Legendre polynomials can be efficiently handled in closed
form in the search for perturbation solutions to orbital motion problems.9, 56 In that cases, the
closed-form approach is eased by replacing the parallactic terms pp{rqm, with p denoting the peri-
center distance and m ě 3, in terms of the Keplerian orbital elements pa, e, I,Ω, ω,Mq—denoting
semimajor axis, eccentricity, inclination, right ascension of the ascending node, argument of the
periapsis, and mean anomaly, respectively— while keeping the term pp{rq2 as a factor.18, 31 This
factor is left out of the summation in Eq. (2), in preparation for a following closed form integration
based on the differential relation between the true anomaly f and mean one

dM “
n

Θ
r2 df “

r2

p2
η3 df, (3)

in which n “
a

µ{a3 “ Θη3{p2 denotes the mean motion, Θ is the specific angular momentum,
p “ aη2 and η “ p1´ e2q1{2.

More precisely, in a way similar to Ref. 3, the disturbing potential in Eq. (2) is written it in the
form18

U “
µ

a

p2

r2
1

η3

ÿ

iě2

JiVi, (4)

in which

Vi “
RiC
pi
η
´p

r

¯i´1
Pipsinϕq. (5)

Replacing sinϕ “ sin I sinpf ` ωq, the Legendre polynomials are conveniently written in terms of
the orbital elements using Kaula’s inclination functions,3 which admit efficient recursive computa-
tion.59, 60 However, these functions are not adequate in the reformulation of the zonal potential in
vectorial elements, which is rather written in the form31

Vi “
1

2i
Ri‘
pi
η
i´1
ÿ

j“0

t i
2

u
ÿ

l“0

i´2l
ÿ

m“0

ˆ

i´ 1

j

˙ˆ

i

l

˙ˆ

2i´ 2l

i

˙ˆ

i´ 2l

m

˙

p´1qlejkm1 k
i´m´2l
2 Ψi,j,l,mpfq, (6)

where
Ψi,j,l,m “ cosj`m f sini´m´2l f. (7)

are trigonometric functions of the true anomaly only, the operator t u denotes the integer part of the
argument, and ki, i “ 1, 2, 3, denote the direction cosines of the unit vector defining the equatorial
plane k in the apsidal frame. The later is defined by the directions of the instantaneous eccentricity
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vector ê, the normal to orbital plane n, and b “ nˆ ê, thus completing a direct frame pê, b,nq. In
this frame, k “ R3pωqR1pIqp0, 0, 1q

T , where R1, R2, and R3 denote the usual rotation matrices,
and the superindex T denotes transposition. That is,

¨

˝

k1
k2
k3

˛

‚”

¨

˝

ê ¨ k
b ¨ k
n ¨ k

˛

‚“

¨

˝

sin I sinω
sin I cosω

cos I

˛

‚. (8)

For later manipulation, the trigonometric functions Ψi,j,l,mpfq are conveniently written as Fourier
series using standard relations between circular functions and exponentials, from which we readily
obtain

cosκ f sinσ f “
p´1q

σ´σ‹

2

2κ`σ

σ
ÿ

q“0

p´1qq
ˆ

σ

q

˙ κ
ÿ

k“0

ˆ

κ

k

˙

cos
“

pκ` σ ´ 2k ´ 2qqf ´ π
2σ
‹
‰

, (9)

where σ‹ ” σ mod 2. Hence,

Ψi,j,l,m “
p´1q

i´m´σ‹

2
´l

2j`i´2l

i´m´2l
ÿ

q“0

p´1qq
ˆ

i´m´ 2l

q

˙ j`m
ÿ

k“0

ˆ

j `m

k

˙

ˆ cos
“

pj ` i´ 2l ´ 2k ´ 2qqf ´ π
2σ
‹
‰

, (10)

where, now, σ‹ “ pi´mq mod 2. Moreover, the constraint k21 ` k
2
2 ` k

2
3 “ 1 jointly with the use

of the binomial theorem, allows us to write

k2κ2 “ p1´ k23 ´ k
2
1q
κ “

κ
ÿ

t“0

ˆ

κ

t

˙

p´1qtk2t1 p1´ k
2
3q
κ´t. (11)

Therefore, Eq. (6) is rewritten as

Vi “
1

2i
Ri‘
pi
η
i´1
ÿ

j“0

t i
2

u
ÿ

l“0

i´2l
ÿ

m“0

t i´m´2l
2

u
ÿ

t“0

Bi,j,l,m,te
jkm`2t1 p1´ k23q

i´m
2
´l´tΨi,j,l,mpfq, (12)

where, for abbreviation in printed expressions, we introduce the numeric coefficients

Bi,j,l,m,t “

ˆ

i´ 1

j

˙ˆ

i

l

˙ˆ

2i´ 2l

i

˙ˆ

i´ 2l

m

˙ˆ

t i´m´2l2 u

t

˙

p´1ql`t. (13)

Replacing k1 ” k ¨ ê, k3 ” k ¨ n, from Eq. (8), and introducing the nondimensional vectors
e “ eê, and η “ ηn, we provide Eq. (12) with a complete vectorial character Vi “ Vipe,η, fq.
Thus,

Vi “
1

2i
Ri‘
ai

i´1
ÿ

j“0

t i
2

u
ÿ

l“0

i´2l
ÿ

m“0

t̃
ÿ

t“0

Bi,j,l,m,t
ej´m´2t

η2i´1
pe ¨ kqm`2t

„

1´
pη ¨ kq2

η2



i´m´2l´2t
2

Ψi,j,l,mpfq,

(14)

cf. Ref. 31. It goes without saying that because Eq. (12) is free from divisions by the eccentricity,
Eq. (14) must also be free from these kinds of divisors. Then, the maximum value of the summation
index t in Eq. (14) is constrained to the value t̃ “ minpi ´ 2l, j ´ 2tq, to avoid the need of a post
processing in order to remove spurious eccentricity denominators introduced by possible negative
values of the exponent j ´m´ 2t of e “

?
e ¨ e.
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THE LONG-TERM VARIATIONS AND THE FROZEN ORBIT CONDITION

The vectorial form of Eq. (14) is useful in computing the averaged disturbing potential xUyM “
1
2π

ş2π
0 UpMqdM from Eq. (4). Namely, using the differential relation in Eq. (3),

xUyM “ xpr{pq2η3Uyf “
µ

a

ÿ

iě2

JixViyf , (15)

where

xViyf “
1

2i
Ri‘
ai

i´1
ÿ

j“0

t i
2

u
ÿ

l“0

i´2l
ÿ

m“0

t̃
ÿ

t“0

Bi,j,l,m,t
ej´m´2t

η2i´1
pe ¨ kqm`2t

„

1´
pη ¨ kq2

η2



i´m´2l´2t
2

xΨi,j,l,myf .

(16)
The average of the trigonometric terms over the true anomaly is readily obtained from Eq. (10) by
noting that all of them vanish save those in which q “ 1

2pj ` iq ´ l ´ k. Namely,

xΨi,j,l,myf “
p´1q

j`m
2

2j`i´2l

j`m
ÿ

k“0

p´1qk
ˆ

i´m´ 2l
j`i
2 ´ l ´ k

˙ˆ

j `m

k

˙

. (17)

It is worth noticing that the numeric coefficients xΨi,j,l,myf only depend on two indices, which,
besides, must be even. Indeed, xΨi,j,l,myf “ Ξi´m´2l,j`m where

Ξα,β “
p´1q

1
2
α

4
α`β
2

α
ÿ

k“0

ˆ

β
α`β
2 ´ k

˙ˆ

α

k

˙

p´1qk, (18)

with even indices α and β.

The averaging process has removed any dependence of the disturbing function on the mean
anomaly, with the result of making constant, on average, the semimajor axis. Thus L “

?
µa

is an integral of the averaged problem which may be used to scale the disturbing function. When
done, we can set the mean variations of the non-dimensional, vectorial elements η and e in in a neat
symmetric form that is hailed regarding their numerical integration.31, 32, 34 For the zonal potential
of concern, we borrow the vectorial variations from Ref. 31, which we rather set in the slow scale
τ “ nt. Thus,

dη

dτ
“

1

η

ÿ

iě2

Ji
2i
Ri‘
pi

“

pη ¨ kqpη ˆ kqγi ´ η
2peˆ kqρi

‰

, (19)

de

dτ
“

1

η

ÿ

iě2

Ji
2i
Ri‘
pi

“

pη ¨ kqpeˆ kqγi ´ η
2pη ˆ kqρi ´ pη ˆ eqρi`1

‰

, (20)

where the symbol ˆ denotes the cross product, whereas

γi “ 2

ti{2u´1
ÿ

l“0

ti{2u
ÿ

q“l`1

q
ÿ

m“l`1

ˆ

i

l

˙ˆ

2i´ 2l

i

˙ˆ

i´ 2l

i´ 2q

˙ˆ

q ´ l

q ´m

˙

p´1ql`q´mpm´ lq

ˆ r1´ pη ¨ kq2{η2sm´l´1pe ¨ kqi´2mQi,i´m,q´l,qpe ¨ eq, (21)

ρi “

ti{2u
ÿ

l“0

ti{2u
ÿ

q“l

q
ÿ

m“l

ˆ

i

l

˙ˆ

2i´ 2l

i

˙ˆ

i´ 2l

i´ 2q

˙ˆ

q ´ l

q ´m

˙

p´1ql`q´mpi´ 2mq

5



ˆ r1´ pη ¨ kq2{η2sm´lpe ¨ kqi´2m´1Qi,i´m,q´l,qpe ¨ eq, (22)

in which

Qi,i´m,q´l,q “
i´1
ÿ

j“i´m

ˆ

i´ 1

2j ´ i

˙

Ξ2pj´qq,2pq´lqpe ¨ eq
j´i`m, (23)

are eccentricity polynomials. Remark that both η ˆ k and e ˆ k remain in the equatorial plane,
and hence pdη{dτq ¨ k “ 0 making the third component of the angular momentum H “ G ¨ k an
integral. This is just a reflection of the axial symmetry of the original (non-averaged) zonal model,
which is not lost in the averaging.

Particular noteworthy solutions to the differential equations (19)–(20) are their equilibria. They
would not exist, in general, in inertial space, yet interesting opportunities for mission orbits stem
from the dynamics in the orbital plane. That is the remarkable case of frozen orbits, whose eccen-
tricity vectors remain fixed in the nodal frame. Therefore, we reformulate the mean variations in
the rotating, nodal frame and investigate those solutions in which the variation of the eccentricity
vector vanishes.

The nodal frame

The nodal frame pO, `,m,nq, is defined by the vectors ` “ k ˆ n{ sin I , where the inclination
is obtained from the third of Eq. (8), and m “ n ˆ `. If, besides, we replace k and e by their
projections in the nodal frame, k “ pk ¨ nqn ` pk ¨ mqm, and e “ pe ¨ `q` ` pe ¨ mqm,
straightforward computations turn Eqs. (19)–(20) into

dη

dτ
“ η

ÿ

iě2

Ji
Ri‘
p2pqi

t´rscγi ` cpe ¨mqρis`` cpe ¨ `qρim´ spe ¨ `qρinu , (24)

de

dτ
“

ÿ

iě2

Ji
Ri‘
p2pqi

 “

pe ¨mqpc2γi ` ρi`1q ` sη
2ρi

‰

`´ pe ¨ `qpc2γi ` ρi`1qm` cspe ¨ `qγin
(

.

(25)

where
s “ k ¨m, c “ k ¨ n, (26)

stand for sine and cosine of the inclination, respectively.

From the theorem of the moving frame (Coriolis theorem)

dη

dτ
“ 9η ` ω ˆ η,

de

dτ
“ 9e` ω ˆ e, (27)

in which overdots mean time differentiation in the rotating frame, andω denotes the angular velocity
of the nodal frame. That is,

d

dτ
p`,m,nq “ ω ˆ p`,m,nq. (28)

Therefore, in order to obtain it, we only need to compute the time variation of the corresponding
unit vectors in terms of the perturbation. Thus, first of all, recalling that n “ η{η, we compute

dn

dτ
“

1

η

dη

dτ
´

1

η

dη

dτ
n, (29)
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where the variation of η is given in Eq. (24). The, from the preservation of the third component of
the angular momentum H jointly with the preservation of L, on average, H{L “ η cos I remains
constant, and hence

1

η

dη

dτ
“ ´

1

c

dc

dτ
“

s

c2
ds

dτ
. (30)

Analogously, replacing ` “ k ˆ n{s and taking Eq. (29) into account, we obtain

d`

dτ
“

1

s
k ˆ

dn

dτ
´

1

s

ds

dτ
` “

1

s

1

η
k ˆ

dη

dτ
´

1

s

1

c2
ds

dτ
`

in which we further replace Eq. (24), to obtain

d`

dτ
“ psn´ cmq

c

s

ÿ

iě2

Ji
Ri‘
p2pqi

rsγi ` ρipe ¨mqs ´
1

sc

«

dI

dτ
` c

ÿ

iě2

Ji
Ri‘
p2pqi

ρipe ¨ `q

ff

`, (31)

where the last term must vanish because ` is a unit vector, whose variation must be orthogonal to
itself. In this way we obtain the first component of ω in the nodal frame ω ¨ ` “ dI{dτ .

Replacing Eq. (24) analogously in Eq. (29) yields

dn

dτ
“

ÿ

iě2

Ji
Ri‘
p2pqi

c tρipe ¨ `qm´ rsγi ` ρipe ¨mqs `u ´
s

c

«

dI

dτ
` c

ÿ

iě2

Ji
Ri‘
p2pqi

ρipe ¨ `q

ff

n,

(32)
with the same comment as before regarding the last term on the right side of the equation.

From Eqs. (28), (31), and (32), we easily identify the rotation induced by the zonal perturbation
on the nodal frame. Namely,

ω “ ´c
ÿ

iě2

Ji
Ri‘
p2pqi

!

pe ¨ `qρi`` rsγi ` pe ¨mqρism`
c

s
rsγi ` pe ¨mqρisn

)

. (33)

Frozen orbits

After solving Eq. (27) for the variations in the moving frame, we compute

ω ˆ η “ ηpω ¨mq`´ ηpω ¨ `qm, (34)

ω ˆ e “´ pe ¨mqpω ¨ nq`` pe ¨ `qpω ¨ nqm` rpe ¨mqpω ¨ `q ´ pe ¨ `qpω ¨mqsn, (35)

from Eq. (33), and combine them with the variations in the inertial frame in Eqs. (24) and (25),
respectively. We finally obtain

9η “´ sηpe ¨ `q
ÿ

iě2

Ji
Ri‘
p2pqi

ρin,

9e “
1

s

ÿ

iě2

Ji
Ri‘
p2pqi

 

ρis
2η2`` rsρi`1 ´ c

2pe ¨mqρisrpe ¨mq`´ pe ¨ `qms
(

,

which show that the variation of η identically vanishes in the particular case in which e ¨ ` “ 0, that
is ω “ ˘π

2 and e ¨m “ ˘e. In that case,

9epω “ ˘π
2 q “

1

s

ÿ

iě2

Ji
Ri‘
p2pqi

“

ps2 ´ e2qρi ` spe ¨mqρi`1
‰

` (36)
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where the functions ρi must also be evaluated for the value ω “ ˘π
2 , which yields e ¨ k “ ˘es,

respectively. Therefore, we can replace spe ¨mq “ e ¨k ” ek in this particular case, and the frozen
orbit condition is constrained to the single equation ps ‰ 0q

0 “
ÿ

iě2

Ji
Ri‘
p2pqi

“

ps2 ´ e2qρi ` ekρi`1
‰

, ρk “ ρkpe
2, ek, s

2q, (37)

which is non-singular save for the case of rectilinear orbits, and was computed in closed-form.
Recall that, in our vectorial notation, s2 “ 1´ pη ¨ kq2{η2, η2 “ 1´ e2, e2 “ e ¨ e, and ek “ e ¨ k.

The implicit form of Eq. (37), F pe, s;ω “ ˘π
2 , aq “ 0 represents two curves e “ epI;ω “ ˘π

2 q

in the parameter line a “ a0, which provide immediate insight into the frozen orbits geometry in a
global context by means of the depiction of inclination-eccentricity diagrams. Still, these diagrams
lack of stability information, which must be locally investigated. This can be done graphically as
well, by representing contour plots of the averaged potential (15) in the parameters plane pL “

L0, H “ H0q. The reduced phase space is the sphere, and hence usual projections in the cylindrical
map provided by the (mean) variables pe, ωq miss circular obits. The local flow in the close vicinity
of circular orbits is more suitably displayed through projections on the pe cosω, e sinωq plane, in
the alternative parameters plane a0 “ L2

0{µ, cos Icircular “ H0{L0.

GENERATING FUNCTION AND NON-SINGULAR SHORT-PERIOD CORRECTIONS

The insight on the long-term dynamics provided by the averaging carried out in the previous sec-
tion is mathematically supported by a transformation from osculating to mean variables. Moreover,
the Hamiltonian nature of the zonal problem permits to derive this transformation from a scalar
generating function W “

ř

jě0pε{j!q
jWj`1.15 To first order effects, the periodic terms needed

in the conversion between mean and osculating variables of a function F of the chosen canoni-
cal set of variables are obtained as ∆ “ tF ;W1u. The mean to osculating transformation is then
F “ F 1 ` ε∆|mean whereas the osculating-to-mean transformation F 1 “ F ´ ε∆.

The needed term of the generating function is computed as

W1 “
1

n

ż

pU ´ xUyM q dM, (38)

which is determined up to an arbitrary function C with the only condition of being free from the
mean anomaly.61–63 That is, dC{dM “ 0. The closed-form integration is obtained with the help of
the differential relation in Eq. (3), which is replaced into Eq. (38) to obtain

W1 “´
1

n
xUyMM `

1

n

ż

r2

p2
η3U df “

1

n
xUyMφ`

1

n

ż
ˆ

r2

p2
η3U ´ xUyM

˙

df,

where φ “ f ´M denotes the equation of the center. Replacing U and xUyM from Eqs. (4) and
(15), respectively, we obtain

W1 “ Θ
φ

η

ÿ

iě2

JixViyf `Θ
1

η

ÿ

iě2

Ji

ż

V ˚i pfqdf, (39)

where V ˚i “ Vi ´ xViyf comprises the terms of Vi that are purely periodic in f . More precisely,
the integration of V ˚i is obtained by simply excluding from Eq. (12) the terms of the summation in
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Eq. (10) with index q “ q˚ ” 1
2pj ` iq ´ l ´ k. Thus,

V ˚i “
1

2i
Ri‘
pi
η
i´1
ÿ

j“0

t i
2

u
ÿ

l“0

i´2l
ÿ

m“0

t i´m´2l
2

u
ÿ

t“0

Bi,j,l,m,te
jkm`2t1 p1´ k23q

i´m
2
´l´tΨ˚i,j,l,mpfq, (40)

where

Ψ˚i,j,l,m “
p´1q

i´m´σ‹

2
´l

2j`i´2l

i´m´2l
ÿ

q“0
q‰q˚

p´1qq
ˆ

i´m´ 2l

q

˙ j`m
ÿ

k“0

ˆ

j `m

k

˙

cos
“

2pq˚ ´ qqf ´ π
2σ
‹
‰

,

(41)

and hence,

W1 “
Θ

η
φ
ÿ

iě2

JixViyf `
Θ

η

ÿ

iě2

Ji
1

2i
Ri‘
pi
η
i´1
ÿ

j“0

t i
2

u
ÿ

l“0

i´2l
ÿ

m“0

t i´m´2l
2

u
ÿ

t“0

Bi,j,l,m,te
jkm`2t1 p1´ k23q

i´m
2
´l´t

ˆ
p´1q

i´m´σ‹

2
´l

2j`i´2l

i´m´2l
ÿ

q“0
q‰q˚

p´1qq
ˆ

i´m´ 2l

q

˙ j`m
ÿ

k“0

ˆ

j `m

k

˙

sin
“

2pq˚ ´ qqf ´ π
2σ
‹
‰

2pq˚ ´ qq
` C.

(42)

Remark that, in order to W1 be purely periodic in the mean anomaly, we must choose a nonva-
nishing integration constant C.62, 64, 65 Indeed, taking into account that the equation of the center
averages to zero, and that66

1

2π

ż 2π

0
sinpmf ` ξq dM “

ˆ

´e

1` η

˙m

p1`mηq sin ξ,

in order to guarantee that W1 is purely periodic in the mean anomaly, that is xW1yM “ 0, we must
choose

C “ ´
Θ

η

ÿ

iě2

Ji
1

2i
Ri‘
pi
η
i´1
ÿ

j“0

t i
2

u
ÿ

l“0

i´2l
ÿ

m“0

t i´m´2l
2

u
ÿ

t“0

Bi,j,l,m,te
jkm`2t1 p1´ k23q

i´m
2
´l´t p´1q

i`m`1
2

`l`j

2j`i´2l

ˆ

i´m´2l
ÿ

q“0
q‰q˚

p´1qq
ˆ

i´m´ 2l

q

˙ j`m
ÿ

k“0

ˆ

j `m

k

˙

1` 2pq˚ ´ qqη

2pq˚ ´ qq

ˆ

1´ η

1` η

˙

j`i
2
´pl`k`qq

, (43)

which only makes sense when i´m, and hence i`m is odd.

The use of the function C allows to establish a connection of frozen orbits and periodic orbits in
the orbital plane. Indeed, the former are stationary solution in mean elements which only incorpo-
rate short-period effects when translated to osculating elements, and hence their periodic character.
Therefore, frozen orbits map onto periodic orbits of the non-averaged model in a suitable reference
frame.67 The connection between these two different kinds of dynamical objects is made through
the analytic mean-to-osculating transformation.68–70 On the other hand, the correspondence be-
tween frozen and periodic orbits is necessarily approximate as far as a truncation is involved in the
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mean elements solution. Higher order truncations, which may be obtained with perturbation meth-
ods, would certainly provide a much better approximation of a periodic orbit in the orbital plane in
osculating elements.∗ Still, sooner or later the truncation is unavoidable, and the exact computation
of the periodic orbits may require the additional application of differential corrections.74, 75

EXAMPLE APPLICATION

The newly derived formulas have been validated by comparison with alternative expressions in
the literature,75, 76 always finding good agreement. This is illustrated in what follows for a low lunar
frozen orbit. In our simulations we considered a 50th degree truncation of the LP150Q model.77, 78

Still the analytical character of the mean elements equations would make easy to change this ref-
erence potential, used for the sake of illustration purposes and to ease comparison with previous
results in the literature, by more modern Selenopotential determinations.

We fixed the mean semimajor axis to the value of a circular orbit about 100 km above the moon’s
surface, and use the frozen orbit condition in Eq. (37), to represent the inclination eccentricity
diagram in Fig. 1, where the results obtained with the recommended 50th-degree model are su-
perimposed to an analogous curve obtained with a simpler 20th-degree truncation to illustrate the
important differences in the frozen orbit condition obtained in the case of high inclination frozen
orbits. The detail in the right plot of Fig. 1 shows that there exists an almost circular frozen orbit
with a mean inclination of 85 degree, in which we focus in what follows.
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Figure 1. Inclination-eccentricity diagrams of frozen orbits (ω “ ˘π{2) for an orbiter
about 100 km above the lunar surface. Solid line, 50ˆ0 truncation. Dashed line, 20ˆ0
truncation. Right: detail in the region of the higher inclinations. Only non-impact
orbits are presented.

A root finding process shows that the exact mean eccentricity of the looked frozen orbit is e “
0.0039349 with the mean periapsis frozen at ω “ 270 degree. The direct propagation of this orbit in
the zonal model using these mean elements as if they were the initial osculating elements is shown
in the left column of Fig. 2 for a time propagation interval of three years. It shows that the orbit
provided by the mean dynamics is certainly frozen, with bounded long-period oscillations of small
amplitude for the eccentricity and argument of the periapsis (second and fourth rows in the left
column of Fig. 2), which induce analogous long-period fluctuations in the periapsis distance that
range from about 91.5 km to a maximum of 94 km over the lunar surface (bottom plot in the left
column of Fig. 2). However, the average values of these oscillations do not match the corresponding

∗The periodicity in the orbital plane was originally identified with a periodicity in the rotating meridian plane of the
satellite. See, Refs. 71, 72 or §5.5 of Ref. 73.
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mean values of the frozen orbit predicted by the analytical theory, not even for the semimajor axis or
the inclination, which are only affected of short-period oscillations. The disagreement between the
mean and average dynamics is solved when the mean to osculating transformation stemming from
the generating function in Eqs. (42)–(43) is applied. Indeed, reducing the semimayor axis by 428 m,
decreasing the eccentricity by 0.33 thousandths, and lowering the inclination by just 2 arc seconds,
over the mean values, yields initial osculating elements corresponding to the true frozen orbit in the
right column of Fig. 2, whose average values are now in perfect agreement with the mean values of
the frozen orbit.
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Figure 2. Time history of the orbital elements of the example frozen orbit along a
3-years propagation interval in the non-averaged 50 ˆ 0 model. Left column: direct
propagation of the mean elements. Right column: propagation of initial conditions
computed using the mean to osculating transformation.

Figure 3 depicts the evolution of the eccentricity vector in the (moving) orbital plane along the
3-year propagation. The left plot corresponds to the direct propagation of the mean elements in
the original, non-averaged model, which confirms that the eccentricity vector remains frozen in the
orbital plane, on average, with oscillations of small amplitude over the nominal values. The plot
on the right side of Fig. 3 illustrates the radical improvements obtained when the initial osculating
elements are corrected with the short-period terms of the theory, and clearly shows the almost pe-
riodic character of the frozen orbit in the orbital plane. The lack of exact periodicity is due to the
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truncation of the perturbation solution to the linear effects, and could be amended with the use of
differential corrections, cf. Ref. 79, for instance.

-0.0004 -0.0002 0.0000 0.0002 0.0004

-0.0046

-0.0044

-0.0042

-0.0040

-0.0038

-0.0036

-0.0034

e cos(ω)

e
si
n
(ω

)

-0.0004 -0.0002 0.0000 0.0002 0.0004

-0.0046

-0.0044

-0.0042

-0.0040

-0.0038

-0.0036

-0.0034

e cos(ω)

e
si
n
(ω

)

Figure 3. Eccentricity vector evolution in the orbital plane in the 50 ˆ 0 truncation
of the non-averaged zonal model. Left: mean values used as initial conditions. Right:
initial conditions from mean values corrected with the short-period terms. Red dots
mark starting points of the 3-year propagation

CONCLUSIONS

The use of vectorial formulation for the zonal part of the gravitational potential permitted us to
obtain the frozen orbit condition by means of a single scalar equation that is free from geometric sin-
gularities, on the one hand, and does not rely on the usual expansions and corresponding truncation
of the elliptic motion, on the other hand. Therefore, the new frozen orbit condition is not con-
strained to the lower eccentricities typical of mapping orbits, which is customary in the literature.
In addition, the generating function that allows for the conversion between mean and osculating
elements has been derived also in closed form based on the eccentricity and non-dimensional an-
gular momentum vectors. Moreover, the arbitrary integration function of the constant elements of
the Keplerian motion, which vary slowly in the case of perturbations, has been determined so that
the transformation is purely periodic in the mean anomaly. This is the most favorable condition to
connect frozen orbits with (non-averaged) periodic orbits in the orbital plane. Still, the unavoidable
truncation of the analytical, frozen orbits obtained in this way could make the use of differential
corrections necessary to improve the periodicity in the orbital plane of the frozen orbit in osculating
elements. The effect of the tesseral harmonics is not relevant in determining the mean elements of
the frozen orbit save for the case of tesseral resonances, and has not been taken into account, yet
it may be important in determining the osculating nominal orbit. Future research shall address this
case, whose conversion between osculating and mean elements should be achievable also in closed
form when approached with known techniques of perturbation methods.
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