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Abstract. Modern CDCL SAT solvers easily solve industrial instances
containing tens of millions of variables and clauses, despite the theoret-
ical intractability of the SAT problem. This gap between practice and
theory is a central problem in solver research. It is believed that SAT
solvers exploit structure inherent in industrial instances, and hence there
have been numerous attempts over the last 25 years at characterizing this
structure via parameters. These can be classified as rigorous, i.e., they
serve as a basis for complexity-theoretic upper bounds (e.g., backdoors),
or correlative, i.e., they correlate well with solver run time and are ob-
served in industrial instances (e.g., community structure). Unfortunately,
no parameter proposed to date has been shown to be both strongly cor-
relative and rigorous over a large fraction of industrial instances.
Given the sheer difficulty of the problem, we aim for an intermediate
goal of proposing a set of parameters that is strongly correlative and has
good theoretical properties. Specifically, we propose parameters based
on a graph partitioning called Hierarchical Community Structure (HCS),
which captures the recursive community structure of a graph of a Boolean
formula. We show that HCS parameters are strongly correlative with
solver run time using an Empirical Hardness Model, and further build a
classifier based on HCS parameters that distinguishes between easy in-
dustrial and hard random/crafted instances with very high accuracy. We
further strengthen our hypotheses via scaling studies. On the theoretical
side, we show that counterexamples which plagued flat community struc-
ture do not apply to HCS, and that there is a subset of HCS parameters
such that restricting them limits the size of embeddable expanders.

1 Introduction

Over the last two decades, Conflict-Driven Clause-Learning (CDCL) SAT solvers
have had a dramatic impact on many sub-fields of software engineering [10], for-
mal methods [12], security [16,45], and AI [8], thanks to their ability to solve
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large real-world instances with tens of millions of variables and clauses [38],
notwithstanding the fact that the Boolean satisfiability (SAT) problem is known
to be NP-complete and is believed to be intractable [15]. A plausible explana-
tion of this apparent contradiction would be that NP-completeness of the SAT
problem is established in a worst-case setting, while the dramatic efficiency of
modern SAT solvers is witnessed over “practical” instances. However, despite
over two decades of effort, we still do not have an appropriate mathematical
characterization of practical instances (or a suitable subset thereof) and atten-
dant complexity-theoretic upper and lower bounds. This gap between theory and
practice is rightly considered one of the central problems in solver research by
theorists and practitioners alike.

The fundamental premise in this line of work is that SAT solvers are able
to find short proofs (if such proofs exist) in polynomial time (i.e., they are ef-
ficient) for industrial instances and that they are able to do so because they
somehow exploit the underlying properties (a.k.a. structure) of such industrial
Boolean formulas1, and, further, that hard randomly-generated or crafted in-
stances are difficult because they do not possess such structure. Consequently,
considerable work has been done in characterizing the structure of industrial
instances via parameters. The parameters discussed in literature so far can be
broadly classified into two categories: correlative and rigorous2. The term cor-
relative refers to parameters that take a specific range of values in industrial
instances (as opposed to random/crafted) and further have been shown to cor-
relate well with solver run time. This suggests that the structure captured by
such parameters might explain why solvers are efficient. An example of such a
parameter is modularity (more generally community structure [4]). By contrast,
the term rigorous refers to parameters that characterize classes of formulas that
are fixed-parameter tractable (FPT), such as backdoors [44,48], backbones [29],
treewidth, and branchwidth [1,37], among many others [37], or have been used to
prove complexity-theoretic bounds over randomly-generated classes of formulas
such as clause-variable ratio (a.k.a., density) [14,39].

The eventual goal in this context is to discover a parameter or set of pa-
rameters that is both strongly correlative and rigorous, such that it can then
be used to establish parameterized complexity-theoretic bounds on an appro-
priate mathematical abstraction of CDCL SAT solvers, thus finally settling this
decades-long open question. Unfortunately, the problem with all the previously
proposed rigorous parameters is that either “good” ranges of values for these
parameters are not witnessed in industrial instances (e.g., such instances can
have both large and small backdoors) or they do not correlate well with solver
run time (e.g., many industrial instances have large treewidth and yet are easy
to solve, and treewidth alone does not correlate well with solving time [28]).

Consequently, many attempts have been made at discovering correlative pa-
rameters that could form the basis of rigorous analysis [4,21]. Unfortunately, all

1The term industrial is loosely defined to encompass instances obtained from hard-
ware and software testing, analysis, and verification applications.

2Using terminology by Stefan Szeider [43].
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such correlative parameters either seem to be difficult to work with theoretically
(e.g., fractal dimension [2]) or have obvious counterexamples, i.e., it is easy to
show the existence of formulas that simultaneously have “good” parameter val-
ues and are provably hard-to-solve. For example, it was shown that industrial
instances have high modularity, i.e., supposedly good community structure [4],
and that there is good-to-strong correlation between modularity and solver run
time [32]. However, Mull et al. [30] later exhibited a family of formulas that have
high modularity and require exponential-sized proofs to refute. Finally, this line
of research suffers from important methodological issues, that is, experimental
methods and evidence provided for correlative parameters tend not to be con-
sistent across different papers in the literature.

Hierarchical Community Structure of Boolean Formulas: Given the
sheer difficulty of the problem, we aim for an intermediate goal of proposing a
set of parameters that is strongly correlative and has good theoretical properties.
Specifically, we propose a set of parameters based on a graph-theoretic struc-
ture called Hierarchical Community Structure (HCS), inspired by a commonly-
studied concept in the context of hierarchical networks [13,35], which satisfies
all the empirical tests hinted above and has better theoretical properties than
previously proposed correlative parameters. The intuition behind HCS is that it
neatly captures the structure present in human-developed systems which tend
to be modular and hierarchical [41], and we expect this structure to be inherited
by Boolean formulas modelling these systems.

Contributions3:

1. Empirical Result 1 (HCS and Industrial Instances): We show that a
set of parameters based on the HCS of the variable-incidence graph (VIG)
of Boolean formulas are effective in distinguishing industrial instances from
random/crafted ones. Moreover, we build a classifier that robustly classifies
SAT instances into the categories they belong to (verification, random, etc.).
The classification accuracy is approximately 99% and we perform a variety
of tests to ensure there is no overfitting (See Section 5.1).

2. Empirical Result 2 (Correlation between HCS and Solver Run
Time): We build an empirical hardness model based on our HCS parameters
to predict the solver run time for a given problem instance. Our model, based
on regression, performs well, achieving an R2 score of 0.83, much stronger
than previous such results (See Section 5.2)

3. Empirical Result 3 (Scaling Experiments of HCS Instances): We
empirically show, via scaling experiments, that HCS parameters such as
community degree and leaf-community size positively correlate with solving
time. We empirically demonstrate that formulas whose HCS decompositions
fall in a good range of parameter values are easier to solve than instances
with a bad range of HCS parameter values (See Section 5.4).

3Instance generator and data can be found at https://satsolvercomplexity.

github.io/hcs. Also, for the full-length paper and appendices (with proofs of the-
orems in Section 6), please refer to the arXiv version of the paper [26].

https://satsolvercomplexity.github.io/hcs
https://satsolvercomplexity.github.io/hcs
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4. Theoretical Results: We theoretically justify our choice of HCS by show-
ing that it behaves better than other parameters. More concretely, we show
the advantages of hierarchical over flat community structure by identifying
HCS parameters which let us avoid hard formulas that can be used as coun-
terexamples to community structure [30], and by showing graphs where HCS
can find the proper communities where flat modularity cannot. We also show
that there is a subset of HCS parameters (leaf-community size, community
degree, and fraction of inter-community edges) such that restricting them
limits the size of embeddable expanders (See Section 6).

5. Instance Generator: Finally, we provide an HCS-based instance generator
which takes input values of our proposed parameters and outputs a formula
that satisfies those values. This generator can be used to generate “easy”
and “hard” formulas with different hierarchical structures (See Section 5.4).

Research Methodology: We also codify a set of empirical tests which we
believe parameters must pass in order to be considered for further theoretical
analysis. While other researchers have considered one or more of these tests,
we bring them together into a coherent and sound research methodology that
can be used for future research in formula parameterization (See Section 3).
We believe that the combination of these tests provides a strong basis for a
correlative parameter to be considered worthy of further analysis.

2 Preliminaries

Variable Incidence Graph (VIG): Researchers have proposed a variety of
graphs to study graph-theoretic properties of Boolean formulas. In this work
we focus on the Variable Incidence Graph (VIG), primarily due to the relative
ease of computing community structure over VIGs compared to other graph
representations. The VIG for a formula F over variables x1, . . . , xn has n vertices,
one for each variable. There is an edge between vertices xi and xj if both xi and
xj occur in some clause Ck in F . One drawback of VIGs is that a clause of width
w corresponds to a clique of size w in the VIG. Therefore, large width clauses (of
size nε) can significantly distort the structure of a VIG, and formulas with such
large width clauses should have their width reduced (via standard techniques)
before using a VIG.

Community Structure and Modularity: Intuitively, a set of variables (ver-
tices in the VIG) of a formula forms a community if these variables are more
densely connected to each other than to variables outside of the set. An (optimal)
community structure of a graph is a partition P = {V1, . . . , Vk} of its vertices
into communities that optimizes some measure capturing this intuition, for in-
stance modularity [31], which is the one we use in this paper. Let G = (V,E)
be a graph with adjacency matrix A and for each vertex v ∈ V denote by d(v)
its degree. Let δP : V × V → {0, 1} be the community indicator function of a
partition, i.e. δP (u, v) = 1 iff vertices u and v belong to the same community in
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P . The modularity of the partition P is

Q(P ) :=
1

2|E|
∑

u,v∈V

[
Au,v −

d(u)d(v)

2|E|

]
δP (u, v) (1)

Note that Q(P ) ranges from −0.5 to 1, with values close to 1 indicating good
community structure. We define the modularity Q(G) of a graph G as the maxi-
mum modularity over all possible partitions, with corresponding partition P(G).
Other measures may produce radically different partitions.
Expansion of a Graph: Expansion is a measure of graph connectivity [23].
Out of several equivalent such measures, the most convenient to relate to HCS
is edge expansion: given a subset of vertices S ⊆ V , its edge expansion is h(S) =
|E(S, V \S)|/|S|, and the edge expansion of a graph is h(G) = min1≤|S|≤n/2 h(S).
A graph family Gn is an expander if h(Gn) is bounded away from zero. Reso-
lution lower bounds (of both random and crafted formulas) often rely on strong
expansion properties of the graph [5].

3 Research Methodology

As stated above, the eventual goal of the research presented here is to discover
a structure and an associated parameterization that is highly correlative with
solver run time, is witnessed in industrial instances, and is rigorous, i.e., forms
the basis for an upper bound on the parameterized complexity [37] of the CDCL
algorithm. Considerable work has already been done in attempting to identify
exactly such a set of parameters [32]. However, we observed that there is a wide
diversity of research methodologies adopted by researchers in the past. We bring
together the best lessons learned into what we believe to be a sound, coherent,
and comprehensive research methodology explained below. We argue that every
set of parameters must meet the following empirical requirements in order to be
considered correlative:

1. Structure of Industrial vs. Random/Crafted Instances: A requisite
for a structure to be considered correlative is that industrial instances must
fall within a certain range of values for the associated parameters, while ran-
dom and crafted instances must have a different range. An example of such
a structure is the community structure of the VIG of Boolean formulas, as
parameterized by modularity. Multiple experiments have shown that indus-
trial instances have high modularity (close to 1), while random instances tend
to have low modularity (close to 0) [32]. This could be demonstrated via a
correlation experiment or by building a classifier that takes parameter values
as input features.

2. Correlation between Structure and Solver Run Time: Another re-
quirement is correlation between parameters of a structure and solver run
time. Once again, community structure (and the associated modularity pa-
rameter) forms a good example of a structure that passes this essential test.
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For example, it has been shown that the modularity of the community struc-
ture of industrial instances (resp. random instances) correlates well with low
(resp. high) solver run time [32]. One may use either correlation methods or
suitable machine learning predictors (e.g., random forest) as evidence here.

3. Scaling Studies: To further strengthen the experimental evidence, we re-
quire that the chosen structure and its associated parameters must pass an
appropriately designed scaling study. The idea here is to vary one parameter
value while keeping as much of the rest of the formula structure constant as
possible, and see its effect on solver run time. An example of such a study is
the work of Zulkoski et al. [47], who showed that increasing the mergeability
metric has a significant effect on solver run time.

Limitations of Empirical Conclusions: As the reader is well aware, any
attempt at empirically discovering a suitable structure (and associated param-
eterization) of Boolean formulas and experimentally explaining the power of
solvers is fraught with peril, since all such experiments involve pragmatic design
decisions (e.g., which solver was used, choice of benchmarks, etc.) and hence may
lead to contingent or non-generalizable conclusions. For example, one can never
quite eliminate a parameter from further theoretical analysis based on empirical
tests alone, for the parameter may fail an empirical test on account of bench-
marks considered or other contingencies. Another well-understood issue with
conclusions based on empirical analysis alone is that they by themselves cannot
imply provable statements about asymptotic behavior of algorithms. However,
one can use empirical analysis to check or expose gaps between the behavior of
an algorithm and the tightness of asymptotic statements (e.g., the gap between
efficient typical-case behavior vs. loose worst-case statements). Having said all
this, we believe that the above methodology is a bare minimum that a set of
parameters must pass before being considered worthy of further theoretical anal-
ysis. In Section 5, we go into further detail about how we protect against certain
contingent experimental conclusions.
Limits of Theoretical Analysis: Another important aspect to bear in mind
is that it is unlikely any small set of parameters can cleanly separate all easy
instances from hard ones. At best, our expectation is that we can characterize a
large subset of easy real-world instances via the parameters presented here, and
thus take a step towards settling the central question of solver research.

4 Hierarchical Community Structure

Given that many human-developed systems are modular and hierarchical [41],
it is natural to hypothesize that these properties are transferred over to Boolean
formulas that capture the behaviour of such systems. We additionally hypothe-
size that purely randomly-generated or crafted formulas do not have these prop-
erties of hierarchy and modularity, and that this difference partly explains why
solvers are efficient for the former and not for the latter class of instances. We
formalize this intuition via a graph-theoretic concept called Hierarchical Commu-
nity Structure (HCS), where communities can be recursively decomposed into
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Fig. 1. A hierarchical decomposition (right) constructed by recursively maxi-
mizing the modularity of the graph (left).

smaller sub-communities. Although the notion of HCS has been widely stud-
ied [13,35], it has not been considered in the context of Boolean formulas before.

Hierarchical Community Structure Definition: A hierarchical decomposi-
tion of a graph G is a recursive partitioning of G into subgraphs, represented as a
tree T . Each node v in the tree T is labelled with a subgraph of G, with the root
labelled with G itself. The children of a node corresponding to a (sub)graph H
are labelled with a partitioning of H into subgraphs {H1, . . . ,Hk}; see Figure 1.
There are many ways to build such hierarchical decompositions. The method
that we choose constructs the tree by recursively maximizing the modularity, as
in the hierarchical multiresolution method [22]. We call this the HCS decompo-
sition of a graph G: for a node v in the tree T corresponding to a subgraph H
of G, we construct |P(H)| children, one for each of the subgraphs induced by
the modularity-maximizing partition P(H), unless |P(H)| = 1, in which case v
becomes a leaf of the tree. In the case of HCS decompositions, we refer to the
subgraphs labelling the nodes in the tree as communities of G.

We are interested in comparing the hierarchical community structures of
Boolean formulas in conjunctive normal form, represented by their VIGs. For
this comparison, we use the following parameters:

– The community degree of a community in a HCS decomposition is the number
of children of its corresponding node.

– A leaf-community is one with degree 0.
– The size of a community is its number of vertices.
– The depth or level of a community is its distance from the root.
– The inter-community edges of a partition P(H) are EIC (H) =

⋃
Hi,Hj∈P(H)

E(Hi, Hj), the edges between all pairs of subgraphs, and their endpoints
VIC (H) =

⋃
EIC are the inter-community vertices. Note that 2|EIC (H)|/|H|

is an upper bound for the edge expansion of H.

Note that these parameters are not independent. For example, changes in the
number of inter-community vertices or inter-community edges will affect modu-
larity. Since our hierarchical decomposition is constructed using modularity, this
could affect the entire decomposition and hence the other parameters.
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5 Empirical Results

We now turn to the results of our empirical investigations with HCS parame-
ters. We computed 49 unique parameters capturing the HCS structure, together
with several base parameters measuring different structural properties of input
VIGs4. To compute the hierarchical community structure, we used the Louvain
method [7] to detect communities and recursively call the Louvain method to
produce a hierarchical decomposition. The Louvain method is considered to be
more efficient and produces higher-modularity partitions than other known al-
gorithms.

Experimental Design. In our experiments we used a set of 10 869 instances
from five classes, which we believe is sufficiently large and diverse to draw sound
empirical conclusions (See Appendix [26]). We did not explicitly balance the
ratio of satisfiable instances in our benchmark selection because we expect our
methods to be sufficiently robust as long as the benchmark contains a sufficient
number of SAT and UNSAT instances.

In order to get interesting instances for modern solvers, we considered formu-
las which were previously used in the SAT competition from 2016 to 2018 [38].
Specifically, we took instances from five major tracks of the competition: agile,
verification, crypto, crafted, and random. We also generated additional instances
for some classes: for verification, we scaled the number of unrolls when encod-
ing finite state machines for bounded model checking; for crypto, we encoded
SHA-1 and SHA-256 preimage problems; for crafted, we generated combinato-
rial problems using cnfgen [25]; and for random, we generated k-CNFs at the
corresponding threshold CVRs for k ∈ {3, 5}, again using cnfgen. A summary
of the instances is presented in the Appendix.

We preprocessed all formulas using the MiniSAT preprocessor [17], and used
MapleSAT [27] as our CDCL solver of choice since it is a leading and repre-
sentative solver. The core of the preprocessing was a combination of variable
elimination with subsumption and self-subsuming resolution [17]. For comput-
ing satisfiability and running time, we used SHARCNET’s Intel E5-2683 v4
(Broadwell) 2.1 GHz processors [40], limiting the computation time to 5 000 sec-
onds5. For parameter computation we did not limit the type of processor because
structural parameter values are independent of processing power.

5.1 HCS-based Category Classification of Boolean Formulas

The question whether our set of HCS parameters is able to capture the under-
lying structure that differentiates industrial instances from the rest naturally
lends itself to a classification problem. Therefore, we built a multi-class Random
Forest classifier to classify a given SAT instance into one of the five categories:

4For a complete list, see: https://satsolvercomplexity.github.io/hcs/data
5This value is the time limit used by the SAT competition.

https://satsolvercomplexity.github.io/hcs/data
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Table 1. Results for classification and regression experiments with HCS param-
eters. For regression we report R2 values, whereas for classification we report
the mean of the balanced accuracy score over 5 cross-validation datasets.

Category Runtime

Score 0.996 ± 0.001 0.825 ± 0.016

Top 5 features

rootMergeability

maxInterEdges/CommunitySize

cvr

leafCommunitySize

lvl2InterEdges/lvl2InterVars

rootInterEdges

lvl2Mergeability

cvr

leafCommunitySize

lvl3Modularity

verification, agile, random, crafted, or crypto. Random Forests [9] can learn com-
plex, highly non-linear relationships while having simple structure, and hence are
easier to interpret than other models (e.g., deep neural networks).

We used an off-the-shelf implementation of a Random Forest classifier im-
plemented as sklearn.ensemble.RandomForestClassifier in scikit-learn [33].
Using the default set of parameters in scikit-learn version 0.24, we trained our
classifier using 800 randomly sampled instances of each category on a set of 49
features to predict the class of the problem instance. We found that our clas-
sifier performs extremely well, giving an average accuracy score of 0.99 over 5
cross-validation datasets. Further, the accuracy did not depend on our choice
of classifier. In particular, we found similar accuracy scores when we used C-
Support Vector classification [34] instead of Random Forests.

We also determined the five most important features used by our classifier.
Since several features in our feature set are highly correlated, we first performed
a hierarchical clustering on the feature set based on Spearman rank-order corre-
lations. From the 22 clusters that were generated, we arbitrarily chose a single
feature from each cluster as a representative member of the cluster f6. Using
these 22 representative features, we then computed their importance using per-
mutation importance [9]. In Table 1 we list the top five representative features
from each cluster, not necessarily in order of importance.

5.2 HCS-based Empirical Hardness Model

We used our HCS parameters to build an empirical hardness model (EHM)
to predict the run time of MapleSAT on a given instance. Since the solving
time is a continuous variable, we considered a regression model built using Ran-
dom Forests, namely sklearn.ensemble.RandomForestRegressor from scikit-
learn [33]. Before training our regression model, we removed instances which
timed-out at 5 000 seconds and those instances that were solved almost imme-
diately (in zero seconds) to avoid issues with artificial cut-off boundaries. We

6See https://satsolvercomplexity.github.io/hcs/data for details on clusters.

https://satsolvercomplexity.github.io/hcs/data
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then trained our Random Forest model using the default set of parameters in
scikit-learn version 0.24 to predict the logarithm of the solving time using the
remaining 1 880 instances, equally distributed between different categories.

We observed that our regression model performs quite well, with an R2

score [42] of 0.83, which implies that in the training set, almost 83% of the
variability of the dependent variable (i.e., in our case, the logarithm of the solv-
ing time) is accounted for, and the remaining 17% is still unaccounted for by our
choice of parameters. Similar to category classification, we also looked for the
top five predictive features used by our Random Forest regression model using
the exact same process. We list the representative features in Table 1.

Additionally, we trained our EHM on each category of instances separately.
We found that the performance of our EHM varies with instance category. Con-
cretely, agile outperformed all other categories with an average R2 value of 0.94,
followed by random, crafted and verification instances with scores of 0.81, 0.85
and 0.74 respectively. The worst performance was shown by the instances in
crypto, with a score of 0.48.

5.3 HCS Parameter Value Ranges for Industrial/Random Instances

In the previous section, we reported on the top five parameters most predictive of
the solver runtime in the context of our Random Forest regression model. These
parameters can be divided into five distinct classes of parameters: mergeability-
based, modularity-based, inter-community edge based, CVR, and leaf-community
size. The parameters CVR, mergeability and modularity have been studied by
previous work. CVR [11] is perhaps the most studied parameter among the three.
Zulkoski et al. [47] showed that mergeability, along with combinations of other
parameters, correlates well with solver run time; Ansotegui et al. [4] showed that
industrial instances have good modularity compared to random instances; and
Newsham et al. [32] showed that modularity has good-to-strong correlation with
solver run time. We examined the remaining parameters, i.e. inter-community
edge based parameters (rootInterEdges) and leaf-community size to gain a bet-
ter understanding of the impact of these parameters on the problem structure
and solver runtime, respectively. In this subsection, we look at how HCS param-
eters scale as the size of industrial instances increases. And in Section 5.4, we
introduce a HCS instance generator, which we use to perform a set of controlled
experiments. We then discuss how the hardness of the instances changes when
certain HCS parameters are increased/decreased.

Observations. We observe that hierarchical decomposition generally produces
leaf communities of maximal size comparable to the largest clause width, except
for very unbalanced formulas (easy for other reasons). The community degree is
highest at root level of every instance, and seems to be bounded by O(log n).
This fits within the range of parameters considered in Section 6.

In Figure 2, we show how the inter-community edge based parameter root-
InterEdges scales with the number of variables in a formula, for verification and
random instances. We note that for random instances, rootInterEdges grows
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Fig. 2. Dependence of the number of inter-community edges at the root level
(rootInterEdges) vs. the number of variables in a formula, for verification and
random instances in our dataset. The two distinct lines (starting from the bot-
tom) for random instances correspond to 3-CNFs and 5-CNFs, respectively.

linearly with the instance size, whereas in verification instances it grows sublin-
early. This supports our intuition that graphs of hard (random) instances are
expanders, whereas graphs of industrial instances are not.

5.4 Scaling Experiments with HCS parameters

Instance Generator. To isolate the effects of HCS parameters on solver run-
time, we built an HCS instance generator to construct SAT instances with vary-
ing leaf-community size and other HCS parameters. On a high level, the instance
generator constructs instances bottom-up, starting with random disjoint formu-
las of predefined CVR as leaf communities, then combining them recursively
by introducing bridge clauses with variables in at least two sub-communities to
form super-communities at that level, which in turn are combined at the follow-
ing level. We point out that in our generator, modularity is specified implicitly
through the above parameters, and we do not control for mergeability at all. We
refer the reader to the works by Zulkoski et al. [47] and Giráldez-Cru [20] for lit-
erature on the empirical behaviours of mergeability and power law, respectively.

It is important to note that our HCS instance generator is not intended to be
perfectly representative of real-world instances. In fact, there are multiple prop-
erties of our generated instances which are not reflective of industrial instances.
For example, our generator assumes that all leaf-communities have the same
size and depth, which is demonstrably untrue of industrial instances. In some
cases, the communities produced by our generator might not be the same as
the communities which would be detected using the Louvain method to perform
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a hierarchical community decomposition. For example, it might be possible to
further decompose the generated “leaf-communities” into smaller communities.
Thus, our generator is only intended to demonstrate the effect of varying HCS
parameters on solver runtime.

Observations. We constructed formulas with varying CVR, power law param-
eter, hierarchical degree, depth, inter-community edge density, inter-community
variable density, and clause width. We found evidence which suggests that in-
creasing any of leaf-community size, depth, or community degree, while keeping
every other HCS parameter fixed, increases the overall hardness of the generated
formula. For example, we found that changing the size of leaf-communities from
15 variables to 20, the solving time changed from 4.96 seconds to upwards of
5000 seconds. Similarly, changing the depth from 4 to 5 resulted in an increase
in solving time from 0.03 seconds to over 5000 seconds.

5.5 Discussion of Empirical Results

The goal of our experimental work was to first ascertain whether HCS parameters
can distinguish between industrial and random/crafted instances, and whether
these parameters show any correlation with CDCL solver runtime. The robust-
ness of our classifier indicates that HCS parameters are indeed representative of
the underlying structure of Boolean formulas from different categories. Further,
our empirical hardness model confirms that the correlation of HCS parameters
with solver run time is strong—much stronger than previously proposed param-
eters. We also find that our HCS parameters are more effective in capturing the
hardness or easiness of formulas from industrial/agile/random/crafted, but not
crypto. The crypto class is an outlier. It is not clear from our experiments (nor
any previous ones) as to why crypto instances are hard for CDCL solvers.

We also identified the top five (representative) parameters in terms of their
importance in predicting the category (classification) or runtime of an instance
(regression). The accuracy for classification and regression with only the top fea-
tures features dropped to 0.94 and 0.77, respectively, suggesting that only a few
parameters are likely to play a role in closing the question on why solvers are ef-
ficient for industrial instances. Note that a classification accuracy of 0.99 is likely
to suggest that our model is over-fitting. Fortunately, in our case our models are
trained over a large set of instances obtained via very different methods (e.g.,
random over various widths, different kinds of crafted, verification instances from
different domains), and therefore, there is sufficient entropy in our data set so
that overfitting is unlikely to be a concern for the robustness of our model.

In our investigation of parameters based on inter-community edges and leaf-
community size, we found that industrial instances typically have small average
leaf-community size, high modularity, and relatively few inter-community edges,
while random/crafted have larger average leaf-community size, low modular-
ity, and a very high number of inter-community edges. This suggests that leaf-
community size and the fraction of inter-community edges, as well as community
degree, are important HCS parameters to consider further.
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6 Theoretical Results

In this section, we show that hierarchical decomposition avoids some of the
pitfalls of flat community structure, a promising correlative parameter for ex-
plaining easiness of the industrial instances [32]. Community structure was the-
oretically shown to be insufficient by Mull et al. [30], where they showed that
formulas with good community structure can have random formulas embedded
in them either in a community or over the inter-community edges. To avoid
embedding a random formula in a community, its size has to be small (rela-
tive to the entire graph), and avoiding expanders over inter-community edges
requires that there not be too many communities. A way to be able to restrict
both is to consider a hierarchical decomposition, limiting both the number of
sub-communities (community degree) in each level of the decomposition, as well
as the leaf community size thus avoiding the most important issues that flat
community structure suffers from.

Based on our experimental work, we narrow down the most predictive HCS
parameters to be leaf-community size, community degree, and the number inter-
community edges in each decomposition. These parameters also play a role in
our theoretical results below. For a formula to have “good” HCS, we restrict the
parameter ranges as follows: the graph must exhibit O(log n) leaf-community
size and community degree, and have a small number of inter-community edges
in each decomposition of a community. These assumptions are supported by our
experimental results (See Appendix [26]). We show that these restrictions are
necessary in Appendix, where we also present a significantly simplified proof of
the result of Mull et al. [30].

Bounding the Size of Expanders in Good HCS Graphs. Ideally, we would
like to be able to prove an upper bound on proof size or search time which de-
pends on the HCS parameters of a formula. Unfortunately, our current state of
understanding does not allow for that. A step towards such a result would be to
show that formulas with good HCS (and associated parameter value ranges) are
not susceptible to typical methods of proving resolution lower bounds. Currently,
all resolution bounds exploit expansion properties – typically boundary expan-
sion – of the CNF formula (or more precisely its bipartite constraint-variable
incidence graph (CVIG)). Therefore our goal is to show that formulas with good
HCS parameters have poor expansion properties, and also do not have large
expanding subgraphs embedded within them. Note that the VIG is related to
the CVIG by taking the square of its adjacency matrix, from where it follows
that, for formulas with low width, if the VIG is not edge-expanding then the
CVIG is not vertex-expanding. Furthermore, again for formulas with low width,
vertex expansion is closely related to boundary expansion. Hence we only need
to focus on VIG edge expansion. With this in mind, we state several positive
and negative results.

First, we observe (see Appendix) that if the number of inter-community edges
at the top level of the decomposition grows sub-linearly with n and at least two
sub-communities contain a constant fraction of vertices, then this graph family
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is not an expander. Unfortunately, we can also show (see Appendix) that graphs
with good HCS can simultaneously have sub-graphs that are large expanders,
with the worst case being very sparse expanders, capable of “hiding” in the
hierarchical decomposition by contributing relatively few edges to any cut. To
avoid that, we require an explicit bound on the number of inter-community
edges, in addition to small community degree and small leaf-community size.
This lets us prove the following statement.

Theorem 1. Let G = {Gn} be a family of graphs. Let f(n) ∈ ω(poly(log n)),
f(n) ∈ O(n). Assume that G has HCS with the number of inter-community edges
o(f(n)) for every community C of size at least Ω(f(n)) and depth is bounded by
O(log n). Then G does not contain an expander of size f(n) as a subgraph.

Note that our experiments show that the leaf size and depth in industrial
instances are relatively small and the number of inter-community edges grows
slowly. From this and the theorem above, we can show that graphs with very
good HCS properties do not contain linear-sized expanders.

Lower Bounds Against HCS: We are also able to show several of strong
lower bounds on formulas with good HCS (see Appendix). For a number of
combinations of parameters, we show that restricting ourselves to “good” ranges
of these parameters does not rule out formulas which require superpolynomial
size resolution refutations. Our most striking counterexample essentially shows
that if the degree of the VIG is more than a small constant, then it is possible
to embed formulas of superpolynomial resolution complexity. In contrast with
the previous results on the size of embeddable expanders in instances with good
HCS, this result shows how to embed a sparse expander of superlogarithmic size.

Hierarchical vs. Flat Modularity: It is well-known that modularity suffers
from a resolution limit and cannot detect communities smaller than a certain
threshold [18], and that HCS can avoid this problem in some instances [7]. In
Appendix we provide an asymptotic, rigorous statement of this observation.

Theorem 2. There exists a graph G whose natural communities are of size
log(n) and correspond to the (leaf) HCS communities, while the partition maxi-

mizing modularity consists of communities of size Θ
(√

n/ log3 n
)
.

7 Related Work

Community Structure: Using modularity to measure community structure
allows one to distinguish industrial instances from randomly-generated ones [4].
Unfortunately, it has been shown that expanders can be embedded within formu-
las with high modularity [30], i.e., there exist formulas that have good community
structure and yet are hard for solvers.
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Heterogeneity: Unlike uniformly-random formulas, the variable degrees in in-
dustrial formulas follow a powerlaw distribution [3]. However, degree heterogene-
ity alone fails to explain the hardness of SAT instances. Some heterogeneous
random k-SAT instances were shown to have superpolynomial resolution size
[6], making them intractable for current solvers.

SATzilla: SATzilla uses 138 disparate parameters [46], some of which are probes
aimed at capturing a SAT solver’s state at runtime, to predict solver running
time. Unfortunately, there is little or no evidence that most of these parameters
are amenable to theoretical analysis.

Clause-Variable Ratio (CVR): Cheeseman et al. [11] observed the satisfia-
bility threshold behavior for random k-SAT formulas, where they show formulas
are harder when their CVR are closer to the satisfiability threshold. Outside of
extreme cases, CVR alone seems to be insufficient to explain hardness (or easi-
ness) of instances, as it is possible to generate both easy and hard formulas with
the same CVR [19]. Satisfiability thresholds are poorly defined for industrial in-
stances, and Coarfa et al. [14] demonstrated the existence of instances for which
the satisfiability threshold is not equal to the hardness threshold.

Treewidth: Although there are polynomial-time non-CDCL algorithms for SAT
instances with bounded treewidth [1], treewidth by itself does not appear to be
a predictive parameter of CDCL solver runtime. For example, Mateescu [28]
showed that some easy instances have large treewidth, and later it was shown
that treewidth alone does not seem to correlate well with solving time [47].

Backdoors: In theory, the existence of small backdoors [44,36] should allow
CDCL solvers to solve instances quickly, but empirically backdoors have been
shown not to strongly correlate with CDCL solver run time [24].

8 Conclusions and Future Work

In this paper, we propose HCS as a correlative set of parameters for explain-
ing the power of CDCL SAT solvers over industrial instances, which also has
good theoretical properties. Empirically, HCS parameters are much more pre-
dictive than previously proposed correlative parameters in terms of classifying
instances into random/crafted vs. industrial, and in terms of predicting solver
run time. Among the top five most predictive parameters, three are HCS param-
eters, namely leaf-community size, modularity and fraction of inter-community
edges. The remaining two are cvr and mergeability. We further identify the fol-
lowing core HCS parameters that are the most predictive among all HCS param-
eters, namely, leaf-community size, modularity, and fraction of inter-community
edges. Indeed, these same parameters also play a role in our subsequent theoret-
ical analysis, where we show that counterexamples to flat community structure
do not apply to HCS, and that restricting certain HCS parameters limits the
size of embeddable expanders. In the final analysis, we believe that HCS, along
with other parameters such as mergeability or heterogeneity, will play a role in
finally settling the question of why solvers are efficient over industrial instances.
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Autònoma de Barcelona (2016)
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