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Abstract—Synthetic graph generators facilitate research in
graph algorithms and graph processing systems by providing
access to graphs that resemble real social networks while address-
ing privacy and security concerns. Nevertheless, their practical
value lies in their ability to capture important metrics of real
graphs, such as degree distribution and clustering properties.
Graph generators must also be able to produce such graphs
at the scale of real-world industry graphs, that is, hundreds of
billions or trillions of edges.

In this paper, we propose Darwini, a graph generator that
captures a number of core characteristics of real graphs. Im-
portantly, given a source graph, it can reproduce the degree
distribution and, unlike existing approaches, the local cluster-
ing coefficient distribution. Furthermore, Darwini maintains a
number of metrics, such as graph assortativity, eigenvalues,
and others. Comparing Darwini with state-of-the-art generative
models, we show that it can reproduce these characteristics more
accurately. Finally, we provide an open source implementation
of Darwini on the vertex-centric Apache Giraph™ model that
can generate synthetic graphs with up to 3 trillion edges.

I. INTRODUCTION

The availability of realistic large-scale graph datasets is
important for the study of graph algorithms as well as for
benchmarking graph processing systems [1], [2]. For instance,
graph processing frameworks such as [3]-[5] have been eval-
vated on social graphs with up to 10B edges. Unfortunately,
the applicability of this work toward industry graphs is limited
due to significant differences in both scale and community
structure. For example, Facebook has 2.07B active users [6]
with more than 400B edges [7], while, in 2008, Google found
the web graph to contain more than 1 trillion unique URLs.

At the same time, accessing such industry datasets is
challenging for a variety of reasons. For instance, these
organizations must respect user privacy and security [8]. Even
when data is public (e.g. web data), the significant time and
resources required to collect and aggregate this information
makes this task difficult for most researchers.

Synthetic graph generators provide a way to address these
limitations. They allow organizations to share synthetic ver-
sions of their data while protecting user privacy. Further, they
enable researchers to reproduce large graph datasets based on
published graph metrics. For example, given just the degree
distribution of a social network, a generator may produce a
synthetic graph with a similar distribution without access to
the actual social graph.

Nevertheless, the value of graph generators lies in their
ability to capture important metrics of real graphs, such as
degree distribution, graph diameter and others. For instance,
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the accuracy of application simulations depends on the fidelity
of such metrics [9]. Additionally, since graph properties, like
degree skew, often guide the design of graph processing
systems [3], synthetic data must represent realistic graphs.
Importantly, since system artifacts or bottlenecks may manifest
only on large data, graph generators must be able to produce
such graphs at scale.

While existing graph generation models capture several
properties of real graphs, they fall short in at least one of
three important aspects. First, they may restrict the model to
specific degree distributions. The Kronecker model [10], one
of the most popular generative models, generates only power-
law graphs. However, several real graphs behave differently
in practice [11], [12]. For example, the Facebook social
network caps the number of friends, invalidating the power-law
property [12]. Such inaccuracy in the degree distribution limits
the utility of synthetic graphs when benchmarking systems,
like Pregel [13] and GraphX [4], since the degree distribution
impacts performance by means of the compute and network
load balance.

Second, current approaches do not capture local node
clustering properties, such as the clustering coefficient [14]
distribution, at a fine granularity [9], [10], [15]. The BTER
model improves upon Kronecker graphs by allowing non-
power law distributions, but assumes that same-degree nodes
also have the same clustering coefficient, which does not
hold in practice [9]. An inaccurate clustering coefficient
distribution may impact, for instance, the partitioning of graph
data and, consequently, the observed performance of systems
that distribute graph computations across machines [16].

Third, current techniques may not be practical to use. For
example, existing models may require manual tuning of sev-
eral parameters, and misconfiguration may lead to inaccurate
output graphs. Alternatively, they may require model fitting
prior to graph generation, which, for large graphs, incurs high
overhead and may not scale [9].

In this paper, we propose Darwini ', an algorithm that
takes as input explicitly specified node-degree and clustering
coefficient distributions and generates synthetic graphs that
accurately match these distributions. Darwini groups synthetic
vertices in buckets and iteratively adds edges within and
across buckets using a novel heuristic that controls both these
distributions at a fine granularity. Darwini further captures a
number of important metrics observed in real graphs. Notably,
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and unlike other methods, it captures graph-assortativity 2.
We show that Darwini can reproduce different types of input
degree and clustering coefficient distributions, outperforming
state-of-the-art algorithms in terms of accuracy.

Consequently, when using Darwini to benchmark graph
processing systems, this accuracy is reflected on the observed
system performance as well; processing time on synthetic
graphs is more representative of the processing time on real
graphs. This gives us more confidence in projecting the
performance of our systems on scaled-up, realistic versions
of a reference graph.

We designed Darwini to be parallelizable, and scale to
large output graphs. In fact, we provide an open source dis-
tributed implementation of Darwini [17] in the vertex-centric
Apache Giraph model [18]. Darwini introduces a method for
decomposing graph generation to smaller tasks to allow the
generation of graphs that may not even fit in the available
main memory. Overall, Darwini scales linearly on the size of
the output graph. Using our implementation, we are able to
generate synthetic graphs with up to 3 trillion edges.

Importantly, Darwini requires as input only the degree
distribution and per degree clustering coefficient distribution of
an input source graph. These distributions can be computed in
a scalable manner on very large graphs, making our approach
practical. Consequently, in terms of privacy, these are the only
metrics of the source graph that Darwini reveals.

This paper makes the following contributions:

« We introduce Darwini, a graph generating algorithm
that can reproduce both the degree and the clustering
coefficient distributions of real social graphs with trillions
of edges. To the best of our knowledge, this is the first
algorithm that achieves this validation.

« We provide a distributed implementation of the Darwini
algorithm on the Apache Giraph model that can generate
synthetic graphs with trillions of edges. Further, we
extend Darwini with a technique that can generate graphs
that do not fit in the available memory.

o We provide a thorough evaluation of Darwini. We show
that it can reproduce a number of important metrics
on different real graphs, outperforming state-of-the-art
techniques in terms of accuracy. Further, we benchmark
the Apache Giraph system with different applications
on synthetic graphs, and show that the observed system
performance is close to that observed on the real graph.
Finally, we show that our distributed implementation
scales linearly on the size of the generated graph.

The remaining of the paper is structured as follows. In Sec-
tion II, we describe the Darwini algorithm in detail, while in
Section III we outline the distributed implementation. Section
IV contains a thorough evaluation. In Section V, we give an
overview of related work. In Section VI, we conclude and
discuss future work in this area.

2The preference of a node to connect with other nodes with similar degree.
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Fig. 1. The different stages of Darwini.

II. ALGORITHM

Darwini attempts to generate synthetic graphs with explic-
itly specified degree and clustering coefficient distributions as
input. Typically, we obtain these distributions by measuring a
reference graph, like a social network, and then use Darwini
to generate a synthetic graph with similar distributions, poten-
tially of a different size. This approach differs from growth
models, such as preferential attachment [19], that attempt to
model the underlying natural process under which real-world
graphs grow. As we show in Section IV, this allows Darwini
to re-produce artifacts in source graphs that growth models
cannot capture.

Connecting vertices in a way that meets these distributions
is challenging due to the scale of the graphs and the number
of possible connections. To address this, Darwini uses a
combination of edge generation approaches that iteratively
add edges while preserving the local clustering coefficient and
degree distributions of the original graph. At the same time, it
does so in a block fashion. It first builds smaller communities
that it then interconnects in a larger graph. By design, the
algorithm can be executed in a distributed fashion, making it
possible to scale to large data sets.

The Darwini algorithm consists of 3 successive stages,
illustrated in Figure 1. In the first stage (Section II-A),
Darwini generates a set of unconnected vertices and assigns a
target degree and clustering coefficient to each vertex. This is
the degree and clustering coefficient that each vertex should
eventually have so that the output graph matches the desired
distribution. In the second stage (Section II-B), Darwini groups
vertices into smaller communities and creates edges within the
communities, approximating the target degrees and clustering
coefficients. Finally, in the third stage (Section II-C), Darwini
connects vertices across communities to match the actual target
distributions. The heuristic for constructing communities in the
second stage is essential for preserving the local clustering
coefficient and degree distributions. In the remaining of this
section, we describe each stage in detail.

A. Assigning target degrees and clustering coefficients

In the first stage, Darwini assigns a target degree and
clustering coefficient to every vertex of the output graph.
Assuming that the desired output graph has N vertices, where
N is user-defined, we will use G = (V,E) to denote the
synthetic output graph, v; € V,0 < ¢ < N to denote its
vertices, and (v;,v;) € E,0 <4,j < N to denote its edges.



Each vertex v; will have a target degree d; and a target
clustering coefficient c;.

The inputs to this stage are (i) Fyeq, the degree distribution
across the entire source graph, (ii) Fe.(d), the clustering
coefficient distribution among vertices with degree d, for all
unique values of d. Such distributions can be measured even
on large graphs using random sampling.

Subsequently, for every vertex v; € V, Darwini first draws
d; from the Fy., distribution. After it has picked d; for
vertex v;, Darwini draws the target clustering coefficient c;
from the corresponding F..(d;) distribution. Note that, unlike
approaches like BTER [20], Darwini captures the clustering
coefficient distribution at such fine granularity.

B. Connecting vertices in communities

Connecting vertices in a way that matches both the target
degrees and clustering coefficients directly is challenging due
to the number of possible ways to connect vertices. For
instance, the BTER model addresses this by making the
assumption that vertices with the same degree also have the
same clustering coefficient [20]. Given a target degree and a
target clustering coefficient, it is then possible to add random
edges in a group of vertices in a way that satisfies both.
However, this assumption does not hold in practice, resulting
in inaccurate clustering coefficient distributions.

Instead of matching the vertex degree and clustering co-
efficient directly, Darwini first tries to match the number of
triangles each vertex should belong to in the final output graph.
This is key in eventually allowing Darwini to re-produce both
the degree and clustering coefficient distributions accurately.
To understand the intuition behind the technique, first consider
the definition of the clustering coefficient of a vertex v; in an
undirected graph:

2Np;

di(d; — 1) W

C; =
where N ; is the number of triangles 3 v; participates in.
Given this definition, assume a vertex v; that is connected with
other vertices in such a way that it already participates in Na ;
triangles, but has less edges than its target degree d;. We can
then reach the target degree d; by connecting v; to vertices
with which it cannot form any new triangles. This way, Na ;
is not affected by the additional edges, and by matching d;,
we are indirectly matching the target clustering coefficient c;
as well.

Therefore, the objective of Darwini in this stage is to ensure
that: (i) each vertex participates in approximately the number
of triangles it should eventually belong to, and (ii) for each
vertex there are enough other vertices in the graph with which
it can connect without forming triangles.

To achieve these objectives, Darwini first groups vertices
into communities, or buckets, according to the number of
triangles N ; they must eventually belong to, computed from
Equation 1. In the second stage of Figure 1, all vertices within

3 A vertex v; participates in a triangle with vertices v; and vy, if (vi,v;) €
E, (vi,vg) € E and (vj,v) € E.

the same bucket have the same N ;. Subsequently, it adds
random edges within a bucket with a fixed probability P,
like in the Erdos-Rényi model. This grouping and the random
edge addition process are both tied to the above objective;
by picking probability P, accordingly we can, in expectation,
create the desired number of triangles for all vertices in the
bucket.

To understand this process, consider a bucket with n vertices
that we connect randomly, with each edge created with a
probability P,.. Due to the independence of edge additions,
the probability of any combination of three vertices in the
bucket forming a triangle is Pn = P2. Since for each vertex
there are Nao = (n—1)(n—2)/2 possible triangles in which it
can participate, the expected number of triangles for a vertex
> (n—1)(n - 2)

2

Based on Equation 2, we can construct a bucket with a desired
expected number of triangles per vertex by setting the size n
of the bucket and the probability P, appropriately.

Notice that there are different combinations of n and P,
that can achieve the desired expected number of triangles
for a bucket B. The choice of the values must satisfy two
conditions. First, a bucket must have enough vertices to
accommodate the expected number of triangles. Assuming that
every vertex participates in the expected number of triangles,
that is, Na; = N A, then from Equations 1 and 2 and since
P, <1, we get that:

n >4/ Cldl(dl — ].) = nB_,mm,W €B (3)

Second, while in this stage Darwini tries to create the
desired number of triangles, it must ensure that no vertex
exceeds its target degree. Otherwise, in the second stage,
we will not be able to correct its clustering coefficient by
connecting it to other edges. To prevent this from happening,
we limit the value of n as follows. Since within a bucket B
with n vertices each vertex can have at most n — 1 edges, we
require:

Np = Pp-Np =P} )

n S rlré%l(dz) + 1= NB,max (4)
This way, no vertex v;,% € B can have more than d; edges.
We can now calculate the probability P, for a bucket B
based on Equation 2, setting n within these bounds. In fact,
Darwini picks the lower bound n g ,,in as the size of a bucket,
therefore:

2NA B

P =7
\/(nB,min - 1)(”B,min - 2)

Here, N A, B Tepresents the expected number of triangles per
vertex, common for all vertices in bucket B.

Using these values, Darwini implements the grouping of
vertices in buckets in three successive phases, described in
detail by Algorithms 1, 2 and 3. In the following, we explain
all the steps, referring to the detailed algorithm descriptions
where necessary.
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Algorithm 1 Group vertices into buckets
1: Input: Target degrees d;, 0 <i < N —1

2: Input: Target clustering coefficients ¢;, 0 <i < N — 1
3 S« {} > Initialize set of buckets S
4: fori=0to N —1
5: NAJ%Ci*di*(di—l)/Q
6: bucket < selectBucket(S, Na ;)

> Chooses non-full bucket or adds new bucket in .S
7: bucket.add(i)
8: if bucket.size > min;cpycker(d;) + 1
9: bucket.full()
10: return S

Grouping vertices into buckets. Darwini starts with the
execution of Algorithm 1. It groups vertices in buckets, based
on the value of Na ;, as described above (lines 4-9).

As Darwini adds vertices one by one to the buckets based
on the value of Na ;, more than np 4, vertices may fall in
the same bucket. To handle this, the selectBucket procedure
(line 6) searches for a non-full bucket with the same N
or allocates a new bucket. Subsequent vertices with the same
Na,; are added to the new bucket. Note that after Darwini
adds a vertex to bucket B, the value np 4, 1S recomputed
(line 8) to reflect the degree of the newly added vertex and
ensure that a bucket never exceeds the allowed size. If a bucket
B reaches np ymqq, Darwini labels it as full (lines 8-9).

Algorithm 2 Merging incomplete buckets
1: Input: Target degrees d;, 0 <i < N —1
2: Input: Set of buckets S > Output of Algorithm 1
3. Sy + {blb € S,b.size < npmin }
> Buckets with few vertices

4 S+ S-5,
5. sort(Sy,) > Sort in order of N of each bucket
6: bucket <— emptyBucket()

7: S.add(bucket)

8: for all b in S,

9: bucket.merge(b)

10: if bucket.size > min;epycker(d;) + 1

11: bucket.full()

12: bucket < emptyBucket()

13: S.add(bucket)

14: bucket.full()

15: return B

Merging incomplete buckets. After vertex grouping fin-
ishes, some buckets may not have enough vertices to create
the necessary number of triangles based on (3). To address
this, Darwini merges small buckets into bigger ones. This
is implemented in Algorithm 2. Notice that merging causes
vertices with a different value of Va ; to be placed in the same
bucket. As a result there is no single value for P, that will
approximate Na ; well for all vertices in a merged bucket.
Eventually, this may prevent vertices from approximating
well the target clustering coefficient. Nevertheless, we have

found empirically that this offsets the inaccuracy caused by
incomplete buckets.

Besides, Darwini merges buckets in a way that mitigates
this effect. After obtaining all incomplete buckets (lines 3-
4), it orders them according to their N ; value (line 5).
Subsequently, it merges buckets with close Na ; values (lines
8-13). When it creates a merged bucket with the maximum
allowed size, it marks it as full and allocates a new one (lines
10-13). This ensures that the expected number of triangles for
each vertex in a bucket is closer than in a random assignment.

Algorithm 3 Create random edges within buckets
1: Input: Target degrees d;, 0 <i < N —1
2: Input: Target clustering coefficients ¢;, 0 < < N —1
3: Input: Set of buckets S > Output of Algorithm 2

4. forbe S

5 Pe = :\B/ZNA,b/((nb,min - 1)(nb,min - 2))
6 for v; € b

7: forv; € b, j <i

8 if random() < P,

9 addEdge(v;,v;)

Adding edges. After grouping the vertices into buckets,
Darwini adds random edges in each bucket according to the
Erdos-Rényi model, to create the expected number of triangles
in the bucket. Algorithm 3 describes this process. Darwini sets
the edge probability P, based on Equation 5 (line 5).

At the end of this stage, Darwini vertices participate, in
expectation, in the desired number of triangles, but do not
meet their target degrees and clustering coefficients. In fact,
for every vertex v;, its current degree dc,,r; should be less
than the target degree d;, therefore the clustering coefficient
should be higher than its target value. In the following section,
we describe how Darwini corrects this.

C. Interconnecting communities

In this step, Darwini attempts to add the residual degree
d; — deyrr; for each vertex while leaving the number of
triangles it participates in intact. Darwini achieves this by
connecting vertices that belong to different buckets, picking
randomly from the entire graph. Intuitively, this increases the
degree of each vertex, and since the connections are now
random across the entire graph, they are unlikely to contribute
to the number of triangles for any vertex. By iteratively
adding such random edges, Darwini gradually meets both the
degree and the target clustering coefficient of a vertex. Darwini
implements this stage with Algorithm 4.

Algorithm 4 iteratively adds edges and runs until it has
added all the remaining edges, or it has reached a maximum
number of iterations (line 6). In every iteration, Algorithm 4
first makes a pass on every vertex (line 7). If a vertex has
not met its target degree yet (line 8), it randomly picks a
candidate vertex from the entire graph to connect to (line 9).
If by connecting to the candidate vertex, the candidate does
not exceed its target degree (line 10), then Darwini adds an
edge between the two vertices (line 11).



Algorithm 4 Create random edges across buckets
1: Input: Current degrees dcyrr i, 0 <t <N —1

2: Input: Target degrees d;, 0 <t < N —1

3: Imput: Maximum number of iterations iter,,qz
4 r, = Eijio di — dewrri > Remaining edges to add
5: iter :=0

6: while . > 0 && iter < itermae

7: fori=0to NV —1

8: if dcurr,i < d;

9: vj + selectRandom(V)

10: if deyrr; < dj

11: addEdge(v;,v;)

12: Te =Te — 1

13 my = 2itertl
14: G < shuffle(V, ny)
15: for g € G

> Group size
> Shuffle vertices to groups

16: for Vi, V5 € g,1 < J, dcurr,i < d;, dcurr,j < dj
17: _ ldi—d;|
’ p= di+d;
18: if random() > p
19: addEdge(v;,vj)
20: Te =Te — 1
21: iter = iter + 1

22: end while

Satisfying high degree vertices. The random selection in
line 9 of Algorithm 4 allows us to connect a vertex with
another candidate vertex without having to search the entire
vertex set for the candidate. This eliminates a significant
overhead, allowing Darwini to scale to large graphs.

However, recall that in social networks the majority of the
vertices have low degrees. As Darwini goes through all the
vertices and for each vertex it picks uniformly a candidate to
connect with an edge, the selected candidates are most likely
low-degree vertices. As a result, during this process, low-
degree vertices will reach their target degree quickly. At the
same time, it becomes harder to find destinations for the high-
degree vertices that are left. This results in inaccuracy toward
the higher end of the degree distribution in the generated
graph. This problem manifests in BTER as well, as reported
in [20] and verified in our evaluation too.

To address this, we augment the random selection with a
process that allows Darwini to find candidates for high-degree
vertices while still avoiding a search on the entire graph.
The details are described in lines 13 - 20 of Algorithm 4.
If there are remaining connections to be added, Darwini splits
vertices in small random groups (line 14) and restricts the
search for candidates within each group (line 16). After each
iteration and only if there are still edges that must be added,
Darwini increases the size of the groups exponentially (line
13), expanding the search space. Since adding edges within a
group requires information about vertices in the group only,
Darwini can parallelize the search.

The random shuffling ensures that Darwini does not increase
the number of triangles in the graph by connecting vertices

within a group. More specifically, the shuffling procedure finds
those vertices that have not still met their target degree and
randomly partitions them to a set of groups of a specified
size. Within such group, every pair of vertices is a candidate
for adding an edge.

Maintaining degree correlation. Darwini takes into con-
sideration the observation that in social networks, there is
a positive correlation between the degree of a node and
the degrees of the neighbors of the node [12]. Therefore,
aside from the clustering coefficient, Darwini also attempts
to maintain this property.

During this stage, Darwini enforces this by randomizing
the edge creation process and ensuring that the probability
of creating an edge between vertices with similar degrees
is higher than the probability of creating an edge between
vertices with very different degrees (line 18). As we show in
Section IV, this helps maintain a good joint-degree distribution
as well.

Algorithm 4 ensures this by adjusting the probability of an
edge creation depending on how similar the degrees of the two
candidate vertices are (line 17). Darwini sets this probability
to be equal to (|d[s] — d[4]|)/(d[i] + d[j]). While there are
different ways to set the probability, we have found that this
works well in practice.

III. IMPLEMENTATION

We have implemented Darwini on top of the Apache Giraph
vertex-centric programming model [7]. In this section, we give
an outline of the implementation of each algorithm described
in Section II. The implementation is available as open source
[17].

A. Graph generation

In the vertex-centric model, a vertex is the basic abstraction
and the unit of computation. A vertex has a unique ID, edges
defined by the target vertex ID, and a value used to store
computational state. Vertices can also communicate with each
other through messages. Inside the Apache Giraph engine,
vertices are in-memory objects distributed across a compute
cluster. Darwini maps each vertex of the output graph to a
Giraph vertex.

1) Connecting vertices in buckets: Darwini begins by gen-
erating IV vertices on the fly and assigning vertex IDs in the
range [0, N), where N is the desired size of the graph. Darwini
initializes the state of each vertex with a target degree and
clustering coefficient. These are drawn from the distributions
computed on the source graph. At this phase, vertices have no
edges and they are not assigned to any bucket yet.

The next step is to assign vertices to buckets and potentially
merge buckets as per Algorithms 1 and 2. Darwini leverages
the Giraph aggregation and master computation interfaces to
collect information from every vertex and process it at a cen-
tralized master worker. At this stage, every vertex sends a triple
containing its ID, its target degree and its target clustering
coefficient to the master worker. After collecting these triples,
the master worker calculates a vertex-to-bucket assignment for



each vertex, executing Algorithms 1 and 2. Darwini stores
the resulting mapping in a list L = (b1, bo, ..., by ), where the
value L(7) is the ID of the bucket that vertex ¢ belongs to.
Note that buckets obtain the same ID as the ID of the first
vertex to be assigned to this bucket. We call this vertex the
bucket leader and use it for coordination among the vertices of
the same bucket. Once the master finishes, Darwini broadcasts
the mapping to all worker machines.

Next, Darwini implements the random edge creation within
a bucket described in Algorithm 3. Notice that while every
vertex can independently create random edges to other vertices
in the bucket, we need to ensure that if a vertex v; adds an edge
to vertex v;, then v; also gets updated with an edge to v; since
the output graph is undirected. To ensure this consistency, in
this step, every vertex sends its own ID to the bucket leader.
The bucket leader then decides which edges must be created
by running Algorithm 3. The leader vertex uses the Apache
Giraph graph mutation API to create new edges.

2) Connecting vertices across buckets: In the next step,
Darwini creates edges across buckets, implementing Algo-
rithm 4. Unlike the implementation of Algorithm 3, a vertex
can now pick a destination across the entire graph. In fact, each
vertex sends an edge creation request to a random destination
vertex ID. Since the range of IDs is known, vertices pick an ID
uniformly in this range. Once the destination vertex receives
the request message, if it has a non-zero residual node degree,
it accepts the request. It adds the edge locally and sends an
edge confirmation message back to the sending vertex. At this
point, the sending vertex can also add this edge.

Recall that Algorithm 4 also intends to find connections
for high degree vertices. To implement this step, we use the
same concept of bucket leaders as with the implementation of
Algorithm 3. Leader vertices now correspond to the groups
calculated in Algorithm 4 (line 14). Note that since the range
of vertex IDs and the number of groups 7, in each iteration is
known, we pick as leaders those vertices with an ID that is a
multiple of n,4. This logic is encoded in the vertex computation
during this phase. This way, in each iteration, every vertex
picks a random vertex leader and sends its target degree
and current degree. The vertex leader then executes the logic
described in lines 16 - 20 of Algorithm 4.

B. Scaling beyond cluster capability

While the Darwini implementation is parallelizable, its
ability to generate large synthetic graphs with a processing
system, like Giraph, is limited by the available main memory.
However, our goal is to be able to generate graphs bigger
than what our current infrastructure can hold in memory. This
enables us to stress test our existing infrastructure and predict
performance based on projected data growth rates. It also al-
lows us to evaluate new out-of-core processing techniques [21]
for handling data sets that do not fit in memory at scale.

To address this, Darwini leverages the observation that in
real social networks, users typically belong in large commu-
nities that are relatively sparsely connected with each other.
Communities defined by the user country of origin make

such an example. For instance, it has been estimated in
[12] that 84% of the total number of edges are within the
communities defined by the user country. These communities
contain a number of vertices that is much bigger than what
makes a bucket in Darwini; they may contain hundreds of
millions of vertices. We call these large vertex groupings
super-communities.

Once these super-communities are identified on the source
graph, we first run Darwini for each super-community indi-
vidually, generating the corresponding synthetic version. Each
such task is typically small enough to fit in the available
main memory. Here, we repeat the same steps described in
Section II; we measure the degree and clustering coefficient
distribution of each super-community and then use Algo-
rithms 1, 2 and 3 to generate the synthetic super-community.

Next, we need a way to connect vertices across the super-
communities. As with connecting vertices across buckets, we
can still connect edges in a random fashion. However, we must
implement this in a way that does not require loading the entire
graph in memory. Notice that to construct these edges, we do
not need to load the graph structure of each super-community.
For each vertex, we only need to load the super-community
that the vertex belongs to and its residual degree. From then
on, we essentially repeat the first part of Algorithm 4 (lines 4
- 12). Each vertex picks a random destination across the graph
and connects with it only if the destination does not exceed
its target degree.

This way of interconnecting communities reduces the re-
quired amount of memory by orders of magnitude, allowing
us to generate graphs with several trillions of edges. This
technique has allowed us to create a synthetic graph with 3
trillion edges despite the fact that the compute cluster we used
does not fit such a graph in memory. The computation took 18
hours, 2.5 hours to generate each of the 6 super-communities
and 3 hours to generate remaining edges.

I1V. EVALUATION

In this section, we evaluate different aspects of our al-
gorithm. First, we measure the ability of the algorithm to
accurately capture a number of important graph metrics,
and compare our approach with state-of-the-art generative
models. Second, we measure the impact of this accuracy on
the observed system performance when benchmarking graph
processing systems. Finally, we evaluate the scalability of the
algorithm and measure the computational overhead of our
implementation.

A. Graph metrics

We start by measuring how accurately our algorithm re-
produces a number of graph metrics, compared with the input
source graph. There is a variety of metrics used to characterize
graphs. Here we focus on degree distribution, local clustering
coefficient, joint-degree distribution and diameter as they are
commonly used to characterize the structure of a graph. We
also measure the PageRank distribution, Eigenvalues as higher-
level metrics. You can find an evalution on more metrics in
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Fig. 2. Comparing Darwini, Kronecker and BTER with different graph metrics on the Facebook subgraph. Darwini is more accurate in all metrics.

[22]. In our study, we compared against different models, using
a variety of input graphs.

1) Degree distribution: Here, we measure how accurately
Darwini reproduces the degree distribution, compared with
other techniques. We first evaluate the algorithm using a
portion of the Facebook social network as the source graph.
Specifically, we capture a subgraph of the Facebook social
graph that represents a specific geographic region with ap-
proximately 3 million vertices and 700 million edges *. We
compare Darwini with the BTER and Kronecker models as
they are the only models we could evaluate for a graph of this
size.

In Figure 2(a), we compare the degree distribution achieved
by the different models with that of the original graph.
First, notice that the Kronecker model fails to re-produce the
degree distribution, as the Facebook graph does not follow
the power-law model. Even though BTER provides a better
approximation of the degree distribution than Kronecker, it
fails to create high-degree vertices. As the algorithm tries
to connect high-degree nodes to achieve the right clustering
coefficient, it fails to find enough candidates. Darwini, instead,
produces a degree distribution that is close to the original for
all values of node degree.
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Fig. 3. Comparison with several models on the DBLP graph.

Next, we repeat the same experiment on the DBLP co-
authorship graph [23]. Due to the more manageable size
of the DBLP graph, we were able to fit and generate all
the models described in [9] using their publicly available
implementation [24]. Here, we evaluate the best performing

4For confidentiality reasons we cannot provide more information on the
graph.
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Fig. 4. Comparing Darwini and BTER on the Twitter graph.

Graph Degree Clustering Coef-
ficient
BTER 0.21 0.64
Darwini 0.007 0.19
DK-2 0.002 6.04
Forest Fire 0.041 0.27
Random Walk 0.039 1.11
Nearest Neighbor | 6.04 9.83
TABLE T

KL-DIVERGENCE OF DEGREE AND CLUSTERING COEFFICIENT
DISTRIBUTIONS FOR THE DBLP GRAPH.

models among them, namely Nearest Neighbors [25], Random
Walk [25], dK-2 [26] and Forest Fire [27].

In Figure 3(a), we plot the actual distribution and in Table I
we measure the Kullback-Leibler (KL) divergence between the
source and the generated distributions for the DBLP graph.
Consistent with the results of [26], dK-2 performs the best
among this set of models. Nearest Neighbors, one of the best
performing models measured in [26], here tends to produce
less low-degree vertices than expected. BTER exhibits the
same problem, failing to create high-degree vertices. Notice
that Darwini exhibits this problem too for this graph, but to a
lesser extent. Overall, Darwini produces the second best degree
distribution among all in terms of the KL-divergence.

We perform the same measurement on the Twitter follower
graph [28]. Here, we compare Darwini and BTER. We omit
Kronecker as it did not perform well. Figure 4 shows the
results. Both approaches produce a similar degree distribu-
tion, though they produce more high degree nodes than the
original distribution. However, Darwini produces a clustering
coefficient distribution that is closer to the original graph than



1le+0:

= Original
Kronnecker
BTER

7 = Original
Kronnecker
BTER
7 -+ Darwini

le+01

le-01
g
2

% of vertices
% of vertices
le-01

. .

le-03
1e-03

i 57 50 500 5000 i 5

Degree

(a) Degree 32 (b) Degree 500

Fig. 5. Joint-degree distribution of the source Facebook graph and the
Darwini, BTER and Kronecker graphs.

BTER.

2) Clustering coefficient distribution: Here, we use the
same graphs as above to compare the accuracy of the gener-
ated clustering coefficient distribution. First, we measure the
average clustering coefficient as a function of the vertex degree
for the different models. We show the result for the Facebook
graph in Figure 2(b).

Kronecker underestimates the per degree average clustering
coefficient by up to 4 orders of magnitude. BTER performs
better than Kronecker as it attempts to produce a graph
with high average clustering coefficient. Even so, the clus-
tering coefficient diverges significantly for high-degree nodes.
Specifically, for nodes with degree higher than 2500, the
clustering coefficient may be off by an order of magnitude.
Again, BTER cannot produce vertices with high degrees.
Instead, for Darwini the average clustering coefficient follows
closely the source distribution across the entire spectrum of
degrees.

Figure 3(b) compares the per degree average clustering
coefficient between Darwini and the rest of the models on
the DBLP graph. While in terms of degree distribution the
other models produced good results, most of the models
underestimate the average clustering coefficient. Only BTER
can capture the average clustering coefficient. Still, Darwini
outperforms BTER especially for high-degree vertices. Inter-
estingly, the source DBLP graph exhibits an increase in the
clustering coefficient for vertices with degrees between 100
and 160. Both Darwini and BTER are able to reproduce this
artifact.

Further, for the Facebook graph, we also measure the
distribution of the clustering coefficient values across the entire
graph. We show this result in Figure 2(c). As expected, Kro-
necker produces only vertices with low clustering coefficient.
BTER tends to produce many vertices with high clustering
coefficient. Darwini captures the source distribution better than
all models.

3) Joint-degree distribution: Darwini tries to maintain the
graph assortativity property observed in real social graphs,
as described in Section II. This impacts the joint-degree
distribution, the degree distribution of the neighbors of a vertex
as a function of the degree of the vertex. The joint-degree
distribution is shown to be correlated to other important graph
metrics such as conductance [29]. Here, we measure how close

[ Distribution [ Kronecker [ BTER | Darwini |

Degree 3.82 0.02 0.0014
Joint Degree, d=5 N/A 0.57 0.11
Joint Degree, d=32 0.48 0.27 0.17
Joint Degree, d=500 1.56 0.34 0.012
TABLE 1T

KL-DIVERGENCE BETWEEN THE ORIGINAL FACEBOOK GRAPH AND THE
GENERATED GRAPH DISTRIBUTIONS.

Graph Original | Darwini | BTER | Kronecker
Diameter 442 4.39 441 3.95
ABLE TIT

GRAPH DIAMETER OF THE ORIGINAL AND THE GENERATED GRAPHS.

to the original graph the generated joint-degree distribution is
for Darwini, BTER and Kronecker. In Figure 5, we show the
joint-degree distribution for vertices with degree 32 and 500.

First, notice that the distribution produced by Kronecker
diverges the most from the original one. The BTER model
improves upon Kronecker, but still produces a skewed joint
degree distribution. This is due to grouping only vertices with
the same degree into the same block. As a result, more vertices
with same degree are connected to each other than in the
original graph. For instance, notice in Figure 5(a) that for a
vertex with a degree 32 there is a spike in the frequency of
neighbors with the same degree that does not appear in reality.
Instead, because Darwini does not group vertices based on
degree, but based on the N ; value, it allows the connection
of vertices with more diverse degrees.

We also measured the KL-divergence of the joint-degree
distributions between the original and the generated graphs.
The result, shown in Table II, verifies that Darwini produces
a more accurate distribution.

4) Graph diameter: The diameter is another fundamental
metric of graphs, with social networks exhibiting a small
diameter. Here, we measured the effective diameter of all
graphs, the average distance between two pairs of nodes in
the graph.

Table III shows that all graphs exhibit a smaller diameter
than the original graph. BTER is the one closest to the
original, while the Kronecker graph has the smallest diameter.
We hypothesize that since the Kronecker model does not
impose higher clustering coefficients, it allows more random
connections between vertices and this results in shrinking the
diameter.

5) PageRank and eigenvalue distributions: The PageRank
distribution is another metric used to characterize a graph
structure. In Figures 6(a) and 6(b), we compare the PageRank
distributions between Darwini, BTER and Kronecker.

Although graphs generated by Darwini exhibit more ac-
curate PageRank distributions than other models, notice that
the distribution has a significant dip caused by the block
structure created at the initial stage. We hypothesize that this
is due to the fact that real graphs have more hierarchical
and overlapping community structure, while Darwini strictly
assigns every vertex to one community.
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Though omitted due to space restrictions, Darwini and
BTER result in similar eigenvalue distributions, with Darwini
tending to overestimate higher eigenvalues.

B. Impact on system performance

One of our initial motivations was to use Darwini to allow
researchers to benchmark graph processing systems on a
reference graph, for instance the Facebook social graph, with-
out sharing the graph. Here, we measure how representative
the synthetic graphs are in terms of the observed system
performance.

In this experiment, we use as source a Facebook con-
nected subgraph with 300M vertices, and generate synthetic
graphs with Darwini, BTER and Kronecker. Subsequently,
we run a variety of graph mining applications developed
on the Apache Giraph framework and compare the observed
performance of Apache Giraph on all graphs. Here, we run
five different applications: PageRank, Connected Components
(ConnComp), Eigenvalue decomposition (EIG), Balanced Par-
titioning (BP) [16], and Friends-of-Friends counting (FoF).
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Fig. 7. Application runtime on the real and the synthetic graphs, normalized
by the time observed on the real graph.

Figure 7 shows the runtime on the real and the synthetic
graphs for all the applications. The time is normalized by
the runtime on the real graph. Each data point is an average
of three runs. First, notice that for PageRank the difference
is small for all graphs. The runtime of this application is
proportional to the number of edges in the graph. Since all
synthetic graphs have almost the same number of edges with
the original graph, Giraph exhibits the same runtime.

The difference in performance becomes more apparent for
the rest of the applications because of their computation
and communication patterns. For instance, in the Giraph

implementation of the Friends-of-Friends counting algorithm,
every vertex creates a message that is proportional in size
to its degree d and sends it to all its neighbors, resulting in
communication overhead with size d? per vertex. Therefore,
even though the number of edges is the same in all graphs,
different clustering can impact the communication overhead
significantly and, hence, the observed application performance.
As an extreme, the low clustering coefficient of the Kronecker
graph incurs smaller messages. This results in a runtime that
is 3.5 times less than the runtime observed on the real graph.
In all of these cases, the observed performance on the graph
generated with Darwini is closer to the one on the original
graph.

Next, we evaluate the impact of the synthetic graph structure
on system performance when the input graph is partitioned
in advance. Graph processing systems often partition the
graph across workers intelligently, to minimize inter-worker
communication, reduce memory pressure due to messaging
and balance the load across worker machines. Typical graph
partitioning algorithms try to minimize the edge cut, while
keeping the size of the partitions even. If the structure of the
generated graph differs significantly from that of the original
graph, the observed performance on a partitioned graph may
differ more.

In this experiment, we applied balanced graph partition-
ing [16] on the original graph and on each synthetic graph.
Then we run PageRank and Friends-of-Friends counting on all
the partitioned graphs and measured the relative performance
difference as in the previous example. These two applications
represent two diverse algorithms with respect to computation
and communication.

Figure 8 shows the results. For each application, we show
the normalized runtimes when the graph is randomly parti-
tioned and when it is partitioned using balanced partition-
ing. Notice that, unlike the previous experiment, the relative
performance of PageRank varies more. The communication
overhead and, hence, the running time depends on the size
of the edge cut and the skew of the partition sizes. The size
of the edge cut on the Darwini graph is much closer to that
of the original graph, resulting in similar performance. BTER
and Kronecker produce a less connected graph which makes it
easier to achieve a good cut, resulting in a lower runtime. The
difference is more apparent in the Friends-of-Friends counting
application. Notice that the time for the Kronecker graph does
not change between the random and balanced partitioning.
The graph is that sparse that partitioning does not make a
significant difference in the runtime.

C. Scalability

Here, we evaluate the scalability of the Darwini implemen-
tation. We use an experimental cluster with 200 machines,
each with 256GB of RAM and 48 cores. Figure 9(a) shows the
time to generate a graph as a function of the output graph size.
The graph generation time scales linearly with the number of
vertices until we hit the memory limit. In Figure 9(b), we
show how the graph generation time improves as we increase
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the size of the compute cluster. For a sufficiently large graph,
the time decreases linearly. Smaller graph sizes do not benefit
from a large number of machines due to the network overhead.

Further, we used Darwini to generate a scaled-up version
of the Facebook social graph. We captured the entire social
graph as the source graph and generated a synthetic graph
with one trillion edges. This task took approximately 7 hours
on the same 200-machine compute cluster. Although we
omit the details, the generated distributions are close to the
source distribution, consistent with our results on the smaller
subgraph.

V. RELATED WORK

Our work is inspired by the Block Two-Level Erdos-Rényi
(BTER) [15], [20] model. As we show in our evaluation, the
BTER model is capable of capturing the average clustering
coefficient, but fails in generating high-degree vertices and
often results in graphs with skewed joint degree distribution.

The Barabasi-Albert model [30] uses the preferential at-
tachment mechanism to produce random graphs with power-
law degree distributions. Recent work has focused on scaling
the Barabasi-Albert model using efficient data structures [31].
However, preferential attachment does not generally produce
higher than random number of triangles, resulting in graphs
with low clustering coefficient.

The Random Walk model [25] simulates the randomized
walk behavior of friend connections in a social network. The
Nearest Neighbor model [25] is based on the idea that people
with common friends are more likely to become friends. While
Random Walk and Nearest Neighbor models are relatively ac-
curate in terms of degree distribution and clustering coefficient,

they are biased towards inter-connecting high-degree nodes,
and produce graphs with significantly shorter path lengths and
network diameter [9].

Kronecker graphs [10] are generated by recursive applica-
tion of Kronecker multiplication to an initiator matrix. The
initiator matrix is selected by applying the KronFit algorithm
to the original graph. Modifying the size of the initiator matrix
introduces a tradeoff between overhead and accuracy. In our
experimentation, we found it hard to apply the existing KronFit
implementation to large graphs.

DK-graphs [26] is a family of stochastically generated
graphs that match the respective DK-series of the original
graph. DK-1 graphs match the degree distribution of the orig-
inal graph, while DK-2 matches the joint degree distribution.
DK-3 matches the corresponding DK-3 series, including the
clustering coefficient of the original graph. However generat-
ing DK-3 graph using rewiring incurs very high overhead. We
are not aware of any efficient algorithm that generates large
DK-3 graphs.

The growth model presented in [32] is similar to our
approach. It first generates communities according to a Web of
Trust growth model, and then interconnects all communities,
while assuming a certain community size distribution. Unlike
Darwini, this approach does not explicitly model the degree or
local clustering coefficient distributions. However, real graphs
may present peculiarities in these distributions, such as hard
limits on the number of friends, or anomalies around specific
degree values [12] that can be impactful when analyzing
system performance. Hence, we believe that capturing these
graph properties is important.

VI. CONCLUSION AND FUTURE WORK

This paper introduced Darwini, a scalable synthetic graph
generator that can accurately capture important metrics of
social graphs, such as degree, clustering coefficient and joint-
degree distributions. We implemented Darwini on top of a
graph processing framework, making it possible to use it
on any commodity cluster. To facilitate access to large-scale
datasets, apart from open sourcing Darwini, we have also made
synthetic datasets publicly available [2] [33].

At the same time, we believe there are interesting future
directions in this area. For instance, real social network
users typically belong to multiple communities, based on
workplace, university affiliation, and others, affecting the
connectivity of the graph. However, Darwini and other models
assign vertices to a single community. Capturing the multi-
community structure will provide more accurate synthetic
datasets. Furthermore, current generators focus on the graph
structure, and lack models for generating metadata, such as
community labels characterizing vertices, or user similarity
metrics characterizing edges. Such data will enable research
in a variety of areas such as community detection algorithms,
without the need to share the original data while protecting
user privacy.
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