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Abstract—This paper mainly addresses the scalable detec-
tion and tracking of the extended target in the low signal-
to-noise(SNR) environment. As the appearance and shape of
the extended target are constantly varied, it is challenging to
achieve robust detection and tracking. For this, a novel adaptive
scale (AS) kernelized correlation filter (KCF) based on multi-
frame track-before-detect (MF-TBD) framework is proposed. By
embedding scaling pools into the response map to handle the scale
variation and accumulating target energy overall feasible trajec-
tories, AS-MF-TBD estimates the kinematic state and geometric
shapes simultaneously. Both simulation data and real radar data
are used to demonstrate the superiority of the proposed method
in terms of detection performance and estimation accuracy.

Index Terms—Extended target tracking; Multi-frame detect;
Track-before-detect; Adaptive scale; Kernelized correlation filter;
FMCW radar.

[. INTRODUCTION

Traditional target tracking bases its assumption on the
point target model. Previously, the low-resolution sensors
observed targets occupying at most one resolution cell. With
the development of sensor technology in recent years, it
has become increasingly common to observe targets occu-
pying multiple resolution cells. Furthermore, the extended
target tracking problem is becoming increasingly important
in maritime surveillance and autonomous driving applications.
Specific techniques, extended target tracking (ETT) algorithms
have been proposed [1]. Compared with point target tracking,
ETT needs to estimate kinematic state and geometric shape
simultaneously.

An essential aspect of ETT is the modeling of geometric
shapes. The shapes indicate how the measurement charac-
teristics originating from the extended target are spatially
distributed around its centroid. One of the most common
model is the random matrix model (RMM), which represents
the geometric shapes as symmetric positive defined matrix [2],
[3]. Another model is the random hypersurface model (RHM),
which assumes the measurements locate the randomly scaled
curves of the target contour [4], [S]. Compared with RHM,
RMM is simple and less computationally burdensome, making
it more practical and promising. For convenience, this paper
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builds upon our idea to use elliptic RMM to model the shape
of the extended target.

The classical ETT methods mainly contain two stages,
including threshold detection and target tracking. It is common
to extract the plot measurement by thresholding raw sensor
data at the detection stage. Then, the detected information with
sufficient intensity is passed to the following tracking stages.
Next, the tracking methods estimate the kinematic states and
shapes by predicting and updating poster probability density
(PDF). Similar to Kalman Filter (KF) [6], joint probabilistic
density function (JPDA) [7], multi-hypothesis tracking (MHT)
[8] and probability hypothesis density (PHD) [9], have been
generalized from point target tracking to ETT. The estimation
accuracy of these methods relies on the front detection results.
Unfortunately, they will fail when the target SNR is low
because the information contained about the target may be
discarded after thresholding detection.

Another effective method for detecting and tracking dim
targets is multi-frame track-before-detect (MF-TBD). It has
been widely applied in different scenarios during the last
decades, such as infrared and optical [10], [11] scenarios,
underwater sonar [12], [13] and radar system [14], [15].
Unlike the classic detection and tracking methods, the MF-
TBD method directly processes multi-frame measurements
without threshold detection. It can achieve superior detection
and tracking performance in the scenario where the target
SNR is low. Typical implementations of MF-TBD include
the 3-dimensional matched filtering [16], dynamic program-
ming [17]-[20], Hough transform [21] and particle filter [22].
However, most of them focus on point target model, and
there are few methods for extended target model. Recently,
an MF-TBD method based on pseudo spectrum proposed in
[23] accumulates the intra-frame energy by point spreading
function (PSF) requiring known the energy diffusion regions.
Nevertheless, the PSF is still too simple to reflect the changes
in target characteristics. It will suffer poor detection and
tracking performance when extended targets’ appearances and
geometric shapes are time-varying and unknown. Another MF-
TBD method proposed in [24], requires a fixed geometric
shape and straight-line motions. Meanwhile, it faces the heavy
computation burden. Furthermore, all the above methods based
on the MF-TBD framework are not effectively detecting and
tracking scalable extended targets.



This paper focuses on detecting and tracking the scalable
extended targets in low SNR scenarios based on multi-frame
TBD framework. For this, we propose a novel AS-MF-
TBD algorithm that could estimate the geometric shapes and
improve tracking accuracy. At first, we analyze the general
framework of MF-TBD based on the maximum a posteriori
(MAP) criterion. Then, we employ an adaptive scale searching
strategy based on the traditional KCF to solve appearance
varied. Next, record the similarity score between reference
template and candidate templates after KCF pre-processing,
and pass it as the test statistic into the MF-TBD framework.
Lastly, both simulated data and real radar data are used to
demonstrate the effectiveness of the proposed algorithm.

II. MODELS AND NOTATIONS
A. Dynamic Model

Consider an extended target that moves in the 2-
dimensional z-y surveillance region with nearly constant
velocity (CV) model. As in [2], it is common to model
its physical shape with elliptic random matrices. Let x;, =

. . T 6 .
(Do ks Py ks D o> Py ks Lok, byie] € R® denotes the dynamic
states of extended target at the k-th frame, where | represents
the matrix transpose, the (pu k,Py,k) and (Pek,Py.k) are the
locations and velocities coordinates of centroid, [, and [,
are the semi-major axis and semi-minor axis of the ellipse,
respectively.

With the constraints of CV model, the dynamic motion of
target follows the first-order Markov process given by

X [Xk—1 ~p Xk | Xp—1) =N (X Fxp—1, Qr—1), (1)

where p (-) represents the probability density function (PDF)
of the random event Xy | xp_1, the N(x;u,X) denotes the
Gaussian PDF evaluated at x with mean p and covariance ¥,
the term Qj_1 is the covariance matrix for the process noise,
and the state transition matrix F is given by
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where Eo .o denotes the second-order unit matrix, 7, indicates
the observation interval between consecutive frames, the ¢,
and ¢, are scale ratios in the z-direction and y-direction,
which are used to model the changes of geometric shapes
over time. After that, the dynamic state evolution of extended
target during K scans can be expressed as

X1k = {X1,X2,..., XK }. )

B. Measurement Model

Assume that the surveillance region is divided into N, x N,
pixels cells based on the sensor resolution, where /N, and
N, denote the number of cells in z-direction and y-direction,
respectively. As in [23], [25], [26], the statistical characteristics
and energy diffusion of extended regions can be modeled

by PSF with known the centroid of extended target (pf, p).
Taking advantage of this, the measurement z, recorded in
the (x,y)-th cell at the k-th frame can be expressed as

z¥ = {
)

where || denotes the modulo operation, w;¥ denotes the
additive background noise, Ay denotes the amplitude for the
centroid of extended target during the k-th frame, ¢y is the
phase during the k-th frame, which is a random variable
uniformly distributed in the interval [0, 27), the PSF 7Y (xj)
takes both the locations of centroid and extended size into
consideration, the two-dimension Gaussian PSF is assumed

here given as
. 2 o 2
hiY (xk) o exp (— (@ I;z’k) L 1)2y,k) ) ,  (6)
o2 o,
It is worth noting that 2;"¥ (x;,) has the peak value at the center
(Pa,k» Py,i) and gradually decrease both in = and y directions

with the variance of o2 and 05, the & is the set of scattered
points (x,y) originating from the extended target given as
.
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where the ||-|| denotes matrix norm, the terms 2/1, j and 2/, 1,
are eigenvalues related to the extended size, the rotation matrix

R (Bk), and the (; denotes orientation at the k-th frame,
making the major axis parallel to velocities,
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After that, the whole pixel measurement at the k-th are

integrated into the set z, = [z,lc’l,...,z,f’y, ..,z,iV”’Nyl
Furthermore, the measurements of extended target during

scans can be expressed as

Z.x ={z1,...,2} . (10)

III. PROBLEM FORMULATION

The traditional MF-TBD methods integrate the target energy
along feasible trajectories during multiple consecutive frames,
then declare detection results and extract trajectories when the
accumulated energy exceeds the given threshold. The iterative
MEF-TBD framework can be derived as [27]

o | ) = o
—1

I (xp—1 | Z1.x) + s (zk | xk),
(11)

where 7 (x3) is used to store the state transfer relationships
between frames, I (xj | Z1.x ) denotes the accumulated merit
function, and s (zy | Xx) denotes the test statistic.

max I(Xk—l | Zl:K) )

Xp—1ET(xk)

P (xi) = arg (12)



Once the target is detected, the final trajectory, XL K =
[X1,...,%XK] can be extracted by backtracking state transfer
VP (xg) (k=K —1,...,1) given as

X =P (K1) - (13)

Most of the existing MF-TBD methods focus on point target
tracking, which employs the log-likelihood ratio (LLR) or
amplitude as the test statistic. Such methods achieve superior
detection and tracking performance in the low SNR environ-
ments. Recently, MF-TBD methods have been generalized for
ETT with known and fixed characteristics. The energy can be
efficiently accumulated in the known regions with the help of
PSE. However, these methods may suffer from performance
degradation with unknown and scalable geometric shapes.
This is because, MF-TBD methods require accurate dynamic
model constrained or a prior information while accumulating
energy. Once the characteristics of targets mismatch with
the actual model, MF-TBD methods work inefficiently. In
addition, it is also challenging to obtain the time-varing
kinematic and scaling characteristics accurately. If we design
such a test statistic that can significantly discriminate the
differences between target and background clutter, and still
identify different geometric shapes, the problem for ETT can
provide an effective solution based on the MF-TBD framework
in low SNR environment.

IV. DEVELOPMENT OF THE PROPOSED ALGORITHM
A. Problem Description

As mentioned above, it is challenging to accurately track
the scalable extended targets based on the existing MF-TBD
methods. Fortunately, there are many classical and efficient
methods to handle the changes of appearance features in the
visual tracking. The kernelized correlation filter (KCF) has
been introduced in many applications with real-time require-
ments [28]—[30]. In fact, visual tracking is relatively similar to
the target tracking in radar. To deal with the scalable extended
target tracking, we intend to incorporate KCF into the MF-
TBD framework.

B. The Brief Review of KCF

KCF works in the Tracking-by-Detection framework. In
the initial frame, given the reference template sy (bounding
rectangle [ps o, Dy,0, 2,0, ly,0], including center (p, o, py,0) in
z-y coordinate, width [ ¢, and height [, o) of the extended
target, positive samples close to the given center and negative
samples beyond a close distance are generated as the position
set {s;};",. Here m € N denotes the total number of samples.
In our work, we use the raw intensities in the rectangle region
of radar image as feature, therefore u; € R d = o0 X 1y0.
Based on the distance of the sampled position s; to sg, the label
value y; is associated with the corresponding feature u;. Given
m feature-label pairs {u;, y;};~,, KCF learn the discriminative
classifier in high-dimensional kernel space quickly via Fast
Fourier Transform (FFT), i.e. y; = f (u;). In the latter frame,
the classification function f (-) is used to test the feature
{vi}i~, from the candidate positions {s; }\" . which are

K2

sampled around the previous position §; . The location §;,

where the tested featured has the maximum response, is chosen
as the estimated position of the target in that frame [30], [31].

Generally, KCF loops in training, testing and update phases.
In the training phase, KCF learns the discriminative classifier
f (+), requiring to minimize the squared error between input
features u; and label y;. In addition, the kernel trick maps the
input samples u; = {u;};~, into the high dimensional space
¢ (u;) to enhance the discriminative capability of the classifier.

If view the ¢ (u;) as the new feature space and define w as
follows:

W= a(w), (14)
=1

Based on the Regularized Least-Squares criteria, the learn-
ing task of KCF is given as

miny_ (f (w) —y:)* + Aw?, (15)
=1

where )\ is regularization coefficient to avoid over-fitting.

Substituting (14) into (15) and utilizing FFT technique, the
coefficient can be obtained as

F(Y) ) ’ (16)

_ —1
=7 (f(Kw>+A

where the symbol F~! and F denote FFT and the inverse FFT
respectively, K,,,, denotes the kernel matrix, the subscript uu
indicates that the kernel function uses the input features u and
its own circular shifting samples as input.

In the testing phase, circular sampling for new input features
v; = {v;};~,, obtaining the response map of the region of
interested. KCF locates the peak of response map Y as the
estimated positions.

Y = F 1 (F (Kuw) F (o)), (17)

where the definition of K, is similar to K.

In the update phase, KCF uses a simple updating strategy
based on the linear interpolation on both the referred feature u
and the classifier’s key parameter c. In each time step k, once
the candidate vy is chosen as the target, the referred feature
uy at time £ is updated by the combination of the new feature
vi and the previous feature uy_; with the learning rate 7.
Similarly, the parameter « is updated in this way.

(13)
ap=nXar+(1—n) X ag_1. (19)

Remark 1. The traditional KCF methods employ the fixed
scale template for online tracking, the performance degrades
while the target suffers from self-rotation and scale variations.
Remark 2. The changes of appearance result in energy
diffusion in the response map Y, which is no more needle-
shaped Gaussian label. In fact, it is not always achievable to
locate the target by searching for peaks in the single frame.

u, =nxXve+(1—n)Xug_



C. The Proposed AS-MF-TBD Method

In order to enhance the performance of detection and
tracking for scalable extended targets, we further propose an
improved MF-TBD methods based on adaptive scale KCF
(AS-KCF). In this subsection, we firstly predict the state
transition based on kinematic constraint. Next, we obtain the
similarity score based on KCF with different scaling ratios of
reference template. Finally, by setting the similarity score as
the test statistics, the state sequence of the extended target can
be estimated accurately based on the MF-TBD framework.

1) Cell prediction based on kinematic constraint: The
baseline of KCF tracking is that the target state transition
within the fixed searching window inter-frame. However, its
performance may degrade for the sensors with long scanning
times between adjacent frames, such as radar. It is straightfor-
ward to introduce the kinematic constraints into searching the
state transition for more accurate estimation. Here, we propose
an effective strategy to predict the state transition region for
every candidate target. Assume that the (x,y)-th pixel cell is
the centroid of extended target (pg . Dy k) at the k-th frame.
In the next frame, its corresponding candidate states of the
target are predicted as

Qk-ﬁ-l = {pm,k + Te X pr,k - 5wapy,k + T@ X j’y,k - 51/} ’

(20)
where Q1 denotes the set of centroid’s state transition at
the (k + 1)-th frame, J, and J, depend on the maneuvering
characteristics of the extended targets in z-direction and y-
direction, respectively. In the next frame, the proposed AS-
MEF-TBD searches for the maximum response in the predicted
region Q1.

2) Adaptive scale searching strategy: In contrast to the tra-
ditional KCF employing the fixed sizes of reference template,
we propose an adaptive scale searching strategy for tracking
scalable extended targets.

Assume that there are multiple scaling ratio factors
{bi}?zl € By, at the k-th frame, where b; is the i-th scaling
ratio factor, d is the total number of scaling, and the B, de-
notes the scaling pool. Then, we describe how the appearance
and sizes of extended target vary based on the scaling ratio
factors.

As above mentioned, the scaling ratio factors Bi and state
of extended target X; can be estimated simultaneously under
the maximum likelihood (ML) criterion,

Xk) )

{bi,kk} = argmax p (Ll,i
bi€BL,xLEQ

where p (EZ |xk) denotes the probability of similarity iden-
tified as extended target when the scaling ratio factor is b; at
the k-th frame. Moreover, since the kinematic information is
also hidden in the p (52 |xk ) if we take it into consideration
for estimating and updating the scale ratio factor b; and state
X, the classifier can further improve its ability to discriminate
between targets and background clutters.

@21

For convenience, we firstly define the X ([,Z’i

xk) as the

probability of similarity given as
A (ﬁ%’ xk) =p (CZ"

where p(xj |xx—1) denotes the state transition PDF con-
strained by dynamic model. Thus, the problem in (21) can
be derived as

{bi,fck} = argmax X (EZ"’ |xk)
b; €B,x, €Qk

Given the geometric shapes in the initial frame, and the
geometric shapes and kinematic characteristics constantly
change during movement. Thus, the problem of detecting and
tracking of the scalable extended target can be regarded as
jointly estimating the scaling ratio factor and kinematic state.
Exactly, the X (EZ" |x% ) has different similarity probability
corresponding to the different scaling ratios of the reference
template u. Only the estimated scaling ratio is the same as the
actual one, the similarity probability X (LZL |xk) achieves its
maximum.

Xk ) P (Xp |Xk—1) . (22)

(23)

It is worth noting that the adaptive scale KCF method

achieves robust tracking of the scalable extended target at
relatively high SNR. However, the performance of this method
degrades dramatically in the case of low SNR, since the trained
classifier f(-) is unable to accurately discriminate between
extended target and background clutter through the single
frame.
Remark 3. The similarity probability X ([,Z’i
same meaning as the test statistic of traditional MF-TBD
methods. Moreover; it also can be seen as the more advanced
test statistic that maps the raw data into the high-dimensional
space through machine learning and extracts the difference
between the target and background clutter.

Therefore, we regard it as the test statistic in the MF-TBD
framework for tracking scalable extended target in the low
SNR environment.

3) The procedure of AS-MF-TBD: After the cell prediction
and adaptive scale KCF pre-processing, it is feasible to directly

accumulate the energy based on response map LZT with the
d

xk) has the

different scaling ratio b;. Then, these response maps {LZ"‘ }
. . =1
will be further concentrated under the ML criterion given ‘as

b; = max ﬁ% (xk), (24)

b;€By
where the b; denotes the estimated scaling ratio. The procedure
of concentrating different scaling ratios can be implemented
in parallel. After this, for 2 < k < K, the accumulated merit
function with different scaling ratio can be derived as

I(x|Lug) = {1 (% ‘E%) + Lk (k) }
(25)
After multi-frame accumulation, the decision on the presence
or absence of an extended target will be executed

max
XE_1€Q

H
max [ (xx|L1.x) 21 s (26)
Ho

XK



Algorithm 1 Procedure for AS-MF-TBD Algorithm
Input: Raw measurement: Z,.x = {z1,29,...,%x }, Detec-
tion threshold: v, Scaling ratio pool: By = {bi}le.

Output: State sequences X1.x = {X1,X2,...,Xx })and scal-
ing ratios 131:1( = 51,...,13K .
1) Integration:
for k=1,2,...,K do

forx =1,2,...,N, do
fory=1,2,...,N, do
Construct the response map
Ly (x) = AS-KCF(z, By)
Cell prediction
Da,k+1 = Pak + Ts x pz,k — 0z
Dy k+1 =Dy k T+ Ts x py,k - 61/
Extract the scaling ratio
b; = max L',Z'i (xk),
i EB
Inter-frame energy integration R
I(xe|Cug) =1 (xk_l ‘CZ} ) + L (xp)
P (Xp [Xp—1) = arg g:ai(f (Xk—11L1:K)
end for '
end for
end for
2) Detection:
Judge the T (xx |£1.x ) by threshold ~
b1k, X1.x ¢ = argmax I (xx |L1.5)
X
s.t.] (XK |£1:K) > .
3) Backtracking:
Search for the state X, k= K —1,.... 1,
R =V (Rpt1 [Rie)-

where H; and Hj indicate the hypothesis that the extended
target exists and vice versa, the ~ is the detection threshold
determined by false alarm probability. If the accumulated merit
function I (xj |£1.x ) exceeds the threshold, backtracking is
conducted. As a result, the estimated state and scaling ratio
sequence of extended target are obtained as

{51:K,X1:K} =argmax ] (xx |L1.x) -

XK

27

Based on the above derivation, we can infer the real state
sequences Xix = {X1,...,%Xk}. The geometric shapes of
the extended target need further calculation base the scaling
ratio at k-th frame. The detailed procedure for the proposed
AS-MF-TBD method is presented in Algorithm 1.

V. EXPERIMENTAL RESULTS

In this section, the proposed AS-MF-TBD compares with
log-likelihood ratio track-before-detect (LLR-TBD) [32] and
Random Matrix Model for extended target tracking (RMM-
ETT) [33] in simulated data and real radar data. It is worth
noting that RMM-EOT uses the measurement processed by the
constant false alarm rate detector (CFAR). The LLR-TBD and

AS-MF-TBD uses the raw measurement data as input. LLR-
TBD does not consider how to estimate the geometric shapes,
we only compare its tracking and detection performance.

A. Evaluation Metrics

1) Probability of target detection (Pd): The probability that
estimated positions of the centroid are within 2 resolution cells
compared to the actual positions at the last frame. It is used
to evaluate the detection performance.

2) Intersection-over-union (loU): The overlap ratio be-
tween estimated regions and actual regions. It is used to
evaluate the tracking performance.

IoU =

EUA’ (28)

where E and A denote the estimated regions and actual
regions. It measures the overlap of the estimated extended
target with the actual one. The larger IoU means the higher
accuracy in the geometric shape of estimated extended target.

3) Root mean square error (RMSE): The average position
distance difference between the valid tracks and their corre-
sponding ground-truth trajectories at every frame. It is used to
evaluate the tracking performance.

1 N
RMSE = N nzz:l {(pz,n - ﬁz,n)2 + (pygn - ﬁygn)z}a

(29)
where N denotes the times of Monte Carlo simulations (in
the simulation data) or the total number of frames captured
(in the real radar data), (Pzn,Pyn) and (Pyn,Dyn) are the
estimated and actual positions at the n-th scan, respectively.

B. Simulate Data Results

In the simulation, we assume that at most one extended
target moves with CV in the 60 x 60 cells surveillance
region. The initial dynamic state of the extended target is
X] = [20,20,2.9,2.1,5,4]T, and the covariance matrices Qy
in (1) are selected by

0o 0 0
0 %3 0 0 0e, 0 0 O
|1 0 0 o0 0 0q 00
Qk_ OS TS 0 0 O 0 1 0 Ik,
0 0 o, O 0 0 0 1
0 0 0 o
i i (30)

where T = 1 denotes the observation interval, 0y, and 0;, are
the typical deviations of the major semi axis and minor semi
axis respectively, o,, and o,, are the acceleration standard
deviation along = and y directions, respectively. The term ry
indicates a four element random vector, whose elements are
Gaussian distributed with zero mean and identity covariance
matrix.

The measured intensity at each cell being Gaussian dis-
tributed as modelled in (5). The numbers of frames in a batch
processing are K = 4,6,8 and the detection threshold ~ for



each algorithm is chosen to guarantee a constant false alarm
rate P, = 1072. Besides, the coefficients in (3) are set as
€, = €y = 1.08. the regularization coefficient A = 0.01 and
the learning rate 7 = 0.095, the scaling pool Bj was set
as [0.99,0.995,1.0,1.05,1.10, 1.15]. In the following analysis,
the results are gathered by averaging over 1000 Monte Carlo
realizations.
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Fig. 1. The detection probability, Pp, of LLR-TBD, RMM-ETT and AS-
MEF-TBD at different frames.
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Fig. 2. The detection probability, Pp, of LLR-TBD, RMM-ETT and AS-
MEFE-TBD at different frames.

The detection performance is shown in Fig.1, where the
Pp curves of all methods against SNRs from 0dB to 14dB
for comparison. As expected, the AS-MF-TBD ranks first in
detection performance. In the low SNR case, the test statistic
of AS-MF-TBD methods based on the response map of AS-
KCF has the better capability to discriminate the target from
background clutter. Despite the fact that LLR based MF-
TBD takes the target energy into consideration, it requires
additional prior information. In the case of changing the
appearances or shape of targets constantly, the present state

of targets maybe mismatched with the prior information,
LLR based on MF-TBD may cause performance degradation.
However, the RMM-ETT method works poorly because of the
information loss after thresholding pre-processing, especially
if the target SNR is low. Since LLR-TBD requires the extended
region known, we compare only the RMM-ETT and proposed
AS-MF-TBD here. As the number of accumulated frames
increases, the better detection performance can be achieved.
This is because, the non-coherent accumulation of inter frame
energy enhances the characteristics of target and reduces the
effect of noise.

In Fig.2, it can be seen that IoU ratio of RMM-ETT and AS-
MF-TBD can approach almost the same performance while
SNR is enough high. As expected, the proposed has the better
extended size of estimation accuracy in low SNR.

C. Real Radar Data Results

We implemented the experiment on Texas Instrument’s short
range millimeter-wave radar AWR1642BOOST and ADC
capture card DCA1000. The AWR1642BOOST device is an
integrated single-chirp frequency modulated continuous wave
(FMCW) radar sensor capable of operation in the 76-81
GHz band. The device comprises of the entire millimeter-
wave radio-frequency and analog baseband signal chain for
two transmitters and four receivers, as well as two customer
programmable processor cores in the forms of the digital signal
processor (DSP) and microcontroller (MCU).

Here, we configure it to operate in the time-division mul-
tiplexing multiple-input-multiple-output (TDM-MIMO) mode
with a field of view of 120 degrees and angle resolution of
15 degrees. The starting frequency is set as 77 GHz, and
bandwidth is set as 750.24 MHz. Moreover, the range of
surveillance is limited to 60 m with a high resolution (0.234
m per range unit). The detailed specifications are shown in
Table I.

Captured raw echo consists of 1200 consecutive frames in
48 seconds, and selects one frame at every 200 frames to
reduce the computational burden. Thus, the processed raw
echo by AS-MF-TBD method only consists of 60 frames. Each
frame of captured echo contains four channels of complex
data simultaneously, in which there are 128 repetitive chirps
in each channel, and each chirp contains 256 complex samples.
After 1D-FFT, 2D-FFT and 3D-FFT preprocessing, the Range-
Doppler-Azimuth cube data of the moving targets are obtained.

See the experimental scenario in Fig.3, the human target
moves away from 2 m to 60 m in the playground with a
nearly constant velocity of 1.3 m/s.

As shown in Fig.4, the human target on the raw Range-
Azimuth map occupies nearly 20 resolutions in the azimuth
bins and 5 resolutions in the range bins at the 45-th frame.
The geometric shape of a human target can be fitted with an
ellipse. The appearances and radar cross-section (RCS) vary
as the human target moved from the near zone to the far zone.
It gradually drowned in the intense noise and clutter.

Next, the 60 frames of raw echo were processed by the
sliding windows with K = 6, and the radial search ve-
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Fig. 3. The experimental environment: A human target straightly moves away
from AWR1642 radar with constant velocity 1.3m/s.

TABLE 1
MILLIMETER-WAVE RADAR SPECIFICATIONS

Chirps Setting

Carrier frequency 77 GHz
Bandwidth 750.24 MHz
Pulse number 128
Coherent processing number 256
Periodicity of frame 40 ms
Sensor Parameters
Range resolution 0.234 m
Azimuth Resolution 15°
Maximum unambiguous range 50 m
Maximum angle range +60°

locities of the human target were set as [—3,—2,0,1,2, 3]
cells/frame, while the tangential velocities were set as
[-1,0,1] cells/frame. The state transition space was set as
[-2,—1,0,1,2] cells both in range and azimuth directions.
Besides, the regularization coefficient A = 0.01 and the
learning rate 7 = 0.075, the scaling pool Bj was set as
[0.85,0.9,0.95,10,1.1,1.2,1.3].

By processing the raw echo through the methods and param-
eters described above, the comparison of tracking and shape
estimation results are shown in Fig.5 and Fig.6. Obviously,
the RMSE curves of RMM-ETT and ASCK-TBD have almost
relatively small and IoU relatively high. It indicates that both
have better detection and tracking performance because the
SNR is high enough in Range-Azimuth in the near zone.
However, the proposed AS-MF-TBD has a superior perfor-
mance than RMM-ETT in the far zone. The tracking accuracy
of RMM-ETT drops significantly since the strong clutter has
affected the first CFAR stage. From the 40-th frame, the RMSE
of the center position estimated by RRMM-ETT, which is
already beyond the range threshold, indicates the RMM-ETT
can’t detect the target anymore.
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Fig. 4. The 45-th frame Range-Azimuth map in the far zones.
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Fig. 5. The RMSE curves of RMM-ETT and AS-MF-TBD with accumulated
frames K = 6.

VI. CONCLUSION

In our work, a novel adaptive scaled KCF is applied to
track a scalable extended target based on MF-TBD framework.
By setting the similarity probability of KCF with different
scaling ratios as the test statistic, AS-MF-TBD helps improve
the detection performance and accuracy of tracking. Compared
with other methods, AS-MF-TBD shows the more vital ability
to discriminate between the target and the surrounding back-
ground clutter.
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