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Abstract. In mathematics, the Riemann hypothesis is a conjecture that the Riemann
zeta function has its zeros only at the negative even integers and complex numbers

with real part 1
2

. Many consider it to be the most important unsolved problem in pure

mathematics. It is one of the seven Millennium Prize Problems selected by the Clay
Mathematics Institute to carry a US 1,000,000 prize for the first correct solution. If

the Robin’s inequality is true for every natural number n > 5040, then the Riemann

hypothesis is true. We demonstrate the Robin’s inequality is likely to be true under a
computational evidence. In this way, we prove the Riemann hypothesis could be true.

1 Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann
zeta function has its zeros only at the negative even integers and complex
numbers with real part 1

2 . Many consider it to be the most important unsolved
problem in pure mathematics [2]. It is of great interest in number theory
because it implies results about the distribution of prime numbers [2]. It was
proposed by Bernhard Riemann (1859), after whom it is named [2]. In 1915,
Ramanujan proved that under the assumption of the Riemann hypothesis,
the inequality: ∑

k|n

k < eγ × n× log log n

holds for all sufficiently large n, where γ ≈ 0.57721 is the Euler’s constant and
k | n means that the natural number k divides n [1]. The largest known value
that violates the inequality is n = 5040. In 1984, Guy Robin proved that the
inequality is true for all n > 5040 if and only if the Riemann hypothesis is
true [1]. Using this inequality, we show a new step forward in proving that
the Riemann hypothesis could be true.

2 Results

Euler’s totient (phi) function is the number of integers less than n and co-
prime to it, denoted by φ(n) [3]. In general, if n is written as the product
of prime factors: n = pa × qb × rc . . ., then the number of co-primes to n is
φ(n) = (p− 1)× pa−1 × (q − 1)× qb−1 × (r − 1)× rc−1 . . . [3].
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Definition 2.1 We define another function ϕ such that if n is written as
the product of prime factors: n = pa × qb × rc . . ., then the value of ϕ(n) is
ϕ(n) = p

(p−1) ×
q

(q−1) ×
r

(r−1) . . ..

Theorem 2.2 For every natural number n, we obtain that n = ϕ(n)×φ(n).

Proof This is true as a consequence of the definitions of these functions.

Theorem 2.3 For every natural number n ≥ 2, the inequality∑
k|n

k ≤ ϕ(n)× n

is true.

Proof We know that ∑
k|n

φ(k) = n

is true [3]. If we multiply both sides of this equation by ϕ(n), then we obtain
that ∑

k|n

ϕ(n)× φ(k) = ϕ(n)× n.

In addition, we know that ∑
k|n

k =
∑
k|n

ϕ(k)× φ(k)

as result of Theorem 2.2. However, we know that∑
k|n

ϕ(k)× φ(k) ≤
∑
k|n

ϕ(n)× φ(k)

since we have that ϕ(k) × φ(k) ≤ ϕ(n) × φ(k) for every divisor k of n ≥ 2.
Using the transitivity, we finally have that∑

k|n

k ≤ ϕ(n)× n.

Definition 2.4 A number will be a simple primorial if it is prime or it is
the product of prime numbers.

Theorem 2.5 A computational verification shows that for every simple
primorial number n ≥ 7, the inequality

ϕ(n) < eγ × log log n

is likely to be true. Moreover, the value of the subtraction s(n)

s(n) = eγ × log log n− ϕ(n)

seems to be strictly increasing.
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Proof We have checked that the value of s(n) is always greater than 0
for the first simple primorial numbers n ≥ 7. Certainly, a computational
verification shows that the value of s(n) is strictly increasing that is, for two
values n′ and n′′ the computational behavior is s(n′) > s(n′′) when n′ is the
next simple primorial after n′′. In this way, we obtain that the inequality

ϕ(n) < eγ × log log n

should be true for every simple primorial number n ≥ 7.

Theorem 2.6 The Robin’s inequality is likely to be true under a compu-
tational evidence and thus, the Riemann hypothesis could be true.

Proof This is a direct consequence of Theorems 2.3 and 2.5. From the
Theorem 2.3, we have that if we prove

ϕ(n)× n < eγ × n× log log n

for all n > 5040, then we could prove the Robin’s inequality since we have
that ∑

k|n

k ≤ ϕ(n)× n.

If we divide by n, then we would have that we only need to prove

ϕ(n) < eγ × log log n.

By a computational evidence, we know that this should be true for every
simple primorial number n ≥ 7 due to Theorem 2.5. Note that, ϕ(n) is the
same as ϕ(m) when n and m have the same prime factors. Therefore, if we
prove the inequality for every n that is a simple primorial, then we are proving
the same for every other number m with the same prime factors, because of
log log n < log logm.

Consequently, we would only need to prove this for the remaining natural
numbers of n > 5040 which have the prime factors 2, 3 and 5 (the prime num-
bers lesser than 7). Certainly, the value of ϕ(n) when the number n ≥ 5040×7
contains some of these prime factors should be lesser than eγ× log log 5040×q
when q is the number n without the power prime divisors over the prime fac-
tors 2, 3 and 5. This is an extended evidence of the computational verification
that we used in the Theorem 2.5. In addition, the Robin’s inequality can be
computational checked for 5040 × 7 ≥ n > 5040. To sum up, we prove the
Riemann hypothesis could be true as well.

3 Conclusions

The practical uses of the Riemann hypothesis include many propositions
known true under the Riemann hypothesis, and some that can be shown
equivalent to the Riemann hypothesis [2]. Certainly, the Riemann hypothe-
sis is close related to various mathematical topics such as the distribution of
prime numbers, the growth of arithmetic functions, the Lindelöf hypothesis,
the large prime gap conjecture, etc [2]. In this way, a possible proof of the
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Riemann hypothesis could spur considerable advances in many mathematical
areas, such as the number theory and pure mathematics [2].
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