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Abstract — Universities, hosting Massive Open Online
Courses (MOOC) are facing a major challenge of immature
dropout of a student. Major research considerations to ad-
dress this challenge are only able to, identify a student at the
verge of a dropout using learning and learner analytics based
on different sources of data (MOOC:s data, social networking
data). There is no significant research done on how to
avert this particular state of the learner. An agent-based
model is proposed to recreate different scenarios of learners’
interactions and social network evolution. The purpose of
this study is to identify important phenomena and structures
of social networking using a simulated MOOC setting so that
the social network interaction can be channeled to avert the
possibility of dropout.

Keywords — collaborative learning; MOOCs; dropouts;
Agent Based Modelling

I. INTRODUCTION

The Massive Open Online Courses (MOOCs) concept
came into existence due to the open learning vision
of Downes and Siemens [1], [2]. They have pioneered
educators’ attempts to conceptualize and offer non-credit
courses to a small group of students over a network. This
is widely regarded as the first known, successful cMOOCs
(connectivist MOOCs). cMOOCs advocated fewer activ-
ities and more content creation by learners connected
through social networks. This attempt emboldened like-
minded educators to launch similar educational variations.
Years later a second and equally popular variant of the
MOOCs paradigm was launched by Daniel.J [3], who
made a conscious effort to provide these courses globally
to a larger number of connected learners through extended
MOOCs or xMOOCs — which now prevails as the com-
mon definition of MOOC:s.

The MOOCs model of online learning was conceptu-
alized with the intention to be make learning accessible
to many more learners than would be possible through
conventional teaching. They are often free of charge and
their participation is not limited by the geographical loca-
tion of the learners. However, in spite of the availability
of resources and self-paced assessments, the number of
enrolled learners does not sustain and often it has been
observed to report a very large number of dropouts, due

to several reasons [4]-[6]. The most important reasons
reported in the literature are:

1) The very factors that caused MOOCs to become
popular (space and time independence) may have
caused lethargy and has made learners less attentive
[71, [8]. This behavior of the learner, in an isolated
learning space [9] may have resulted or attributed
to his decision to drop out of the course.

2) MOOCs are mostly instructor-led courses, however,
the feedback and assessments are automated. Online
Learners find these feedback systems “limited, in-
sufficient” [10], as they may not be able to know
first hand about their chances to succeed or fail in
the course.

From the above, it is obvious that the main motivation
for completion of a course is self-regulation. This calls
for online learners to develop attributes of self-regulated
learning (SRL) [11] particularly to have the intention
and continuous focus (an active learner) in order to
complete a course successfully. An active learner’s behav-
ioral commitment provides requisite momentum to course
completion [12]. However, the challenge of maintaining
SRL is a difficult task due to the very nature of MOOCs
environment (as discussed above) and due to the dynamics
of the heterogeneous population of learners.

With the popularity of social networks, an opening
to address this challenge is widening — the concept of
collaborative learning (CL). Therefore, the aim of this
research is to explore how the high dropout problem
can be addressed through Collaborative learning (CL)
mechanisms [13], [14] and how the possibility of a
premature dropout can be reduced through a conversion
from passive to active learners. However, a theoretically
sound (considering social and environmental dynamics)
model pacifying this conversion is necessary and proposed
in this paper.

The rest of the paper is organized as follows. Section
Il presents details of proposed collaborative learning
framework. Section III is about the target case study
and modeling concepts which is adopted to measure
the relevance of the framework. Section IV deals with



simulation and results analysis and section V concludes
the paper.

II. TOWARDS MODELING COLLABORATIVE
LEARNING IN MOOCs

Major research considerations to address the challenge
of dropouts in MOQOCSs are only able to identify a student
at the verge of a dropout using learning and learner
analytics based on different sources of data (MOOC:s data,
social networking data). There is no significant research
done on how to avert this particular state of the learner.
We propose to use social network data and interaction
patterns of a learner and his contacts to identify important
structures of social networking so that the social network
interaction can be channeled to avert the possibility of
dropout.

Quite a few researchers have classified different kind
of learners based on themes derived from features of
SRL. Authors in [12] presents a framework for measuring
dropout ratio based on the self-directed learning process,
proposing a causal relationship from intention to the
commitment and identifying behavioral commitment a
prerequisite for an “active learner”. Authors in [15] have
proposed an extension of the concept and proposed a
typology of learners being “inclined actors”, “inclined
abstainers”, ’disinclined actors”, and “disinclined abstain-
ers”, where an actor is a learner who acts (or shows
behavioral commitment) and abstainer being opposite of
it, and the word inclined represents the original intention
of a learner and disinclined being opposite of it.

The question now is what to do with the type of
learner identified from the above process? Definitely, if
the learner has high chances of getting dropped from the
course, we will try to prevent it. This can be achieved by
using his social network as a medium of influence. CL
generally and social network analytics, in particular, pro-
vides a significant opportunity to get a learner influenced
by its connections in a positive manner.

Collaborative learning (CL) is the learning achieved
when a group attempts to learn together, [16]. The learn-
ing process within collaborative learning environments
encourages the creation of support groups, [17]. The
creation of support groups encourages better learning
engagements, based on feedback that each learner receives
from within the learner group [18]. In this work, we have
evidenced a case study that signifies the importance of
CL towards a reduction of dropout rate in MOOC:s.

Another aspect of MOOCSs research is its overwhelming
reliance on analytical modeling. However, a complex sys-
tem like this cannot be exhaustively modeled in this way.
We propose a solution, a “bottom-up” approach using
agent-based modeling. Our system can be categorized
as a computational social system. Computational Social
Science (CSS) uses computationally intensive methods
to analyze and model social phenomena. Using com-
puter simulations, artificial intelligence, complex statis-

tical methods, and analytic approaches like social net-
work analysis, computational sociology develops and tests
theories of complex social processes through bottom-up
modeling of social interactions.

III. MODELING DYNAMICS OF SOCIAL NETWORKING
AND COLLABORATIVE LEARNING

A. Model Overview

Contemporary research by [19], [20] have been inspired
by the social networks dynamics of clustering, to explore
the plausibility of simulating an optimal network and
to propose a new tool for modeling message distribu-
tion and opinion formation in societies, respectively. In
[21], the model describes how informal social networks
play a strategic role in generating relationships among
agents exhibiting homophilic nature in certain types of
populations. The main ingredient of collaborative learn-
ing is the identification of learners’ types. Based on
interactions between different types of learners, an agent
(representing one type of learner) can influence others
and get itself influenced by others. However, the model
representing this influence is abstracted from both the (i)
cognitive dimensions of human learning mechanisms, and
the (ii) social dimensions emerging due to the evolution
of networking dynamics. The model only focuses on
a presumed influence of agents on each other due to
homophily.

In our research, we will employ a simplified form of
homophily, which is an empirically observed sociological
fact that people tend to connect to those who are similar to
themselves. Homophily is a term [22], used to explain the
natural tendency of people to connect with others in their
vicinity, depending on the similarity in their beliefs and
this is more to confirm their own beliefs. Nevertheless,
the model conceptualizes the effect of one type of agents
onto others (in homophilic terms) and provides means
to ask interesting what-if questions by mimicking (i)
distribution of learners in a realistic landscape and (ii)
possible changes in the neighborhood of the learners due
to changes in social networking.

The model demonstrates the relationship between so-
cial networking dynamics and a potential decrease in
dropouts, in a MOOCs space.

B. Decision Making under Homophily

The learners’ types used in the model are adapted
from the learners’ typology model presented in [15].
These types are: “inclined actors”, “inclined abstainers”,
“disinclined actor” and “disinclined abstainers”. An actor
is a learner agent who acts (or shows behavioral commit-
ment) and an abstainer, on the other hand, does not show
the required commitment. The word inclined represents
the original intention of a learner and disinclined being
opposite of it. An agent’s current behavior is analogous
to its type. An inclined abstainer, as well as a disinclined
actor, is a potential dropout and only an inclined actor is
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Figure 1. Change Type process of an agent ¢, where Y represents the type which appear in maximum percentage and X is agent’s
own type. n represents the accumulation of incidents in which the belief was enforced, and m represents the accumulation of
incidents in which the belief was depleted.

expected to complete the course. Disinclined abstainers
are obviously redundant and are not considered in the
model. However, the model does not differentiate between
these types - it just treats an agent’s type as a type,
which is seen in comparison with other agents in the
neighborhood.

Since an agent is susceptible to change its type (which
is analogous to its behavior) due to homophily, the effect
of neighboring agents on the agent is reflected in its state
“belief” - how much an agent believes in its own type.
The belief of an agent changes a little (a small fraction
between 0.01 - 0.10) due to neighborhood effect - a
clue. A positive clue - if the majority of agents in the
neighborhood of an agent are of its own type - reinforces
agent’s belief. Contrarily, a negative clue - if the majority
of agents in the neighborhood of an agent are NOT of
its own type - depletes the agent’s belief. Starting from
an initial belief equal to 0.5, repetitive encounter to a
negative clue forces the agent to change its type - the
type of the majority - when its belief (on its own type)
is depleted to an extent that it is below a threshold, 0.2.
The exact mechanism is as follows.

Let X be the type of agent A which is making the
decision. Let Y be the type of the majority of the agents
in the neighborhood of A. We use two opposite aspects
of historical proceedings driving the model, n and m.
n represents the accumulation of incidents in which the
belief was enforced, and m represents the accumulation
of incidents in which the belief is depleted.

If n(Y) is greater than n(X) — belief enforcement of
agent’s own type is less than enforcement of other types —
the agent would change its type from X to Y only if m(Y)

is less than m(X) — belief depletion of agent’s own type is
greater than depletions of other types. On the contrary if
n(Y) is less than n(X) - belief enforcements of the agent’s
own type is greater than the belief enforcements of other
types, the agent would change its type from X to Y, if
m(Y) is less than m(X) — belief depletions of agent’s own
type is greater than belief deletions of other types.
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Figure 2. Agents’ initial placements; a population of 1000
agents with 20% inclined actor (black), 40% disinclined actors
(blue) and 40% inclined abstainers (red).
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Figure 3. State of agents at iteration 100 in case of four
placements for stationary mobility.

These are the only two situations in which the agent
changes its type from X to Y. The complete decision-
making process is depicted through a decision tree shown
in Figure 1. In this way, the model provides a simple, yet
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Figure 4. State of agents at iteration 100 in case of four
placements for random walk mobility.

Figure 5. State of agents at iteration 100 in case of four
placements for location based mobility.

rational decision support to the agents.

C. Network Dynamics

The network dynamics are incorporated into the model
through the placement of agents and mobility. The initial
placement of agents defines how agents are knitted to-
gether. In the following, we detail considerations related
to agents’ placement. It is a plausible notion that these
learners’ placements drive the formation of ties between
various types of learners. The type of learner, the number
of that particular type within his learning space and the
frequency and strength (strong/weak) of these interac-
tions.

A random placement has no networking except for
some random incidents in which agents become neigh-
bors. There is no concept of institutions as well. Figure 2
(a) shows such a situation in which the type of agent we
are interested in (the inclined actors) have no spatial cor-
relation with each other. They are just randomly placed.
Whereas, all inclined actors are placed at the center of the
world in case of center placement. As shown in Figure 2
(d), all inclined actors start by occupying the central sec-
tion (consider it to be a district). In terms of institutions,
we can assume that this corresponds to one specialized
University of research center; and all the inclined actors
reside in the same institution initially. Another situation
can be when inclined actors are distributed across more
than one institutions and these institutions have no cor-
related interaction - for example, three universities with
no relationship between their students. This situation is
represented by only three diagonal districts having initial
placements of inclined actors as shown in Figure 2 (b).

On the contrary, an entirely opposite situation would
be when inclined actors are distributed across more than
one institutions and these institutions have a relationship
- more specifically in terms of students being friends to

each other - for example, three universities with a lot
of inter-university activity. This situation is represented
by three horizontal districts having initial placements of
inclined actors as shown in Figure 2 (c).

After initial placements, at each time-stamp, each of
the agents would - within its radial range - interact with
other agents and make a decision (should I change my
type or not). The purpose is to find those conditions
in which the percentage of inclined actors increase with
time. Remember, that the decision-making model itself,
does not differentiate between agents’ type and there is
no privilege of being inclined actor or penalty of being
inclined abstainer, for example.

Further, the network connectivity may change as the
simulation progress making the world a dynamically
changing network. This is achieved through three mobil-
ity modes. These mobility modes represent how people
interact with each other. Stationary mode is a static
network without any dynamics. Random walk mobility
is a popular interaction mechanism in which people move
and influence their neighborhood with a /ittle randomness
and location based mobility is about how people traverse
from one location to another independently.

It is important to note that the interactions only have
one layer. People having two or more layers (a layer of
social network and another layer of people in a market
together, for example) is not considered. Another limita-
tion is that the network is volatile and instant in nature,
that is agents do not have any history of the contacts and
their past behavior or states.

D. The Agent-based Model

Using Agent-Based Modeling (ABM), an emerging
and popular computational paradigm, we will prepare a
simulation of these adaptive learner agents connectivity
dimensions and their placement models. The agents are
behaviorally adaptive, in a sense, they influence others
in response to the influence they receive. ABM provides
a possibility to model these complex local interactions
with the rational that controls or influences the behavior
of these adaptive agents. These three distributions are re-
alized through spatial arrangements of the inclined actors
shown in center representing the first case, horizontal
representing the second case, and sides and diagonal
representing the third case. Mobility of learners gener-
ates connectivity dynamics and defines the dynamics of
influence from the emerging neighborhood. The purpose
of the model is to find the conditions for which dropouts
are decreased indicated by more and more inclined actors
in the system as the simulation progresses in time. These
learner agents are distinguished by their intent or motiva-
tion to be an active participant in the course and engage
in a majority of the assessments that steer them towards
course completion and also earn credit. Abstainers agents
are MOOC:s participants who register in courses but who
are not showing the behavioral commitment required by



learners to be considered as active learners. Hence we
have three learner(agent) typologies - inclined actor actor,
the disinclined actor and inclined abstainer. One typology,
the inclined abstainer has not been included in our con-
ceptual model as this type is quite rare and we feel, and
do not need representation in MOOC:s learning spaces. In
order to model, the time-based agent interaction-influence
scenarios in social learning spaces, we will create the
following connectivity dimensions.

IV. SIMULATION AND RESULTS

The purpose of the model is to find the conditions
for which dropouts are decreased indicated by more and
more inclined actors in the system as the simulation
progresses in time. The type of agent which we focus on
is inclined actors. The success of a mechanism is directly
proportional to the number of inclined actors in the system
after time t.

A. Simulation Setup

A 2D square torus of size 99 x 99 (each point rep-
resented by a unique XY-coordinate) is distributed into
9 square cells of equal size. A total of 9 random points
(coordinates) are chosen each of which represents a point
of interest (poi), which need not be one poi per cell. In
one of the mobility mode (location-based), all the agents
created on the torus already have four nearest points
as locations to visit. All other mobility modes do not
require any initialization or pois. A total of 1000 agents
are created and randomly distributed across space with a
default belief of 0.5.

A relatively small percentage (20%) of agents are
inclined actors. The rest of the population is equally
distributed between the agents who are inclined abstainers
and disinclined actors, 40% in each case. The inclined
actors are then re-stationed according to placement fea-
tures of the space. Each agent also has a count of its
neighbors (within a radius = 10), which does not change
as the simulation progresses (although the neighbors count
changes). This provides us with an opportunity to look at
the progression of simulation from viewpoint of agents’
initial perception; they do not have perception capabilities
to realize a highly volatile neighborhood (very similar to
social media where the ties are often not broken or made
as rapidly as the messages are disseminated).

The simulation initializes the positioning of the inclined
actors according to four distributions as shown in Figure
2, namely:

« randomly - without any cell-based positioning.

« diagonally - 3 cells at the diagonal of the 9 cells
lattice - corresponding to islands of institutions.

« horizontally - 3 cells at the central horizontal row
of the 9 cells lattice - corresponding to correlated
institutions.

« center - a single cell right at the center of the 9 cells
lattice - corresponding to a single institute with a
very dense placement of inclined actors.

B. Results

The first mode is stationary mode in which agents do
not move. Based on initial placement, different pattern
emerge. For example, in case of a random placement, the
neighborhood of an inclined an actor would be 80% of
not its own kind. Therefore, due to the homophilic nature
of the decision-making model would let all inclined actors
change their type to one of the other two types, as shown
in Figure 3 (a). However, for all other cases (diagonal
Figure 3 (b), horizontal Figure 3 (c), and center Figure
3 (d) placement), the inclined actors enforce each other.
We will explain these results in more detail next.

The second mobility mode is random walk mode.
Similar to the above, based on initial placement, different
pattern emerge. The mobility would not help here either
and all inclined actors change their type to one of the
other two types, as shown in Figure 4 (a). However, for
all other cases (diagonal Figure 3 (b), horizontal Figure 3
(c), and center Figure 3 (d) placement), the inclined actors
enforce each other, most in case of central placement due
to their close vicinity to each other. We will explain these
results in more detail next. The third mobility mode is
location-based mobility mode, in which agents choose
some nearest pre-specified locations, and they move from
one location to another. Overall, with this mobility, the
enforcement of inclined actors for each other depletes due
to mobility dynamics itself - the agents form some kind of
lines while traversing from one location to another - thus
reducing inclined actors (see Figure 5). We will explain
these results in more detail next.

C. Discussion

Our simulation represents some of the connectivity
dimensions possibilities in the simulated MOOCs world
and the three chosen mobility models. The results of the
simulation are shown in Figure 6. The simulation gener-
ates best results, in terms of inclined actor population at
the end of 100 runs for the stationary mode in horizontal,
random and diagonal placement models. However, the
number of inclined learners drops for randomly based
mobility with the center and diagonal placement which
has better enforcement than the random and horizontal
placements models. The worst results were received for
the location-based mobility where the center placement
model fared better than the other three placement models.
The dense placement of inclined actors (center placement)
does have a positive increase in actors of the same type
in both the stationary mode, random mode and location-
based mode as compared to other placement modes. This
reiterates our earlier results that learners who exhibit less
mobility due to their affinity within their neighborhood
with learners of their own type can be expected to show
similar behavior in the social space too.



600

500

400

(All Runs Data)

300

200

Averaged Numner of Inclined Actors

------ Stationary Random
Stationary Diagonal

------ Stationary Horizontal
Stationary Center

- - Random-walk Random

- — Random-walk Diagonal

- — Random-walk Horizontal

- - Random-walk Center

—Location-based Random

100

—Location-based Diagonal
—Location-based Horizontal

—Location-based Center

NN

All Run Data 100 200 300

Time (in secs)

400 500
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V. CONCLUSION

Massive Pervasive Learning spaces such as MOOCs
face several challenges with regards to learner disengage-
ment and dropouts. In this paper, we have proposed a
framework which combines self-regulated learning with
collaborative learning. The paper focuses on a case study
which manifests the contribution of collaborated learning
interactions with social world connectivity, for course
completion rates of MOOC courses. An agent-based
model simulating simplistic social networking modalities
and learners’ categories is simulated. It is observed that
the mobility (social connectivity) and initial distribution
(physical placement) of agents have a deciding role in
decreasing the dropout rate. There are some limitations in
this model in that the model is static. We have simulated
the agent interactions within a physical space of the
learner. However, we will consider the social layer of
agent interactions and take into consideration the history
of contacts and variations in their behavior.
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