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Abstract: In the context of indoor localization, due to the popularization of the laser scanner,
there is a massive use of LiDAR-based approaches due to their real-time performance and
high accuracy, and it was perceived that these methods present difficulties in symmetrical
environments and environments with lack of longitudinal reference. This paper deals with the
proposition of a localization problem approach for a mobile robot in indoor environments using
scanning and image sensory. Considering the existence of a map of the environment containing
fiducial markers, it brings the monocular camera to overcome LiDAR exteroceptive perception
limitations. The results obtained indicated gains of up to 19.35% in the accuracy of determining
the location of the system in relation to LiDAR-based methods in scenarios with low range
LiDAR.
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1. INTRODUCTION

Indoor localization refers to the estimation of the pose of
a mobile robot in the motion area, which is a prerequi-
site for autonomous navigation, which requires constant
update of robot pose in a dynamic environment. To de-
termine the current location on the known map, various
techniques and algorithms have been developed. Radio
frequency (RF) technology based on indoor localization
systems such as Wireless-Sensor-Network (WSN)-based
methods utilizing Ultra Wide Band (UWB), WiFi, and
Bluetooth Low Energy (BLE) can localize the robot with
the Received Signal Strength Indicator (RSSI), which is
unique at specific location. Such methods rely on Access
Point (AP) deployment, the accuracy is not high, orien-
tation is not covered and further optimization is required.
Exteroceptive-sensor-based methods determine the robot’s
pose by perceiving the surroundings with sensors mounted
on the robot. Perceptual data is fused with algorithms such
as the Kalman Filter (KF) and its extensions (extended
Kalman filter and unscented Kalman filter), grid local-
ization, and the Particle Filter (PF). Among them, the
PF implemented in Monte Carlo Localization (MCL) is
a widely used technique with a multi-modal probabilistic
density function. It is a prevalent approach to nonlinear
and non-Gaussian state estimation.

Normally, the localization problem is solved at three lev-
els, position tracking, global localization, and the robot
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kidnapping problem. As far as practical application is
concerned, besides solving the three sub-problems, real-
time performance and accuracy also need to be consid-
ered. Approaches applying various sensor modalities are
challenged by specific problems.

The high accuracy of indoor localization is the key point
of modern robotics applications, mainly in complex and
dynamic environments such as factories, distribution cen-
ters or hospitals, since the ability of the mobile robot to
locate itself accurately on the map is essential to guarantee
the efficient execution of tasks, while ensuring the safety
of the environment in human-machine interaction. In a
typical problem of robot localization tracking, a map of
the environment is available and the robot has sensors that
observe the environment and monitor its own movement.
The challenge of localization is defined by estimating the
pose of the robot within the map, using the information
collected by the sensors. Therefore, the techniques applied
for robot localization must be able to deal with inaccurate
sensor measurements, dynamic environments, in addition
to providing an accurate estimate of the robot’s pose,
but also a measure of uncertainty associated with this
estimate. Restricted navigation cases generate the need for
increasingly accurate localization systems, as is the case
with (Azpúrua et al., 2021).

New approaches based on the current particle filter stan-
dard (Fox, 2001) have been proposed for localization
improvements in the effectiveness of solving the three
classic localization problems, as well as the performance



evaluation of the current standard, such as the AMCL
(Talwar and Jung, 2019).

Some of these approaches presented soft modifications
of the original AMCL present in the navigation package
(Marder-Eppstein et al., 2010), as in Chung and Lin (2022)
that tries to address the problem of environments with
high similarity and symmetry, using the same inputs as
the traditional AMCL: scanning sensor and odometry.

The inclusion of new sources of information is also ad-
dressed Yuan-Heng Huang (2022), Shi et al. (2022) and
Shi et al. (2018), where in general, additional sensors
arrive as a way to increase the accuracy of the localization
system by suppressing noise and as a way to get around
the limitations that a type of sensor may have, adding
another type that can overcome this limitation. In the
case of the inclusion of visual information, it is observed
that compared to the use of the laser, it is robust to the
environment homogeneity.

In Yuan-Heng Huang (2022), this inclusion is observed as a
robot localization system using LiDAR and two AprilTags.
In this study, a different approach was observed, where two
reference points are generated through a pair of neighbor-
ing tags, offering restrictions to estimate the robot’s pose.
It is also said that the use of a single tag for such alignment
is possible. However, the uncertainty would cause errors in
the estimation of the robot’s pose.

Various approaches have been previously employed to
tackle the problem of robot kidnapping in specific envi-
ronments. In Shi et al. (2022), the focus is on the combi-
nation of visual and probabilistic localization, with LiDAR
2D and enhanced AMCL being responsible, respectively.
The objective of this study is to address the challenge of
robot kidnapping and global localization in a symmetrical
environment. The research aims to solve issues such as
imprecise pose estimations, location ambiguity, and robot
reorientation difficulties, which are caused by premature
convergence. Another technique used to handle these prob-
lems is the application of multi-objective particle swarm
optimization, as demonstrated in Chien et al. (2017).

To address the general case of robot kidnapping, Campbell
and Whitty (2013) presents a metric-based technique for
real-time detection using a set of binary classifiers to
identify all events during an autonomous operation.

Other approaches were further explored in Su et al. (2017),
Li et al. (2020), and Yu et al. (2021).

The target environment of the study are places with high
topological similarity, with places without longitudinal ref-
erence for distance sensors, where there may be interfer-
ence from the addition of fiduciary marks and the demon-
stration of the need for the proposed approach occurs in
the increase of its proportions. The robot must have at
least one LiDAR and one camera, and the LiDAR range
is a performance impact factor to be mitigated.

The aforementioned articles highlight the paucity of stud-
ies on the application of commercially available off-the-
shelf (COTS) vision sensors in AMCL.

Based on previous studies, this work proposes an approach
to the problem of localization of a mobile robot in indoor

environments, since it has knowledge of the environment
map, and fusion of information provided by a single
LiDAR that feeds the AMCL, in addition to the use of
fiducial markers with known localization. In this scenario,
contributions are:

(1) Explore advantages in partial re-sampling in the par-
ticle filter

(2) Address the problem of tag detection uncertainty
with one tag by increasing particle swarm variance

(3) Enable the use of COTS while maintaining perfor-
mance

The remainder of this paper is organized as follows. Section
2 introduces the proposed approach. Experiments are
presented in Section 3. Finally, Section 4 concludes this
work.

2. PROPOSED APPROACH

Given the detection of a fiducial mark through an image
and the location information of that mark on the map, it
is necessary to develop the problem of how to include this
information in the location system used. The present work
proposes to include the information as a particle cloud
resample using the localization given by the measured
data.

The main improvement of this approach is the assurance
of correct global localization, which is not guaranteed in
homogeneous environments. This brings a more reliable
and secure localization estimate, maintaining the local
precision that is proportioned by AMCL. In some cases
the fusion even improves local precision.

In the proposed arrangement, the map of the environment
was previously generated (localization-only problem), and
the pose of the tags on the map was defined (ξT ), the
transform from robot to camera (RξC) is fixed transform
that is considered known and when occurs the detection
of a tag (CξT ) the robot localization (ξR) can be found by
equation 1.

With the localization of the robot (ξR), the particle swarm
can be partially resampled around the new localization
estimate. The purpose of such inclusion is to use the
AMCL ecosystem as a form of sensor fusion.

ξR = ξT ⊖ (RξC ⊕C ξT ) (1)

2.1 Modified AMCL

The proposed improvement to the original structure of the
AMCL (Marder-Eppstein et al., 2010) available in open
source code, a subscriber ROS was created that executes
a routine in which every detection generated by AprilTag
runs:

• The record of tags is cleared to fill in a new one;
• The detection performed in the camera’s coordinate

frame is transformed to the robot’s reference coordi-
nate frame, commonly called base link in the ROS
environment;

• The global location of the previously cataloged tag is
obtained from the individual id of the tag;



Figure 1. The transforms ξT ,
CξT ,

RξC are known, so ξR
can be found by operations on the known transforms.

• The global location of the tag is used as a transform
and the transformation of the localization pose of the
detection of the tag in the frame of coordinates of the
base link is performed to the global pose of the robot;
• Using the covariance from the AprilTag system, a
part of the swarm of particles around the estimate
generated in the previous steps is re-sampled.

This improvement resulted in the algorithm described in
Algorithm 1.

Algorithm 1 Modified AMCL

while navigating do
posei ← odometry()
if posei − posei−1 ≥ treshold then

tags← consult tags()
tag bl← camera transform(tags.localization)
localization estimate← tag to map(tag bl)
resample(localization estimate)
tags← []
i← i+ 1

end if
end while

The diagram shown in Figure 2 shows all the modules
involved in the experiment, which are the AMCL with its
original systems, the AMCL systems that were modified
to work with the solution, the blocks external elements
that are the fiducial tag detector (AprilTag) and the
system responsible for computing the transforms. The
components that provide information to the system are
also represented. They are the robot sensors and the map.

The resulting source code uses ROS environment (Quigley
et al., 2009). The fiducial marker detection algorithm used
was AprilTag (Wang and Olson, 2016) so the tags placed
in the environment must be AprilTag type.

2.2 Sensor Fusion

Using the properties of the particle filter, it is possible to
use the estimated covariance to calculate the dispersion of
the dispersed particle swarm.

One of the biggest advantages of this approach is the
correction of errors at the end of the corridors, because as
shown in the figure, when creating more points in the cloud
of points together on the wall at the end of the corridor,
error correction is prioritized in this sense.

AMCL can not correct this type of error if it’s magnitude
is above the frontal dispersion of the particle swarm.

3. EXPERIMENTAL STUDY

To verify the performance of the proposed system against
the pure AMCL, a simulation world was used with degra-
dation of the quality of signals of interest, such as the laser
signal, in order to make the experiment closer to reality
and to allow the evaluation of the algorithm, proposed for
its fault correction purpose.

The experiment was run under two conditions that were
determined by the range of laser used, the first condition
using a 5 m range laser as a low-range scanning laser, and
the second condition using a 20 m range laser as a high-
range scanning laser.

The test cases were composed of each condition employing
the standard AMCL and the modified one with one test,
always initialized at the same position and executing the
same trajectory. The results are displayed in Figures 5-8.

The four tests were carried out and the error of the pose
provided as output by the proposed system was cataloged
in relation to the real location, commonly referred to as
ground truth in the literature, provided by the Gazebo
simulation software Koenig and Howard (2004).

Figure 4 presents a visualization of the trajectory adopted
for the tests. One of the cases of interest in the present
study was chosen: places similar to corridors where, if the
laser does not reach the end, the movement reference in
the parallel direction to the side is lost.

The adopted trajectory generates a situation with two
stages to the experiment using the modified algorithm:
the first, before the turn, when the camera sees the tag,
and the second, after the turn, when it doesn’t. After the
turn, the typical AMCL assumes the operation and this
can demonstrate the return to typical AMCL working.

In test case 1 (Fig. 5)with the low-range scanning laser
and using the AMCL for localization, an average error
of 0.31 m in position and in orientation of 0.053 radians
was found, which represents high-precision localization for
most mobile robotics applications.

In test case 2 (Fig. 6) with the low-range scanning laser and
using the proposed approach, an average error of 0.25 m in
position and in orientation of 0.055 radians was found. In
this case, it is possible to notice a significant improvement
in the accuracy of the position, and the orientation error
remained.



Figure 2. Proposed modification of the AMCL structure

Figure 3. Particle swarm after a tag detection.

In test case 3 (Fig. 7) with a high-range scanning laser and
using the AMCL, an average error of 0.29 m in position and
in orientation of 0.054 radians was found. The orientation
error was maintained again, but the position error is now
smaller in relation to the case with a low-range laser, which
was expected, but still higher than the error using a low-
range laser with the proposed localization system.

Figure 4. Trajectory used in the tests.

In test case 4 (Fig. 8) with the high-range scanning laser
and using the proposed approach, an average error of
0.254 m in position and in orientation of 0.055 radians
was found. The position error remains close to the case
with a low-range laser with the proposed localization
system, which indicates that the quality of the laser starts
to influence less the accuracy of the system’s position
definition.



Figure 5. Error magnitude with low-range scanning laser
and AMCL - case 1.

Figure 6. Error magnitude with low-range scanning laser
and propo - case 2.

Figure 7. Error magnitude with high-range scanning laser
and AMCL - case 3.

Figure 8. Error magnitude with high-range scanning laser
and hte proposed approach - case 4.

Table 1. Test results.

Technique Laser Range Pos. Error (m) Yaw Error (rad)

AMCL Low 0.31 0.053
AMCL High 0.28 0.054

Proposed Low 0.25 0.055
Proposed High 0.24 0.053

4. CONCLUSION AND FUTURE WORK

The presented and described system contemplated the
main objective of performing the fusion of scanning and
image sensors in computing the location of a mobile robot.

It was possible to verify the need for a new exteroceptive
sensor, considering the problems inherent to a robot with
only a scanning sensor using the AMCL to compute its
global location in homogeneous topology environments,
in order to enable the resolution of the three traditional
location problems , whereas with the inclusion of the image
sensor, the system demonstrated effectiveness in solving
them.

The approach used was successful in using multiple marks
simultaneously in the location computation, through the
partial re-sampling of the swarm of particles that can be
performed for any number of marks disposed of in the
environment.

During the development of the re-sampling solution, possi-
ble limitations were identified, such as: Continuous resam-
pling inhibits the convergence of the AMCL, which stops
computing the next state of the particles if a re-sampling
occurs at each cycle due to the frequency of publication
of AprilTag detections, which may cause a location that
contains a low contribution from the AMCL itself and
provide a drop in accuracy by failing to detect the fiducial
mark, giving greater weight to the detection of marks; for
large updates of the swarm of particles it is necessary to
reinitialize all the weights used by the adaptive part of the
algorithm, thus, for the proposed implementation to work
it is necessary that the resampling is always done in small
parts of the swarm.



As the next steps can be listed find a better representation
for the error, repeat the experiments more times; and
validate in a real environment.
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