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Abstract. Guided by two business goals (earliness and accuracy), this
initial study investigate the performance of five different loss functions,
across event-log data from four different domains (healthcare, public ad-
ministration and IT services). Three different temporal losses are pro-
posed for improvement of earliness-performance. The results show that
MAE is either outperformed or tied with the temporal losses in terms of
both earliness and accuracy. Based on the results from the experiments,
the optimal weighting of the temporal penalty vary based on the charac-
teristics of the event log. However, the proposed MAEMtD loss proved
to perform well in most cases, in terms of both accuracy and earliness.

Keywords: Event-log data · Predictive process monitoring · LSTM ·
Earliness · Remaining time models.

1 Introduction

Acting on predictions of process-related KPIs [7] like throughput time, before
actual performance is influenced, is the playbook of modern predictive analytics.
Using event-log data exclusively, this is one of the main goals of predictive pro-
cess monitoring [1, 30]. Successful development of such a predictive monitoring
system, lies in its fit with the goals of the organization wherein it is imple-
mented. This again depend on the alignment between business understanding,
model formulation, and method of evaluation [5, 24].

Much research have been done on remaining time prediction of ongoing cases
[28, 8, 21, 31, 20, 3, 30], but solutions are seldom evaluated with respect to the
assumed business goals of the organizations from which the event-logs originate.
The works of [6] propose a hyper-parameter optimization framework with respect
to different business goals, however, this approach does not alter the learning
of the models themselves. Instead, this act as a hyper-parameter optimization
(HPO) and model selection framework [9].

At the core of every supervised machine learning model is a loss function,
which essentially determine which patterns in the data to learn from, and which
ones to ignore [11]. Aligning the loss function with a given business goal [5] will
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thus ensure that the model learn to produce the most valuable predictions for
the organization.

At the time of writing, this aspect of model development have not yet been
studied for remaining time models based on event-log data. In this study, 5
different loss functions are tested across 4 different real world event-logs and
evaluated with respect to two slightly different business goals. The results show
that temporal penalties can improve performance in both aspects.

1.1 Business goals

A remaining time model can be measured with respect to multiple types of errors
[30], which largely depends on the context of the use-case. In the following, two
different business goals are presented: Accuracy and Earliness.

These are both fundamental properties of the model fit, but previous litera-
ture discuss a trade-off between the two [31, 30]. The importance or priority of
each dimension might also differ based on an organizations needs. This paper
therefore treat each as a separate business goal, with lower or higher priority
based on the business case (see section 3.1).

Goal A: Overall accuracy For remaining time predictions to be useful in
any area, the overall accuracy of the model need to be at an acceptable level.
The average accuracy of a model is thus the main objective across use-cases. In
business processes where traces may have many events (like the Sepsis [19] case
data), and remaining time is needed in the full life-cycle of the trace, overall
accuracy might be more important than a good early estimate.

Goal B: Earliness In other cases, the timing of the accuracy is important
for end users to act in time. This is especially important in scenarios where a
predictive monitoring system is used to aid a prescriptive component. In health-
care and service industries, one such component is often a dynamic work shift
planning system [16, 27, 32, 4]. Needless to say, the more time an organization
has to reorganize its resources based on expected demand, the more likely it will
be able to adapt in time. The earliness goal is thus to have the best possible
estimate of the total case duration, as early as possible.

1.2 Research question

To help understand whether a temporal loss function can adapt a predictive
process monitoring system improve on one or more of the goals above, this
study will answer the following research question: Which loss functions perform
best with respect to each of the business goals?

To answer this question, a set of loss functions are proposed as alternatives
to the most commonly used loss functions in the literature on remaining time
models [30, 14]. LSTM remaining time models [20] are trained and evaluated on
four different real world event logs from different business domains.
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The evaluation consist in comparing the resulting models across two differ-
ent dimensions: Accuracy (goal A), Earliness (goal B). Further details on the
evaluation procedure can be found in section 3.2.

1.3 Related work

The initial work in [28], demonstrated the performance of non-parametric re-
gression for predicting the total throughput time (remaining time) of an ongo-
ing trace, using event-log data. This motivated a series of studies into different
approaches to predict remaining time and other aspects of event-log data, using
supervised learning. In recent years, recurrent neural networks, and more specif-
ically Long Short-Term Memory (LSTM) Neural networks [13] have proved to
be superior to decision trees, transition systems etc. as first presented in [8],
further improved in[21] and finally in [20]. The recent work in [22] study the
various approaches to architecture and loss functions, but find that studies with
modified loss functions, do this for the purpose of multi-task learning as in [3].
In addition, the authors of [22] found that the approach in [20] had the best
performance across 11 real world event-logs. This is consistent with the result
in [30]. In [23] the authors studied the effect of intra and inter-case features
for predictive process monitoring, where proposed intra-case features have been
adopted in [20] as well as in this study. The concept of earliness was first used
in [10] for evaluation of classification-tasks, and have later also been used for
evaluation of remaining time models [30]. Some studies use accuracy alone to
evaluate remaining time models [20, 22], which to some degree is problematic, as
discussed with the examples in section 1.1.

2 Key concepts

In the following, some of the most important concepts used in this paper will be
described briefly.

2.1 Predictive Process Monitoring

Predictive process monitoring, is as mentioned in [30]: ”multi-disciplinary area
that draws concepts from process mining on one side, and machine learning on
the other”. Process mining [1] is a sub-field of Business Process Management
(BPM)[7] and is focused on the analysis of (often business) processes through
event data stored from management information systems, while the process is
running. The techniques in process mining mainly span from Process Discovery,
Conformance checking, Process reenginering, and Operational support [2].

Predictive Process Monitoring [26] mainly relate to operational support.
Here, the main goal is to use process data to train Machine learning algorithms
[11] to predict currently unknown characteristics about the outcome of a process
(duration, activities, conformance, etc.), before they are realised. In other words,
being proactive instead of reactive [1].
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2.2 Event log data

Event log data are time-stamped pieces of information related to a single case or
instance in a (business) process. Event-log data is most often found in process-
aware information systems [1] such as Enterprise Resource Planning system
(ERP) and Customer Relationship Management (CRM) systems. An example
event-log consisting of events most often found in CRM-systems is found in table
1 below. Each row is an event which relate to a specific case.

Table 1. Example event-log in a customer service unit.

Case ID Case type Activity Timestamp Resource

1001 Complaint Email interaction 01-01-2019 15:01 System
1001 Complaint Phone interaction 01-01-2019 16:04 Employee 2
1001 Complaint Subscription changes 01-01-2019 16:58 Employee 1
1002 Service termination Email interaction 01-01-2019 12:01 System
1002 Service termination Phone interaction 01-01-2019 13:10 Employee 2
1002 Service termination Subscription terminated 01-01-2019 14:15 Employee 5
1002 Service termination Sent invoice 02-01-2019 09:35 System

The sequence of events generated by a given case forms a trace. A trace
contains events related to a single case only, and contains a case identifier, an
event identifier, timestamps, and associated attributes.

2.3 Long Short-Term Memory Neural Networks

Recurrent Neural Networks are generally known for having problems with ex-
ploding or vanishing gradients [12]. This is due to the fact that they often have
so many parameters that the gradient decays exponentially for every added
layer. The Long Short-Term Memory RNN [13] has modified RNN units, called
LSTM-cells. The main idea is that of forcing the gradient to be within 0 and 1,
and adaptively change the amount of information that is learnt, by ”forgetting”
unimportant updates. A LSTM-cell have 5 different components, an input gate
it, forget gate ft, cell state ct, output gate ot, and the final output of the cell
itself ht:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (1)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (2)

ct = ftct−1 + it tanh(Wxc +Whcht−1 + bc) (3)

ot = σ(Wx0xt +Wh0ht−1 +Wc0ct + b0) (4)
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ht = ot tanh(ct) (5)

The main difference between a vanilla-type RNN and a LSTM is that hidden
units are replaced with hidden cells which have multiple functions. To counter
vanishing/exploding gradient problem [12]. Each of the units above it, ft, ct, ot
and ht are j -dimensional vectors, where j denote the number of cells per layer. A
LSTM is trained using backpropagation through time (BPTT) [13] and gradient
descent.As can be seen by eq. 1, the input gate it takes in both the signal from
the input data Xt as well as the previous hidden state ht−1, and the previous
cell state ct−1. This enables each cell to learn both from the signal from the
previous state, as well as signals multiple steps back in time (controlled by the
forget ft and output ot gates).

This does in other words give the model a long-term memory, which can be
beneficial for problems where the beginning of a sequence can have an importance
to the prediction in the end of the sequence. This is one of the main motivations
of adapting the LSTM network for predictive process monitoring [21], since the
beginning of a trace have might in some cases be of importance for the rest of
the progress. Some traces might also be very long, due to rework or a generally
complex process, and in these scenarios it is beneficial to have a selective memory
and e.g. only remember important signals from the beginning of a trace.

2.4 Loss functions

At the core of every machine learning algorithm is a loss function which calculate
some error based on how well the model is doing at predicting the target. In other
words, the model parameters are updated using using stochastic optimization,
based on a loss function that is minimized, subject to the observations in a
training data set XTRN .

ŷi = g(XTRN
i ) (6)

min
z
z = loss(yi, ŷi) (7)

Here, g() is an abstraction of an arbitrary model which produce a prediction
ŷi, given some input data XTRN

i , and yi is the ground truth of the i’th sam-
ple. The parameters of a model is most commonly optimized using a variant of
stochastic gradient descent (SGD). The most basic form of the method can be
seen in algorithm 1 below. Here λ is the learning rate, which control how much
a given model parameter Θj is updated. An update is done with respect to the
gradient of the loss of the prediction from sample i. What the model learns from
the data is highly dependent on the loss function, as it either penalize or reward
the parameter changes in the stochastic optimization process, based on the loss
(or reward) function. One of the earliest steps in developing a machine learning
model, is thus to align the form of the loss function, with the goal of the model
[5, 24] (or business goal).
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Algorithm 1 Stochastic gradient descent

Initialize parameter vector Θ ≈ U(−1, 1)
for iteration 1, ..., n do
i← SelectAtRandom[1, n]
ŷi = g(XTRN

i )
for Each parameter j in Θ do
Θj = Θj − λ δloss(yi,ŷi)δΘj

end for
end for
Return Θ

In the following, two of the most well-known loss functions are introduced,
following 3 different variants of the MAE with different temporal penalties.
Each of the proposed metrics penalize the residual at timestep t, based on its
size, as well as the number of (maximal) remaining steps. Figure 1 illustrate the
difference between the baseline MAE, and the proposed temporal variants given
a fixed prediction error of 50 at each time step.

MSE The mean squared error (MSE) is a well-known loss function for regression
problems. The MSE uses the L2 norm over the difference between the prediction
and the target, which effectively makes it sensitive towards outliers. The MSE
is time-invariant and does thus not penalize errors based on their order in a
sequence. Its major drawback in terms of modelling event-log data, is that outliers
are not uncommon between two consecutive events. For this reason, it has not
been widely used in the field of predictive process monitoring [30].

MSE =
1

N

N∑
i=1

1

T

Ti∑
t=1

(yit − ŷit)2 (8)

MAE The mean absolute error uses the L1 norm over the difference between
the prediction and the target, making it robust towards outliers. MAE is time-
invariant but ensure optimal accuracy om event-log data with large time differ-
ences between events [30]. This metric does not account for order of the errors,
but due to the format of the prefix-log (discussed in [30]), the first prefixes will
have the highest support and thus the lowest error. This loss should thus yield
the best earliness, as well as overall accuracy. MAE is the most commonly used
loss function for training RNN-based remaining time models [21, 20, 30].

MAE =
1

N

N∑
i=1

1

T

Ti∑
t=1

| yit − ŷit | (9)

MAEEtD Mean absolute error over all prefixes in the test set, with a temporal
penalty in the form of a exponential decay factor depending on t alone. This loss
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Fig. 1. Loss functions and their individual weighting of a constant error.

thus have a rapidly decreasing error as t becomes larger, meaning that early er-
rors are weighted relatively higher throughout a trace, as compared to MAEPtD.
The mean absolute error with exponential temporal decay is formally defined
as:

MAEEtD =
1

N

N∑
i=1

1

T

Ti∑
t=1

| yit − ŷit |
e(t)

(10)

MAEEtD weight the residuals with respect to earliness at an exponential
rate, meaning it might have little use other than in cases where earliness is of
out-most importance compared to accuracy.

MAEPtD Mean absolute error over all prefixes in the test set, with a penalty
factor based on the power of the ratio between the maximal trace length T minus
the current timestep t, and the maximal trace length T . As t gets larger, the
ratio go towards 0, effectively weighing the residual at t = T to 0. The mean
absolute error with progressive temporal decay is formally defined as:
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MAEPtD =
1

N

N∑
i=1

1

T

Ti∑
t=1

| yit − ŷit |
Ti−t

Ti (11)

For this loss function, earliness is weighted higher than overall accuracy, due
to the decreasing weight of the errors.

MAEMtD Mean absolute error over all prefixes in the test set, with a temporal
decay factor depending on division with t alone. As t becomes larger, the weight
of the error goes towards 0 at a moderate pace compared to MAEPtD and
MAEEtD due to the decay factor 1

t . MAEMtD thus prioritize earliness, but
weigh errors in later timesteps relatively higher than MAEPtD and MAEEtD.
The mean absolute error with moderate temporal decay is formally defined
as:

MAEMtD =
1

N

N∑
i=1

1

T

Ti∑
t=1

| yit − ŷit |
t

(12)

3 Methodology

To evaluate the performance of each of the loss functions compared to each
other, a series of experiments have been performed. The experimental design is
a block-design with event-log as the blocking variable, in addition, two factors
are included in the experiments: the loss functions and the number of LSTM-
cells. An overview can be seen in table 2. The experiments were performed with
8 replications per experiment, since training procedure itself is stochastic in
nature. This resulted in a total of 320 runs.

Table 2. Experimental factors and their associated levels.

Block: Dataset F: Loss function F: LSTM cells

Hospital billing MAE 200
Traffic fines MSE 400
Helpdesk MAEPtD
Sepsis MAEEtD

MAEMtD

In previous studies, LSTM models have been found to perform well on the
data used in this study, when using between 200 and 400 LSTM-cells [30, 20, 21].
However, only 1 recurrent layer have been used in this study for computational
reasons. The networks are regularized with recurrent dropout of 0.20, and opti-
mized using ADAM [15] with an initial learning rate of 0.01 and early stopping
at 5 epochs to prevent over-fitting. Each experiment was performed over 200
epochs with a batch size of 2048. These settings were found to perform the best
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in an initial grid-search experiment (batch sizes: 256, 512, 1024, 2048, learning
rates: 0.001, 0.005, 0.01, 0.02) with accuracy (MAE) as main goal.

3.1 Data

Four different event-logs from different domains are used in this study to test the
performance of the proposed loss functions. The event-logs are publicly available,
and well-known in the process-mining community, as they have previously been
used in multiple studies [19, 20, 17, 18]. An overview of the differences between
the event-logs, can be seen from tables 3 and 4. The traffic fines and hospital
billing data has the largest amount of cases, and the longest average durations.
The Sepsis and Helpdesk data both have a low number of cases, as well as a
lower average duration.

Table 3. Overview of the event-log data.

Dataset name Area Period Business goal

Sepsis[17] Healthcare 07/11/2013 - 05/06/2015 Accuracy > Earliness

Helpdesk[29, 20] IT Services 13/01/2010 - 03/01/2014 Earliness > Accuracy

Traffic fines[18] Public admin. 01/01/2000 - 18/06/2013 Accuracy > Earliness

Hospital billing[19] Healthcare 13/12/2012 - 19/01/2016 Earliness > Accuracy

The event-logs differ the most in terms of their trace lengths, where the Sepsis
data has traces as long as 185. Compared to the trace distribution of the rest of
the event-logs, this stands out as > 80% of the traces are longer than 10 events,
where < 5% of the rest of the event-logs have more than 10 events.

For the largest event-logs, this is to some degree due to truncation, which have
been performed to reduce the computational requirements. However, truncation
have been done at values where the majority of the cases still have their full
traces preserved. For the Hospital billing and Traffic fines event-logs, the same
truncation values as in [25] have been used (see table 3). For the Helpdesk and
Sepsis event-logs, no truncation was done.

Table 4. Dataset statistics (full event-log). Parenthesis denote dropped cases due to
censoring.

Dataset name Num. cases Max trace length Truncation Avg. trace length

Sepsis 966 (83) 185 None 18.51

Helpdesk 4362 (218) 15 None 5.07

Traffic fines 125815 (3800) 20 10 4.25

Hospital billing 63645 (13880) 217 8 5.73
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3.2 Evaluation

Each of the event-logs are partitioned into a train and test period. The date that
separate the two subsets, is the date that split the first event of 60% of the first
cases into in the train period, and the remaining 40% is then then test period.
Cases that overlap the two periods are censored (deleted), if they do not finish
within their beginning period. This is similar to the approach in [30, 25], and
help validate that the model can generalize outside the period in which it was
trained.

Accuracy To evaluate the accuracy of the models, the most commonly used
metric in literature is the mean absolute error over all traces in the test set [30],
which can be seen in equation 13 below.

MAE =
1

N

N∑
i=1

1

T

Ti∑
t=1

| yit − ŷit | (13)

Where t is the prefix or event number in each trace, and i is the trace in
the test period. To test that the differences between the accuracy across the
experiments are not due to random chance, standard F-test is performed.

Earliness Earliness is commonly described in predictive process monitoring
literature [30, 26, 6] as a models ability to predict a given target value early in a
sequence, where information is minimal. To evaluate earliness in a single metric,
the MAE over the first event/prefix t = 1 is calculated for each case as seen in
equation 14.

MAEt =
1

N

N∑
i=1

| yit − ŷit | (14)

4 Results

In the following, the results will be presented with respect to each of the business
goals. Goal A (accuracy) is evaluated in section 4.1 and goal B (earliness) in 4.2.

4.1 Overall accuracy across all traces

An overview of the average accuracy (MAE) across the loss functions, along with
their confidence intervals can be seen in table 5. The results show very similar
results for the Sepsis and Helpdesk data. In most cases (except from Heldesk
data), the MSE loss achieve the worst performance. Across all experiments, the
MAE baseline achieve accuracy very close to the best candidates, except from
the Traffic fines data. In general, the MAE achieves the second or third best
accuracy on average across all datasets.
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Table 5. Average MAE of different loss functions across datasets, measured in days.
*** = 0.01, ** = 0.05, * = 0.1.

Loss function Sepsis*** helpdesk hospital billing*** traffic fines***

MAE 13.34 ±0.02 10.71 ±0.10 50.81 ±0.07 82.52 ±2.82
MAEEtD 13.34 ±0.01 10.71 ±0.11 51.38 ±1.27 84.97 ±2.88
MAEPtD 13.35 ±0.04 12.04 ±2.54 52.06 ±1.52 77.58 ±0.73
MAEMtD 13.32 ±0.01 10.64 ±0.12 50.80 ±0.09 87.26 ±2.50
MSE 19.17 ±0.09 10.79 ±0.16 53.53 ±0.21 95.87 ±2.15

By a small margin, the MAEMtD perform the best in 3 of 4 datasets. In the
case of the traffic fines data, the MAEPtD has considerably lower errors than
any of the other loss functions (4.9 days lower on average). Differences across
the loss functions were found to be insignificant on the helpdesk data.

4.2 Earliness performance

In line with the results on overall accuracy, the differences between the loss
functions for the sepsis data is very small, except from the MSE which perform
much worse than the rest of the candidates on this data. The differences are
again insignificant for the Helpdesk data. Compared with the accuracy results,
the MAEPtD is the worst candidate on all but the Sepsis data, where the MSE
is the best in the traffic fines data. The MAEPtD does also seem to have very
high variation for the Helpdesk and Hospital billing data.

For the two smallest event-logs (sepsis and helpdesk), the loss functions with
best earliness performance are losses with exponential and moderate tempo-
ral decay (MAEEtD,MAEMtD) where squared error with no temporal penalty
(MSE) perform the best on the largest event-log (traffic fines).

Table 6. Average MAE of different loss functions across event-logs at t = 1, measured
in days. *** = 0.01, ** = 0.05, * = 0.1.

Loss function Sepsis*** helpdesk hospital billing*** traffic fines***

MAE 12.29 ±0.01 8.86 ±0.73 61.36 ±0.26 98.39 ±0.92
MAEEtD 12.28 ±0.01 8.67 ±0.74 62.73 ±3.16 98.42 ±1.13
MAEPtD 12.28 ±0.02 11.31 ±4.04 64.53 ±4.34 100.19 ±0.92
MAEMtD 12.30 ±0.02 8.34 ±0.67 61.13 ±0.23 99.47 ±0.54
MSE 19.08 ±0.08 8.34 ±0.89 61.39 ±0.10 97.53 ±1.69

5 Discussion and further research

The standard MAE loss was outperformed by temporal losses in all 4 event-
logs in terms of accuracy, all but the traffic fines data in terms of earliness. The
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MAEMtD proved to be most universal, by performing the best in 3/4 event-
logs. It was, however, largely ineffective for the traffic fines data. In this case the
MAEPtD had the best accuracy, and MSE the best earliness.

The effectiveness (with regards to accuracy and earliness) of the steepness of
the temporal curvature of the loss appear to be related to the trace distribution.
In particular, for event logs with many long traces like the Sepsis data, extreme
weight like MAEEtD result in the best earliness, but not accuracy at the same
time. Current literature [30] suggest the existence of a trade-off between accu-
racy and earliness, which the findings in this study seem to support. The work
in this study is initial, and further modifications might be made to the losses
in future studies, such as parameterized versions with more flexibility. For event
logs with a majority of short traces, moderate temporal penalty MAEMtD seem
to result in the best earliness. However, in order to systematically examine this
relationship, a separate simulation study is suggested.

6 Reproducibility

The code used for the experiments is freely available on github, and can be found
at1. The event-log data used in the experiments can be found at Eindhoven
University of Technology website2.

7 Conclusion

The aim of this study was to investigate the effect of modifying the loss functions
with different temporal penalties, to see the impact on model performance with
respect to two different business perspectives: Accuracy and earliness. Through
a series of experiments across 4 real world event logs from different domains, 5
different loss functions were evaluated on their relative performance in terms of
average accuracy and earliness (measured as performance at t = 1).

The results show that the temporal losses in most cases outperform MAE
(the most commonly used loss in literature). The MAEMtD perform the best in
5/8 cases. The results also indicate that the optimal degree of temporal penalty
might rely on the properties of the event log. It is hypothesized that event logs
with long traces benefit more from large temporal penalties, where event logs
with short traces benefit more from moderate temporal penalties. It is there-
fore recommended that more research is done on the relation between temporal
penalties and event log characteristics through e.g. simulation.
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