
EasyChair Preprint
№ 6065

Twitter Sentiment Analysis

Vedurumudi Priyanka

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 13, 2021



           Twitter   Sentiment   Analysis   
  

                  Vedurumudi   Priyanka                                                                          June   13,   2021   
Sridevi   Women’s   Engineering   College,   Hyderabad,   India   

          priyankavedurumudi@gmail.com       
     

                                                     Abstract   

  In   this   report,   address   the   problem   of   sentiment   classi�cation   on   twitter   dataset.   used   a   number   of   
machine   learning   and   deep   learning   methods   to   perform   sentiment   analysis.   In   the   end,   used   a   majority   
vote   ensemble   method   with   5   of   our   best   models   to   achieve   the   classi�cation   accuracy   of   83.58%   on   
kaggle   public   leaderboard.   compared   various   di�erent   methods   for   sentiment   analysis   on   tweets   (a   
binary   classi�cation   problem).   The   training   dataset   is   expected   to   be   a   CSV   �le   of   type   tweet_id,   
sentiment,   tweet   where   the   tweet_id   is   a   unique   integer   identifying   the   tweet,   sentiment   is   either   1   
(positive)   or   0   (negative),   and   tweet   is   the   tweet   enclosed   in   "".   Similarly,   the   test   dataset   is   a   CSV   �le   of   
type   tweet_id,   tweet.   Please   note   that   CSV   headers   are   not   expected   and   should   be   removed   from   the   
training   and   test   datasets.   used   Anaconda   distribution   of   Python   for   datasets   for   library   requirements   
speci�c   to   some   methods   such   as   keras   with   TensorFlow   backend   for   Logistic   Regression,   MLP,   RNN   
(LSTM),   and   CNN.   and   xgboost   for   XGBoost.   Usage   of   preprocessing,   baseline,   Naive   Bayes,   Maximum   
entropy,   Decision   Tree,   random   forest,   multi-layer   perception   etc   are   implemented.   
Keywords:     Machine   learning,   Deep   learning,   Sentiment   Classi�cation,   CNN,   LSTM   

  

Introduction   
Twitter  Sentiment  Analysis  means,  using  advanced  text  mining  techniques  to  investigate  the  sentiment  of                             
the  text  (here,  tweet)  within  the  sort  of  positive,  negative,  and  neutral.  it's  also  called  Opinion  Mining,  is                                     
primarily  for  analyzing  conversations,  opinions,  and  sharing  of  views  (all  within  the  sort  of  tweets)  for                                 
deciding  business  strategy,  political  analysis,  and  also  for  assessing  public  actions.  Sentiment  analyses  are                             
often  want  to  identify  trends  within  the  content  of  tweets,  which  are  then  analyzed  by  machine  learning                                   
algorithms.  Sentiment  analysis  is  a  crucial  tool  within  the  �eld  of  social  media  marketing  because  it'll  discuss                                   
how  it  will  be  accustomed  to  predict  the  behavior  of  a  user's  online  persona.  Sentiment  analysis  is  employed                                     
to  investigate  the  sentiment  of  a  given  post  or  investigate  any  given  topic.In  fact,  it's  one  of  the  foremost                                       
popular   tools   in   social   media   marketing.   
Text  understanding  could  be  a  signi�cant  problem  to  resolve.  One  approach  may  well  be  to  rank  the                                   
importance  of  sentences  within  the  text  then  generate  a  summary  for  the  text  supported  by  the  important                                   
numbers.   
These  systems  don’t  depend  on  manually  crafted  rules,  but  on  machine  learning  techniques,  like                             
classi�cation.  Classi�cation,  which  is  employed  for  sentiment  analysis,  is  an  automatic  system  that  must  be                               
fed  sample  text  before  returning  a  category,  e.g.  positive,  negative,  or  neutral.  Urgent  issues  will  often  arise,                                   
and  they  must  be  restrained  immediately.  A  complaint  on  Twitter,  for  instance,  could  quickly  escalate  into  a                                   
PR  crisis  if  it  goes  viral.  While  it'd  be  di�cult  for  your  team  to  spot  a  crisis  before  it  happens,  it’s  very  easy                                               
for   machine   learning   tools   to   identify   these   situations   in   real-time.   
Patterns  are  often  extracted  from  analyzing  the  frequency  distribution  of  those  parts  of  speech  (either                               
individually  or  collectively  with  some  other  parts  of  speech)  during  a  particular  class  of  labeled  tweets.                                 
Twitter-based  features  are  more  informal  and  relate  to  how  people  express  themselves  on  online  social                               
platforms   and   compress   their   sentiments   within   the   limited   space   of   140   characters   o�ered   by   Twitter.   
They  include  Twitter  hashtags,  retweets,  word  capitalization,  word  lengthening,  question  marks,  presence  of                           
URL   in   tweets,   exclamation   marks,   internet   emoticons,   and   internet   shorthand/slangs.   

1 / 17

mailto:priyankavedurumudi@gmail.com
mailto:priyankavedurumudi@gmail.com


  

Literature   Review   
Sentiment  analysis  within  the  domain  of  micro-blogging  could  be  a  relatively  new  research  topic  so                               
there's  still  plenty  of  room  for  further  research  in  this  area.  A  decent  amount  of  related  prior  work                                     
has  been  done  on  sentiment  analysis  of  user  reviews,  web  blogs/articles,  and  phrase-level  sentiment                             
analysis,  These  di�er  from  Twitter  mainly  thanks  to  the  limit  of  140  characters  per  tweet  which                                 
forces  the  user  to  speci�c  opinion  compressed  in  a  very  very  short  text.  The  simplest  results  were                                   
reached  in  sentiment  classi�cation  using  supervised  learning  techniques  like  Naive  Bayes  and                         
Support  Vector  Machines,  but  the  manual  labeling  required  for  the  supervised  approach  is                           
incredibly  expensive.  Some  work  has  been  done  on  unsupervised  and  semi-supervised  approaches,                         
and   there's   plenty   of   room   for   improvement.   
Various  researchers  are  testing  new  classi�cation  features  and  techniques  He  often  compares  their                           
results  to  baseline  performance.  There  is  a  desire  to  correct  and  Formal  comparisons  between  these                               
results  are  made  by  di�erent  features  and  Classi�cation  techniques  to  select  the  most  e�ective  and                               
most  e�ective  features  Classi�cation  techniques  for  speci�c  applications. This  is  a  really  simplistic                        
assumption  but  it  appears  to  perform  fairly  well.  The  thanks  to  use  unigrams  as  features  is  to  line  them  with                                         
a  particular  preset  polarity,  and  take  the  average  general  polarity  of  the  text,  where  the  �nal  polarity  of  the                                       
text.  It  can  simply  be  calculated  by  summing  the  previous  poles  of  individual  unigrams.  The  preceding                                 
polarity  of  the  word  is  going  to  be  positive  if  the  word  is  mostly  used  to  denote  the  positive,  as  an  example,                                             
the  word  "sweet";  While  it  might  be  negative  if  The  word  is  mostly  related  to  negative  connotations,  like                                     
"evil."  over  there.  They  can  even  be  degrees  of  polarity  within  the  model,  which  implies  what  proportion  is                                     
indicative  of  it:  A  word  for  that  speci�c  class.  A  word  like  "wonderful"  are  often  strong.  Subjective  polarity                                     
goes  hand  in  hand  with  positivity,  while  "decent"  may  bePositive  a  priori  polarity  but  possibly  with  weak                                   
subjectivity.   

  

1    Problem   Statement   
Twitter   is   a   popular   social   networking   website   where   members   create   and   interact   with   messages   known   as   
“tweets”.   This   serves   as   a   means   for   individuals   to   express   their   thoughts   or   feelings   about   di�erent   subjects.   
Various   di�erent   parties   such   as   consumers   and   marketers   have   done   sentiment   analysis   on   such   tweets   to  
gather   insights   into   products   or   to   conduct   market   analysis.   Furthermore,   with   the   recent   advancements   in   
machine   learning   algorithms,   I   was   able   to   improve   the   accuracy   of   our   sentiment   analysis   predictions.   In   
this   report,   I   will   attempt   to   conduct   sentiment   analysis   on   “tweets”   using   various   di�erent   machine   
learning   algorithms.attempted   to   classify   the   polarity   of   the   tweet   where   it   is   either   positive   or   negative.   If   
the   tweet   has   both   positive   and   negative   elements,   the   more   dominant   sentiment   should   be   picked   as   the   
�nal   label.      
I   used   the   dataset   from    Kaggle    which   was   crawled   and   labeled   positive/negative.   The   data   provided   comes   
with   emoticons,   usernames   and   hashtags   which   are   required   to   be   processed   and   converted   into   a   standard   
form.   I   also   need   to   extract   useful   features   from   the   text   such   as   unigrams   and   bigrams   which   is   a   form   of   
representation   of   the   “tweet”   
Used  various  machine  learning  algorithms  to  conduct  sentiment  analysis  using  the  extracted  features.                           
However,  just  relying  on  individual  models  did  not  give  a  high  accuracy  so  I  picked  the  top  few  models  to                                         
generate  a  model  ensemble.  Ensembling  is  a  form  of  meta  learning  algorithm  technique  where  I  combined                                 
di�erent  classi�ers  in  order  to  improve  the  prediction  accuracy.  Finally,  I  report  my  experimental  results  and                                 
�ndings   at   the   end.     

2     Data   Description:     
The   data   given   is   in   the   form   of   comma-separated   values   �les    with   tweets   and   their   corresponding   
sentiments.   The   training   dataset   is   a   csv   �le   of   type   tweet_id,sentiment,tweet   where   the   tweet_id   unique   

2 / 17

https://www.kaggle.com/c/cs5228-project-2


Total Unique Average Max Positive Negative
Tweets 800000 - - - 400312 399688
User Mentions 393392 - 0.4917 12 - -
Emoticons 6797 - 0.0085 5 5807 990
URLs 38698 - 0.0484 5 - -
Unigrams 9823554 181232 12.279 40 - -
Bigrams 9025707 1954953 11.28 - - -

Table 1: Statistics of preprocessed train dataset

Total Unique Average Max Positive Negative
Tweets 200000 - - - - -
User Mentions 97887 - 0.4894 11 - -
Emoticons 1700 - 0.0085 10 1472 228
URLs 9553 - 0.0478 5 - -
Unigrams 2457216 78282 12.286 36 - -
Bigrams 2257751 686530 11.29 - - -

Table 2: Statistics of preprocessed test dataset

and emoticons contribute to predicting the sentiment, but URLs and references to people don’t.
Therefore, URLs and references can be ignored. The words are also a mixture of misspelled words,
extra punctuations, and words with many repeated letters. The tweets, therefore, have to be pre-
processed to standardize the dataset.

The provided training and test dataset have 800000 and 200000 tweets respectively. Preliminary
statistical analysis of the contents of datasets, after preprocessing as described in section 3.1, is
shown in tables 1 and 2.

3 Methodology and Implementation

3.1 Pre-processing

Raw tweets scraped from twitter generally result in a noisy dataset. This is due to the casual
nature of people’s usage of social media. Tweets have certain special characteristics such as re-
tweets, emoticons, user mentions, etc. which have to be suitably extracted. Therefore, raw twitter
data has to be normalized to create a dataset which can be easily learned by various classifiers. We
have applied an extensive number of pre-processing steps to standardize the dataset and reduce
its size. We first do some general pre-processing on tweets which is as follows.

• Convert the tweet to lower case.

• Replace 2 or more dots (.) with space.

• Strip spaces and quotes (" and ’) from the ends of tweet.

• Replace 2 or more spaces with a single space.

We handle special twitter features as follows.

3.1.1 URL

Users often share hyperlinks to other webpages in their tweets. Any particular URL is not
important for text classification as it would lead to very sparse features. Therefore, we re-
place all the URLs in tweets with the word URL. The regular expression used to match URLs
is ((www\.[\S]+)|(https?://[\S]+)).

3.1.2 User Mention

Every twitter user has a handle associated with them. Users often mention other users in their
tweets by @handle. We replace all user mentions with the word USER_MENTION. The regular
expression used to match user mention is @[\S]+.

2

3 / 17

Ellipse



Emoticon(s) Type Regex Replacement
:), : ), :-), (:, ( :, (-:, :’) Smile (:\s?\)|:-\)|\(\s?:|\(-:|:\’\)) EMO_POS

:D, : D, :-D, xD, x-D, XD, X-D Laugh (:\s?D|:-D|x-?D|X-?D) EMO_POS

;-), ;), ;-D, ;D, (;, (-; Wink (:\s?\(|:-\(|\)\s?:|\)-:) EMO_POS

<3, :* Love (<3|:\*) EMO_POS

:-(, : (, :(, ):, )-: Sad (:\s?\(|:-\(|\)\s?:|\)-:) EMO_NEG

:,(, :’(, :"( Cry (:,\(|:\’\(|:"\() EMO_NEG

Table 3: List of emoticons matched by our method

3.1.3 Emoticon

Users often use a number of different emoticons in their tweet to convey different emotions. It is
impossible to exhaustively match all the different emoticons used on social media as the number
is ever increasing. However, we match some common emoticons which are used very frequently.
We replace the matched emoticons with either EMO_POS or EMO_NEG depending on whether it is
conveying a positive or a negative emotion. A list of all emoticons matched by our method is given
in table 3.

3.1.4 Hashtag

Hashtags are unspaced phrases prefixed by the hash symbol (#) which is frequently used by users
to mention a trending topic on twitter. We replace all the hashtags with the words with the hash
symbol. For example, #hello is replaced by hello. The regular expression used to match hashtags
is #(\S+).

3.1.5 Retweet

Retweets are tweets which have already been sent by someone else and are shared by other users.
Retweets begin with the letters RT. We remove RT from the tweets as it is not an important feature
for text classification. The regular expression used to match retweets is \brt\b.

After applying tweet level pre-processing, we processed individual words of tweets as follows.

• Strip any punctuation [’"?!,.():;] from the word.

• Convert 2 or more letter repetitions to 2 letters. Some people send tweets like I am sooooo

happpppy adding multiple characters to emphasize on certain words. This is done to handle
such tweets by converting them to I am soo happy.

• Remove - and ’. This is done to handle words like t-shirt and their’s by converting them to
the more general form tshirt and theirs.

• Check if the word is valid and accept it only if it is. We define a valid word as a word which
begins with an alphabet with successive characters being alphabets, numbers or one of dot
(.) and underscore(_).

Some example tweets from the training dataset and their normalized versions are shown in table
4.

3.2 Feature Extraction

We extract two types of features from our dataset, namely unigrams and bigrams. We create
a frequency distribution of the unigrams and bigrams present in the dataset and choose top N

unigrams and bigrams for our analysis.

3.2.1 Unigrams

Probably the simplest and the most commonly used features for text classification is the presence
of single words or tokens in the the text. We extract single words from the training dataset and
create a frequency distribution of these words. A total of 181232 unique words are extracted from

3

4 / 17

Ellipse



Raw misses Swimming Class. http://plurk.com/p/12nt0b

Normalized misses swimming class URL

Raw @98PXYRochester HEYYYYYYYYY!! its Fer from Chile again

Normalized USER_MENTION heyy its fer from chile again

Raw Sometimes, You gotta hate #Windows updates.

Normalized sometimes you gotta hate windows updates

Raw @Santiago_Steph hii come talk to me i got candy :)

Normalized USER_MENTION hii come talk to me i got candy EMO_POS

Raw @bolly47 oh no :’( r.i.p. your bella

Normalized USER_MENTION oh no EMO_NEG r.i.p your bella

Table 4: Example tweets from the dataset and their normalized versions.

Figure 1: Frequencies of top 20 unigrams.

the dataset. Out of these words, most of the words at end of frequency spectrum are noise and
occur very few times to influence classification. We, therefore, only use top N words from these
to create our vocabulary where N is 15000 for sparse vector classification and 90000 for dense
vector classification. The frequency distribution of top 20 words in our vocabulary is shown in
figure 1. We can observe in figure 2 that the frequency distribution follows Zipf’s law which states
that in a large sample of words, the frequency of a word is inversely proportional to its rank in
the frequency table. This can be seen by the fact that a linear trendline with a negative slope
fits the plot of log (Frequency) vs. log (Rank). The equation of the trendline shown in figure 2 is
log(Frequency) = −0.78 log(Rank) + 13.31.

3.2.2 Bigrams

Bigrams are word pairs in the dataset which occur in succession in the corpus. These features are
a good way to model negation in natural language like in the phrase – This is not good. A total of
1954953 unique bigrams were extracted from the dataset. Out of these, most of the bigrams at end
of frequency spectrum are noise and occur very few times to influence classification. We therefore
use only top 10000 bigrams from these to create our vocabulary. The frequency distribution of top
20 bigrams in our vocabulary is shown in figure 3.

3.3 Feature Representation

After extracting the unigrams and bigrams, we represent each tweet as a feature vector in either
sparse vector representation or dense vector representation depending on the classification method.

4

5 / 17

Ellipse



Figure 2: Unigrams frequencies follow Zipf’s Law.

Figure 3: Frequencies of top 20 bigrams.

5

6 / 17

Ellipse



3.3.1 Sparse Vector Representation

Depending on whether or not we are using bigram features, the sparse vector representation of
each tweet is either of length 15000 (when considering only unigrams) or 25000 (when considering
unigrams and bigrams). Each unigram (and bigram) is given a unique index depending on its rank.
The feature vector for a tweet has a positive value at the indices of unigrams (and bigrams) which
are present in that tweet and zero elsewhere which is why the vector is sparse. The positive value
at the indices of unigrams (and bigrams) depends on the feature type we specify which is one of
presence and frequency.

• presence In the case of presence feature type, the feature vector has a 1 at indices of
unigrams (and bigrams) present in a tweet and 0 elsewhere.

• frequency In the case of frequency feature type, the feature vector has a positive integer at
indices of unigrams (and bigrams) which is the frequency of that unigram (or bigram) in the
tweet and 0 elsewhere. A matrix of such term-frequency vectors is constructed for the entire
training dataset and then each term frequency is scaled by the inverse-document-frequency of
the term (idf) to assign higher values to important terms. The inverse-document-frequency
of a term t is defined as.

idf(t) = log

(

1 + nd

1 + df(d, t)

)

+ 1

where nd is the total number of documents and df(d, t) is the number of documents in which
the term t occurs.

Handling Memory Issues Which dealing with sparse vector representations, the feature vector for
each tweet is of length 25000 and the total number of tweets in the training set is 800000 which
means allocation of memory for a matrix of size 800000× 25000. Assuming 4 bytes are required to
represent each float value in the matrix, this martix needs a memory of 8× 1010 bytes (≈ 75 GB)
which is far greater than the memory available in common notebooks. To tackle this issue, we used
scipy.sparse.lil_matrix data structure provided by Scipy which is a memory efficient linked
list based implementation of sparse matrices. In addition to that, we used Python generators
wherever possible instead of keeping the entire dataset in memory.

3.3.2 Dense Vector Representation

For dense vector representation we use a vocabulary of unigrams of size 90000 i.e. the top 90000
words in the dataset. We assign an integer index to each word depending on its rank (starting from
1) which means that the most common word is assigned the number 1, the second most common
word is assigned the number 2 and so on. Each tweet is then represented by a vector of these
indices which is a dense vector.

3.4 Classifiers

3.4.1 Naive Bayes

Naive Bayes is a simple model which can be used for text classification. In this model, the class ĉ

is assigned to a tweet t, where

ĉ = argmax
c

P(c|t)

P(c|t) ∝ P(c)

n
∏

i=1

P(fi|c)

In the formula above, fi represents the i-th feature of total n features. P(c) and P(fi|c) can be
obtained through maximum likelihood estimates.

6

7 / 17

Ellipse



3.4.2 Maximum Entropy

Maximum Entropy Classifier model is based on the Principle of Maximum Entropy. The main idea
behind it is to choose the most uniform probabilistic model that maximizes the entropy, with given
constraints. Unlike Naive Bayes, it does not assume that features are conditionally independent
of each other. So, we can add features like bigrams without worrying about feature overlap. In
a binary classification problem like the one we are addressing, it is the same as using Logistic
Regression to find a distribution over the classes. The model is represented by

PME(c|d, λ) =
exp[

∑

i λifi(c, d)]
∑

c′ exp[
∑

i λifi(c, d)]

Here, c is the class, d is the tweet and λ is the weight vector. The weight vector is found by
numerical optimization of the lambdas so as to maximize the conditional probability.

3.4.3 Decision Tree

Decision trees are a classifier model in which each node of the tree represents a test on the attribute
of the data set, and its children represent the outcomes. The leaf nodes represents the final classes
of the data points. It is a supervised classifier model which uses data with known labels to form
the decision tree and then the model is applied on the test data. For each node in the tree the best
test condition or decision has to be taken. We use the GINI factor to decide the best split. For a
given node t, GINI(t) = 1 −

∑

j [p(j|t)]
2, where p(j|t) is the relative frequency of class j at node

t, and GINIsplit =
∑k

i=1
ni

n
GINI(i) (ni = number of records at child i, n = number of records at

node p)indicates the quality of the split. We choose a split that minimizes the GINI factor.

3.4.4 Random Forest

Random Forest is an ensemble learning algorithm for classification and regression. Random Forest
generates a multitude of decision trees classifies based on the aggregated decision of those trees.
For a set of tweets x1, x2, . . . xn and their respective sentiment labels y1, y2, . . .n bagging repeatedly
selects a random sample (Xb, Yb) with replacement. Each classification tree fb is trained using a
different random sample (Xb, Yb) where b ranges from 1 . . . B. Finally, a majority vote is taken of
predictions of these B trees.

3.4.5 XGBoost

Xgboost is a form of gradient boosting algorithm which produces a prediction model that is an
ensemble of weak prediction decision trees. We use the ensemble of K models by adding their
outputs in the following manner

ŷi =

K
∑

k=1

fk(xi), fk ∈ F

where F is the space of trees, xi is the input and ŷi is the final output. We attempt to minimize
the following loss function

L(Φ) =
∑

i

l(ŷi, yi) +
∑

Ω(fk)

where Ω(f) = γT +
1

2
λ‖w‖2

where Ω is the regularisation term.

3.4.6 SVM

SVM, also known as support vector machines, is a non-probabilistic binary linear classifier. For a
training set of points (xi, yi) where x is the feature vector and y is the class, we want to find the

7

8 / 17

Ellipse



maximum-margin hyperplane that divides the points with yi = 1 and yi = −1.
The equation of the hyperplane is as follow

w · x− b = 0

We want to maximize the margin, denoted by γ, as follows

max
w,γ

γ, s.t.∀i, γ ≤ yi(w · xi + b)

in order to separate the points well.

3.4.7 Multi-Layer Perceptron

MLP or Multilayer perceptron is a class of feed-forward neural networks, which has atleast three
layers of neurons. Each neuron uses a non-linear activation function, and learns with supervision
using backpropagation algorithm. It performs well in complex classification problems such as
sentiment analysis by learning non-linear models.

3.4.8 Convolutional Neural Networks

Convolutional Neural Networks or CNNs are a type of neural networks which involve layers called
convolution layers which can interpret spacial data. A convolution layers has a number of filters
or kernels which it learns to extract specific types of features from the data. The kernel is a 2D
window which is slided over the input data performing the convolution operation. We use temporal
convolution in our experiments which is suitable for analyzing sequential data like tweets.

3.4.9 Recurrent Neural Networks

Recurrent Neural Network are a network of neuron-like nodes, each with a directed (one-way)
connection to every other node. In RNN, hidden state denoted by ht acts as memory of the network
and learns contextual information which is important for classification of natural language. The
output at each step is calculated based on the memory ht at time t and current input xt. The
main feature of an RNN is its hidden state, which captures sequential dependence in information.
We used Long Term Short Memory (LSTM) networks in our experiments which is a special kind
of RNN capable of remembering information over a long period of time.

4 Experiments

We perform experiments using various different classifiers. Unless otherwise specified, we use
10% of the training dataset for validation of our models to check against overfitting i.e. we use
720000 tweets for training and 80000 tweets for validation. For Naive Bayes, Maximum Entropy,
Decision Tree, Random Forest, XGBoost, SVM and Multi-Layer Perceptron we use sparse vector
representation of tweets. For Recurrent Neural Networks and Convolutional Neural Networks we
use the dense vector representation.

4.1 Baseline

For a baseline, we use a simple positive and negative word counting method to assign sentiment to a
given tweet. We use the Opinion Dataset of positive and negative words to classify tweets. In cases
when the number of positive and negative words are equal, we assign positive sentiment. Using
this baseline model, we achieve a classification accuracy of 63.48% on Kaggle public leaderboard.

4.2 Naive Bayes

We used MultinomialNB from sklearn.naive_bayes package of scikit-learn for Naive Bayes clas-
sification. We used Laplace smoothed version of Naive Bayes with the smoothing parameter α set
to its default value of 1. We used sparse vector representation for classification and ran experiments
using both presence and frequency feature types. We found that presence features outperform fre-

quency features because Naive Bayes is essentially built to work better on integer features rather

8

9 / 17

Ellipse



than floats. We also observed that addition of bigram features improves the accuracy. We obtain
a best validation accuracy of 79.68% using Naive Bayes with presence of unigrams and bigrams. A
comparison of accuracies obtained on the validation set using different features is shown in table
5.

4.3 Maximum Entropy

The nltk library provides several text analysis tools. We use the MaxentClassifier to perform
sentiment analysis on the given tweets. Unigrams, bigrams and a combination of both were given
as input features to the classifier. The Improved Iterative Scaling algorithm for training provided
better results than Generalised Iterative Scaling. Feature combination of unigrams and bigrams,
gave better accuracy of 80.98% compared to just unigrams (79.34%) and just bigrams (79.2%).

For a binary classification problem, Logistic Regression is essentially the same as Maximum En-
tropy. So, we implemented a sequential Logistic Regression model using keras, with sigmoid
activation function, binary cross-entropy loss and Adam’s optimizer achieving better performance
than nltk. Using frequency and presence features we get almost the same accuracies, but the
performance is slightly better when we use unigrams and bigrams together. The best accuracy
achieved was 81.52%. A comparison of accuracies obtained on the validation set using different
features is shown in table 5.

4.4 Decision Tree

We use the DecisionTreeClassifier from sklearn.tree package provided by scikit-learn to
build our model. GINI is used to evaluate the split at every node and the best split is chosen
always. The model performed slightly better using the presence feature compared to frequency.
Also using unigrams with or without bigrams didn’t make any significant improvements. The best
accuracy achieved using decision trees was 68.1%. A comparison of accuracies obtained on the
validation set using different features is shown in table 5.

4.5 Random Forest

We implemented random forest algorithm by using RandomForestClassifier from sklearn.ensemble

provided by scikit-learn. We experimented using 10 estimators (trees) using both presence and
frequency features. presence features performed better than frequency though the improvement
was not substantial. A comparison of accuracies obtained on the validation set using different
features is shown in table 5.

4.6 XGBoost

We also attempted tackling the problem with XGboost classifier. We set max tree depth to 25
where it refers to the maximum depth of a tree and is used to control over-fitting as a high value
might result in the model learning relations that are tied to the training data. Since XGboost
is an algorithm that utilises an ensemble of weaker trees, it is important to tune the number of
estimators that is used. We realised that setting this value to 400 gave the best result. The best
result was 0.78.72 which came from the configuration of presence with Unigrams + Bigrams.

4.7 SVM

We utilise the SVM classifier available in sklearn. We set the C term to be 0.1. C term is the
penalty parameter of the error term. In other words, this influences the misclassification on the
objective function. We run SVM with both Unigram as well Unigram + Bigram. We also run the
configurations with frequency and presence. The best result was 81.55 which came the configuration
of frequency and Unigram + Bigram.

4.8 Multi-Layer Perceptron

We used keras with TensorFlow backend to implement the Multi-Layer Perceptron model. We
used a 1-hidden layer neural network with 500 hidden units. The output from the neural network

9

10 / 17

Ellipse



Algorithms
Presence Frequency

Unigrams Unigrams+Bigrams Unigrams Unigrams+Bigrams
Naive Bayes 78.16 79.68 77.52 79.38
Max Entropy 79.96 81.52 79.7 81.5
Decision Tree 68.1 68.01 67.82 67.78

Random Forest 76.54 77.21 76.16 77.14
XGBoost 77.56 78.72 77.42 78.32

SVM 79.54 81.11 79.83 81.55

MLP 80.1 81.7 80.15 81.35

Table 5: Comparison of various classifiers which use sparse vector representation

Figure 4: Architecture of the MLP Model.

is a single value which we pass through the sigmoid non-linearity to squish it in the range [0, 1].
The sigmoid function is defined by f(z) = 1

1+exp−z . The output from the neural network gives the

probability Pr(positive|tweet) i.e. the probability of the tweets sentiment being positive. At the
prediction step, we round off the probability values to convert them to class labels 0 (negative) and
1 (positive). The architecture of the model is shown in figure . Red hidden layers represent layers
with sigmoid non-linearity. We trained our model using binary cross entropy loss with the weight
update scheme being the one defined by Adam et. al. We also conducted experiments using SGD
+ Momentum weight updates and found out that it takes too long to converge. We ran our model
upto 20 epochs after which it began to overfit. We used sparse vector representation of tweets for
training. We found that the presence of bigrams features significantly improved the accuracy.

4.9 Convolutional Neural Networks

We used keras with TensorFlow backend to implement the Convolutional Neural Network model.
We used the dense vector representation of the tweets to train our CNN models. We used a
vocabulary of top 90000 words from the training dataset. We represent each word in our vocabulary
with an integer index from 1 . . . 90000 where the integer index represents the rank of the word in
the dataset. The integer index 0 is reserved for the special padding word. Further each of these
90000+1 words is represented by a 200 dimensional vector. The first layer of our models is the
Embedding layer which is a matrix of shape (v+1)×d where v is vocabulary size (=90000) and d is
the dimension of each word vector (=200). We initialize the embedding layer with random weights
from N (0, 0.01). Each row of this embedding matrix represents represents the 200 dimensional
word vector for a word in the vocabulary. For words in our vocabulary which match GloVe word
vectors provided by the StanfordNLP group, we seed the corresponding row of the embedding
matrix from GloVe vectors. Each tweet i.e. its dense vector representation is padded with 0s at

10

11 / 17

Ellipse



Figure 5: Neural Network Architecture with 1 Conv Layer.

Figure 6: Neural Network Architecture with 2 Conv Layers.

the end until its length is equal to max_length which is a parameter we tweak in our experiments.
We trained our model using binary cross entropy loss with the weight update scheme being the one
defined by Adam et. al. We also conducted experiments using SGD + Momentum weight updates
and found out that it takes longer (≈100 epochs) to converge compared to validation accuracy
equivalent to Adam. We ran our model upto 10 epochs. Using the Adam weight update scheme,
the model converges very fast (≈4 epochs) and begins to overfit badly after that. We, therefore,
use models from 3rd or 4th epoch for our results. We tried four different CNN architectures which
are as follows.

• 1-Conv-NN: As the name suggests, this is an architecture with 1 convolution layer. We
perform temporal convolution with a kernel size of 3 and zero padding. After the convo-
lution layer, we apply relu activation function (which is defined as f(x) = max(0, x)) and
then perform Global Max Pooling over time to reduce the dimensionality of the data. We
pass the output of the Global Max Pool layer to a fully-connected layer which then out-
puts a single value which is passed through sigmoid activation function to convert it into a
probability value. We also added dropout layers after the embedding layer and the fully-
connected layer to regularize our network and prevent it from overfitting. We use a tweet
max_length of 20 in this network with a vocabulary of 80000 words. The complete archi-
tecture of the network is embedding_layer (800001×200) → dropout(0.2) → conv_1

(500 filters) → relu → global_maxpool → dense(500) → relu → dropout(0.2)

→ dense(1) → sigmoid as shown in figure 5. Green layers indicate relu activation while
red indicates sigmoid.

• 2-Conv-NN: In this architecture we increased the vocabulary from 80000 to 90000. We also
increased the dropout after embedding layer to 0.4 and that after the fully connected layer to
0.5 to further regularize the network and thus prevent overfitting. We changed the number of
filters in the first convolution layer to 600 and added another convolution layer with 300 filters
after the first convolution layer. We also replaced the Global MaxPool layer with a Flatten
layer as we believed some features of the input tweets got lost while max pooling. We also
increased the number of units in the fully-connected layer to 600. All of these changes allowed
the network to learn and regularize better thereby improving the validation accuracy. The
complete architecture of the network is embedding_layer (900001×200) → dropout(0.4)

→ conv_1 (600 filters) → relu → conv_2 (300 filters) → relu → flatten →
dense(600) → relu → dropout(0.5) → dense(1) → sigmoid as shown in figure 6.

• 3-Conv-NN: In this architecture we added another convolution layer with 150 filters after
the second convolution layer. The complete architecture of the network is embedding_layer

11

12 / 17

Ellipse



Figure 7: Neural Network Architecture with 3 Conv Layers.

Figure 8: Neural Network Architecture with 4 Conv Layers.

(900001×200) → dropout(0.4) → conv_1 (600 filters) → relu → conv_2

(300 filters) → relu → conv_3 (150 filters) → relu → flatten → dense(600)

→ relu → dropout(0.5) → dense(1) → sigmoid as shown in figure 7.

• 4-Conv-NN: In this architecture we added another convolution layer with 75 filters after the
third convolution layer. We also increased max_length of the tweet to 40 going by the
fact that the length of largest tweet in our pre-processed dataset is about 40 words. The
complete architecture of the network is embedding_layer (900001×200) → dropout(0.4)

→ conv_1 (600 filters) → relu → conv_2 (300 filters) → relu → conv_3

(150 filters) → relu → conv_4 (75 filters) → relu → flatten → dense(600)

→ relu → dropout(0.5) → dense(1) → sigmoid as shown in figure 8.

We notice that each successive CNN model is better than the previous one with 1-Conv-NN,
2-Conv-NN, 3-Conv-NN and 4-Conv-NN achieving accuracies of 82.40, 82.76, 82.95 and 83.34 re-
spectively on Kaggle public leaderboard.

4.10 Recurrent Neural Networks

We used neural networks with LSTM layers in our experiments. We used a vocabulary of top 20000
words from the training dataset. We used the dense vector representation for training our models.
We pad or truncate each dense vector representation to make it equal to max_length which is a
parameter we tweak in our experiments. The first layer of our network is the Embedding layer
which as described in section 4.9 We test two different types of LSTM models.

• Random Embedding Initialization: In these models, we use a word embedding dimension of
32 and train the embeddings from scratch. The embedding layer is followed by an LSTM
layer where we experimented with different number of LSTM units. The LSTM layer is
followed by a fully-connected layer with 32 units and relu activation. Finally, the output is
a single value with sigmoid activation. We also add dropouts of 0.2 after embeddings layer
and the penultimate layer to regularize the network.

• Embeddings Seeded with GloVe: In these models, we use a word vector dimension of 200
instead and seed it with GloVe word vectors provided by the StanfordNLP group. The word
embeddings are fine tuned during the course of training. We follow the embeddings layer
with an LSTM layer which is followed by a fully-connected layer with relu activation. Finally,
the output is a single value with sigmoid activation. We add dropouts of 0.4 and 0.5 after
embeddings layer and the penultimate layer respectively to further regularize the network.

12

13 / 17

Ellipse

Ellipse



LSTM Units Dense Units max_length Loss Embedding Initialization Accuracy
100 32 40 MSE Random 79.8%
100 32 40 BCE Random 82.2%
50 32 40 MSE Random 78.96%
50 32 40 BCE Random 81.97%
100 600 20 BCE GloVe 82.7%
128 64 40 BCE GloVe 83.0%

Table 6: Comparison of different LSTM models. MSE is mean squared error and BCE is binary
cross entropy.

Figure 9: Architecture of best performing LSTM-NN

We experimented with different values of LSTM and fully-connected units and the results are
summarized in table 6. The architecture of our best performing LSTM-NN is shown in figure
9.

We experimented with both Adam optimizer and SGD with momentum for training our net-
works and find the Adam worked better and converges faster. We trained our model using
mean_squared_error and binary_cross_entropy loss. We found that binary_cross_entropy

worked better than mean_squared_error which is expected given our binary classification prob-
lem. The results from various different LSTM models are summarized in table 6. We obtain best
accuracy of 83.0% among the different LSTM models.

4.11 Ensemble

In a quest to further improve accuracy, we developed a simple ensemble model. We first extract
600 dimensional feature vectors for each tweet from the penultimate layer of our best performing
4-Conv-NN model. Each tweet is now represented by a 600 dimensional feature vector. We use
these features to classify the tweets using a linear SVM model with C=1. We classify the tweets
using this SVM model. We then take the majority vote of predictions from the following 5 models.

1. LSTM-NN

2. 4-Conv-NN

3. 4-Conv-NN features + SVM

4. 4-Conv-NN with max_length = 20

5. 3-Conv-NN

The accuracies from each of these individual models and their majority voting ensemble are shown
in table 7. The flowchart of ensemble is shown in figure 10.

5 Conclusion

5.1 Summary of achievements

The provided tweets were a mixture of words, emoticons, URLs, hastags, user mentions, and sym-
bols. Before training the we pre-process the tweets to make it suitable for feeding into models. We

13

14 / 17

Ellipse



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

implemented several machine learning algorithms like Naive Bayes, Maximum Entropy, Decision Tree, 
Random Forest, XGBoost, SVM, Multi-Layer Perceptron, Recurrent Neural networks and Convolutional 
Neural Networks to classify the polarity of the tweet. We used two types of features namely unigrams and 
bigrams for classification and observed that augmenting the feature vector with bigrams improved the 
accuracy. Once the feature has been extracted it is represented as either a sparse vector or a dense vector. It 
has been observed that presence in the sparse vector representation recorded a better performance than 
frequency.  

Neural methods performed better than other classifiers in general. Our best LSTM model achieved an 
accuracy of 83.0% on Kaggle while the best CNN model achieved 83.34%. The model which used features 
from our best CNN model and classified using SVM performed slightly better than only CNN. We finally 
used an ensemble method taking a majority vote over the predictions of 5 of our best models achieving an 
accuracy of 83.58%. 

15 / 17



 

 

 

 

 

 

 

 

5.2 Future directions  
Handling emotion ranges: we can improve and train our models to handle a range of sentiments. Tweets 
don’t always have positive or negative sentiment. At times they may have no sentiment i.e., neutral. 
Sentiment can also have gradations like the sentence, this is good, is positive but the sentence, this is 
extraordinary. is somewhat more positive than the first. we can therefore classify the sentiment in ranges, say 
from -2 to +2. 

 Using symbols: During our pre-processing, we discard most of the symbols like commas, full-stops, and 
exclamation marks. These symbols may be helpful in assigning sentiment to a sentence. 

Discussion and Results 
Provided results for sentiment analysis on Twitter. The developed unigram model was previously 
proposed as our baseline and we reported an overall gain for two rating tasks: binary, positive 
versus negative, and triple positive versus negative versus neutral. we provided a comprehensive set 
of experiments for each of these two tasks on manually annotated data that is a random sample of 
tweets. we looked at two types of models: tree kernel and feature-based models and showed that 
both models outperform Unigram's baseline. 
 
 For our feature-based approach, we analyze features that reveal that the most important features 
are those that combine the pre-polarity of words with their part-of-speech signs. we conclude 
initially that sentiment analysis of Twitter data is not very different from sentiment analysis of 
other types. In future work, we will explore richer linguistic analyses, for example, parsing, 
semantic analysis, and subject modelling 
 
Analysing the Positive VS Negative thesis. That is a binary classification task with two classes of sentiment 
polarity: positive and negative. Used a balanced data-set of 1709 instances for each class and therefore the 
chance baseline is 50%. 
 
For all the experiments, using Support Vector Machines (SVM) and reports averaged 5-fold cross-validation 
test results. we tune the C parameter for SVM using an embedded 5-fold cross-validation on the training 
data of each fold, i.e., for each fold, we first run 5-fold cross-validation only on the training data of that fold 
for different values of C. we pick the setting that yields the best cross-validation error and use that C for  
determining test error for that fold. As usual, the reported accuracy is the average over the five folds. 

16 / 17



  

References:     
[1]       Boguslavsky,   I.   (2017).   Semantic   Descriptions   for   a   Text   Understanding   System.   In   Computational   
Linguistics   and   Intellectual   Technologies.   Papers   from   the   Annual   International   Conference   
“Dialogue”(2017)   (pp.   14-28).     
[2]  Kouloumpis,  E.,  Wilson,  T.,  Moore,  J.:  Twitter  sentiment  analysis:  The  good,  the  bad  and  the  omg!                                   
In:   ICWSM,   vol.   11,   pp.   538–541   (2011)   
  Google   Scholar   
  [3]  Saif,  H.,  He,  Y.,  Alani,  H.:  Semantic  sentiment  analysis  of  twitter.  In:  2 Cudré-Mauroux,  P.,  He�in,                                    

J.,   Sirin,   E.,   Tudorache,   T.,   Euzenat,   J.,   Hauswirth,   M.,    Parreira,   J.X.,   Hendler,   J.,     
Schreiber,  G.,  Bernstein,  A.,  Blomqvist,  E.  (eds.)  ISWC  2012,  Part  I.  LNCS,  vol.  7649,  pp.  508–524.                                 
Springer,   Heidelberg   (2012)   
       Google   Scholar   
[4]   Dos  Santos,  C.  N.,  &  Gatti,  M.  (2014,  August).  Deep  Convolutional  Neural  Networks  for                               
Sentiment     Analysis   of   Short   Texts   
[5]  Gokulakrishnan,  B.,  Priyanthan,  P.,  Ragavan,  T.,  Prasath,  N.,  Perera,  A.:  Opinion  mining  and                             
sentiment  analysis  on  a  twitter  data  stream.  In:  IEEE  2012  International  Conference  on  Advances  in                               
ICT   for   Emerging   Regions,   ICTer   (2012)   
       Google   Scholar   
[6]  Poria,  S.,  Cambria,  E.,  &  Gelbukh,  A.  (2015).  Deep  convolutional  neural  network  textual  features                               
and  multiple  kernel  learning  for  utterance-level  multimodal  sentiment  analysis.  In  Proceedings  of  the                           
2015   Conference   on   Empirical   Methods   in   Natural   Language   Processing   (pp.   2539-   2544).   
[7]     TextBlob,   2017,    https://textblob.readthedocs.io/en/dev/      
  [8]    Statista,,    https://www.statista.com/statistics/282087/number-ofmonthly-active-twitter-users/     
  [9]    Alm,   C.O.   Subjective   natural   language   problems:   motivations,   applications,          characterizations,   
and   implications.   In   Proceedings   of   the   49th   Annual   Meeting   of   the   Association   for   Computational   
Linguistics:   short   papers   (ACL-2011),   2011.   
[10]    Kiritchenko,   S.,   Zhu,   X.,   &   Mohammad,   S.   M.   (2014).   Sentiment   analysis   of   short   informal   texts.   
Journal   of   Arti�cial   Intelligence   Research,   50,   723-762.   
[11]  Duh,  K.,  A.  Fujino,  and  M.  Nagata.  Is  machine  translation  ripe  for  cross-lingual  sentiment                               
classi�cation?  In  Proceedings  of  the  49th  Annual  Meeting  of  the  Association  for  Computational                           
Linguistics:   short   papers   (ACL-2011),   2011.   
[ 12]     Jiang,   L.,   M.   Yu,   M.   Zhou,   X.   Liu,   and   T.   Zhao.   Target-dependent   twitter   sentiment   classi�cation.   
In   Proceedings   of   the   49th   Annual   Meeting   of   the   Association   for   Computational   Linguistics   
(ACL2011),   2011:   Association   for   Computational   Linguistics.     

  
  
  

  
  
  

      
  

17 / 17

https://scholar.google.com/scholar?q=Kouloumpis%2C%20E.%2C%20Wilson%2C%20T.%2C%20Moore%2C%20J.%3A%20Twitter%20sentiment%20analysis%3A%20The%20good%20the%20bad%20and%20the%20omg%21%20In%3A%20ICWSM%2C%20vol.%C2%A011%2C%20pp.%20538%E2%80%93541%20%282011%29
https://scholar.google.com/scholar_lookup?title=Semantic%20sentiment%20analysis%20of%20twitter&author=H..%20Saif&author=Y..%20He&author=H..%20Alani&pages=508-524&publication_year=2012
https://scholar.google.com/scholar?q=Gokulakrishnan%2C%20B.%2C%20Priyanthan%2C%20P.%2C%20Ragavan%2C%20T.%2C%20Prasath%2C%20N.%2C%20Perera%2C%20A.%3A%20Opinion%20mining%20and%20sentiment%20analysis%20on%20a%20twitter%20data%20stream.%20In%3A%20IEEE%202012%20International%20Conference%20on%20Advances%20in%20ICT%20for%20Emerging%20Regions%2C%20ICTer%20%282012%29
https://textblob.readthedocs.io/en/dev/
https://www.statista.com/statistics/282087/number-ofmonthly-active-twitter-users/

