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Abstract

Stereotypes are necessary for human cognition. Indeed our limited computa-
tional capabilities and our need for quick decision making require using shortcuts
for reasoning. In this work, we discuss how to formalize reasoning with stereo-
types using uncertain default rules with an anchorage degree.
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1 Introduction
Stereotypes are a widespread form of prejudice. A prejudice can be defined as “an a
priori favourable or unfavourable opinion, adopted without examination, imposed by an
environment, an education” (Montaigne, Essais, II, 12, ed. P. Villey and V.-L. Saulnier,
p.506). Prejudices have the characteristic of being more or less entrenched: the more
entrenched they are, the more difficult it is to refute them and the more they influence
reasoning.1 We can consider dogmatism, as the “extreme” prejudice, because it refers
to closed mind, rigidity, inflexible system of thought not open to new information, new
experiences or new environments [11].

Stereotypes are defined as “characterisations of social categories by which mem-
bership of a group is associated with the possession of certain attributes” (for example,
scientists are intellectuals, Scots are greedy, men like the colour blue). Consequently,
when faced with new information, prejudices can be seen as filters influenced by their
polarities. In this paper, we consider that stereotypes are anchored beliefs of the form
“if A, then generally B”, some of them are objectively mostly true like “birds fly” and

*This is a draft version, this short paper is published in the proceedings of the 16th International Con-
ference on Scalable Uncertainty Management (SUM 2024). This research is part of the MOSAIC project
financed by the European Union’s Marie Skłodowska-Curie grant No. 101007627.

1In his book The Nature of Prejudice, the American psychologist Gordon [1] argues that “prejudice is
essentially derived from the necessary mental shortcuts that the human brain uses to process the large amount
of information it receives”.
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some are not, like “French are rude”. We use default rules enriched with a degree of
certainty and anchorage to encode prejudices.

Within the framework of evidence theory, which is well suited to modeling uncer-
tain or incomplete testimonies from different sources, the notion of prejudice was intro-
duced and formalized by a state of belief [8, 5]: prejudices can evolve, and their effect
consists in weakening or fragmenting some focal sets of incoming information repre-
sented by a belief function. In this article, we choose to study stereotypes within the
logical framework of uncertain default rules [9] based on possibility theory. It provides
a natural way to encode a potentially unreliable, but still used, deduction rule without
mentioning all its exceptions. Default rules are compact ways to express generic laws
that are easy to apply even in the case of incomplete information, which is similar to
what human beings expect from stereotypes: compactness means easy to memorize
and easy to transmit to other people, genericity means easy to apply. In our approach,
a stereotype is considered to be an information that is more or less reliable and more or
less anchored, i.e., the prejudice is more or less likely to disappear or diminish. This is
why we propose to represent stereotypes using two parameters, one for reliability and
one for anchorage. The objective is to be able to simulate the behaviour of an agent
with prejudices on the one hand and more or less certain information on the other.

In section 2, we provide notations and present the notion of belief base used to
encode the knowledge and stereotypes of an agent. We end this part by recalling a
method proposed in [9] for transforming uncertain default rules into uncertain strict
rules. In section 3, we discuss the evolution of an agent’s belief base given a new piece
of information. The paper concludes with a look ahead to future work.

2 Definitions

2.1 Preliminaries
Let X , C,P be respectively sets of variables, constants, and predicates. Let L be the
first-order language s.t.:
T ∋ t := x | a,
L ∋ ϕ := P (t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | ∀x, ϕ
with x ∈ X , a ∈ C, P ∈ P a predicate of arity n and t1, . . . , tn ∈ T . The other
standard connectives (⊥,⊤,∨,→,↔,∃) are defined as usual.

A structure for the language L is a tuple S = (D, IC , IP) such that D is a non-
empty domain, IC is the interpretation of constant symbols, i.e., for every a ∈ C,
IC(c) ∈ D, IP is the interpretation of predicate symbols, i.e., for every P ∈ P of arity
n, IC(P ) ⊆ Dn. A model for the language L is a tuple M = (S, IX ) such that S is a
structure for the language L and IX : X → D is the interpretation of variables. The
interpretation of formulas over a model M is defined in the usual manner. A structure
S satisfies a formula, noted S |= ϕ, if (S, IX ) |= ϕ for every interpretation IX . In this
article, we assume that the domain D is fixed and finite.

Let Lx be the restriction of L without the use of quantifiers and with one single
variable x. Let LC be the set of closed formulas in L. We will only consider models
with finite domains, therefore every formula can be translated into propositional logic.
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We use an additional symbol⇝ that connects two formulas ϕ and ψ from Lx. Formulas
of the form ϕ⇝ ψ will be used to encode stereotypes via so-called belief rules. We will
reason with those rules following the non-monotonic reasoning approaches of default
rules [2].

Possibility theory enables us to associate two measures Π and N with a formula
φ [7]. Π(φ), called the possibility of φ, quantifies how unsurprising φ is (Π(φ) = 0
means that φ is necessarily false), and N , called the necessity, is the dual of Π defined
by N(φ) = 1 − Π(¬φ) (N(φ) = 1 means that φ is necessarily true). In possibilistic
logic, the resolution rule [6] is written (a ∨ b, ρ1); (¬a ∨ c, ρ2) ⊢π (b ∨ c,min(ρ1, ρ2)).
A possibilistic propositional belief base is a set Bπ = {(φi, ρi)}i∈[1,m] where each
propositional formula φi is associated with a weight ρi ∈ ]0, 1] representing its cer-
tainty level and such thatN(φ) ≥ ρi. To compute the maximal certainty level to attach
to a formula φ w.r.t constraints expressed in Bπ , the user can add to Bπ the clauses
corresponding to the refutation of φ with a necessity level of 1 and then deduce (⊥, ρ)
with the possibilistic resolution rule ⊢π . The weight ρ is a lower bound of the neces-
sity of φ. In the following, we use sk(Bπ) to denote the skeleton of Bπ , it is the set
of formulas of Bπ without their weights. Let Bπρ = {φi ∈ L | (φi, ρi) ∈ Bπ and
ρi ≥ ρ} denote the “ρ-cut of the possibilistic base Bπ”, i.e., formulas of Bπ (with-
out their weights) that have a certainty level higher or equal to ρ. Now, Inc(Bπ) =
max{ρ ∈ [0, 1] | Bπρ ⊢ ⊥} is called the inconsistency level of the possibilistic base
Bπ . When sk(Bπ) is inconsistent (then Inc(Bπ) > 0), a refutation using only for-
mulas strictly above the inconsistency level yields non-trivial conclusions (i.e., with
a certainty strictly above the inconsistency level). We use Bπ ⊢>Inc φ to denote a
non-trivial inference, i.e., the existence of a value ρ′ ∈ [0, 1] and a refutation from
Bπ>Inc = {(φi, ρi) ∈ Bπ | ρi > Inc(Bπ)} with (¬φ, 1) that leads to (⊥, ρ′). In the
following, ⊢π is used to represent syntactic inference between possibilistic proposi-
tional formulas.

2.2 Stereotypes
The following definition proposes a formal structure, called a belief base, to encode
both the beliefs and the stereotypes an agent uses to reason. Here the term beliefs refers
to statements the agent believes to some degree of certainty. We choose to encode
stereotypes by uncertain default rules [9] extended with an anchorage factor, below
named belief rules.

Definition 1 (Belief Base) A belief base is a tuple (B,R) such that

• B is a finite belief set: {(χj , γj) | χj ∈ LC and γj ∈ ]0, 1]}j∈J1,kK

• R is a set of belief rules {(φi ⇝ ψi, ρi, αi)}i∈J1,nK, where

– φi, ψi ∈ Lx, they share the same free variable x, φi ⇝ ψi is called a
default rule,

– ρi ∈ ]0, 1] encodes the reliability of the rule, i.e. the certainty of the con-
clusion when the rule is applied (in a non-exceptional context),
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– αi ∈ [0, 1] encodes the anchorage of the rule, i.e. how willing the agent is
to update the reliability of the rule.2

Example 1 (All birds fly) Consider a child who has only seen birds that fly and there-
fore is convinced that all birds fly, but who is open to learning that ostriches and pen-
guins are birds that do not fly. Then the stereotype (before the arrival of the evidence
about ostriches and penguins) could be encoded as follows (Bird(x)⇝ Fly(x), 1, 0).

Example 2 (French people are rude) Consider an American moving to France who
has heard that French people are rude and holds a strong belief in that statement while
being open to being convinced otherwise if given enough evidence. Then the stereotype
could be encoded as follows (French(x)⇝ Rude(x), 0.7, 0.4).

Example 3 An example of dogmatism is illustrated on ”Flat Earth Society” group
which currently has 200,000 members. This community believes that the Earth is a
flat disk, surrounded by an enormous wall of ice (Antarctica) which would prevent
us from falling when we reach the end. The flatists are convinced that we are try-
ing to impose fake belief on them. Then the stereotype could be encoded as follows
(¬FlatEarther(x)⇝ Wrong(x), 1, 1). This belief rule is characterized by maximum
reliability and anchorage what is specific to dogmatism.

2.3 Semantics of belief bases
Translation of belief bases into classical propositional logic. Let (B,R) be a belief
base. Assume that L contains a constant symbol ad for each d ∈ D. Therefore, given
a structure S = (D, IC , IP) over L such that IC(ad) = d, every closed formula of the
knowledge base can be equivalently encoded into a formula of classical propositional
logic as follows. Let the set Prop := {zP (a1,...,an) | P ∈ P of arity n and a1, . . . , an ∈
C} be a finite set of propositional variables on which is defined a propositional language
denoted LCL. Let us define the translation τ : LC → LCL as follows: τ(∀x.ϕ) =∧
d∈D τ(ϕ[ad/x]), τ(¬ϕ) = ¬τ(ϕ), τ(ϕ∧ψ) = τ(ϕ)∧τ(ψ) and τ(P (a1, . . . , an)) =

zP (a1,...,an), where ϕ[ad/x] is the formula ϕ in which every occurrence of x has been
replaced by ad. Since we only consider closed formulas, τ(P (a1, . . . , an)) is only
applied in situations where ai ∈ C. The valuation vS : Prop → {0, 1} is defined as
follows: vS(zP (a1,...,an)) = 1 iff S |= P (a1, . . . , an). vS is extended to every proposi-
tional formula in the standard way. We have S |= ϕ iff vS(τ(ϕ)) = 1 for every ϕ ∈ LC.
Belief rules can be translated in a similar way in classical propositional logic rules, by
considering that the rule φi ⇝ ψi encodes the statement ∀x, φi ⇝ ψi.

Semantics of belief bases. Let Ω denote the set of valuations associated with the
propositional language LCL. Let ω, ωi, ... denote the elements of Ω, and [ω] be the set
of formulas of LCL satisfied by ω.

2If α = 0, then the agent reasons very scientifically about the rule and will agree to update the reliability
ρ of the rule when given new trusted evidence. If α = 1, then the agent’s opinion about the reliability of the
rule cannot be changed.
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We interpret a set of default rules ∆ in terms of the Lexicographic-ordering ≻∆

(read “is more plausible than”) on valuations as defined in [3]. Given a set of default
rules of the form α ⇝ β, it is possible to compute a stratification of this set according
to their specificity: here a rule has more (or less) specificity when it describes a more
(or less) exceptional case, the rules that have no exception being in the most specific
stratum. Note that a set of default rules may not admit a stratification. We assume that
this is not the case here, i.e., that ∆ can always be stratified which is called consistent by
[10]. Pearl in [10] provides an algorithm named System Z3 to compute automatically
the strata, i.e., the subsets of formulas with the same rank. As shown in [4], the same
ordering on valuations can be obtained by interpreting each default rule φi ⇝ ψi by a
constraint Π(φi ∧ ψi) > Π(φi ∧ ¬ψi) on a possibility measure Π.

Definition 2 (Lexicographic ordering ≻∆ on Ω) Let ∆ = ∆1∪· · ·∆n be a stratified
default base with n strata ordered from the most specific stratum ∆1 to the least one
∆n, let α, β be two formulas of LCL, let ω, ω′ ∈ Ω,

• Notations: str (for “strict”) is a function that translates a set of default rules
into a set of formulas of LCL as follows str(E) =

⋃
φi⇝ψi∈E{¬φi ∨ ψi}.

• ω ≻∆ ω′ iff there exists k ∈ [1, n] s.t.
{

|str(∆k) ∩ [ω]| > |str(∆k) ∩ [ω′]| and
∀i < k, |str(∆i) ∩ [ω]| = |str(∆i) ∩ [ω′]|

The last item of Definition 2 explains the conditions for ω ≻∆ ω′: we compare by
lexicographic order the tuples obtained by computing the number of formulas satisfied
by each valuation (ω and ω′) in each stratum.

Definition 3 (Models associated to a consistent belief base) When sk(B) is consis-
tent, the set of models M associated with the belief base (B,R) (in which ∆ is the set
of rules of R without considering their reliability and anchorage) is M = {v | v is a
valuation such that v(ϕ) = 1 for all ϕ ∈ sk(B)}. Moreover, the rules enable us to
compare any valuation thanks to ≻∆ defined in Definition 2.

Example 4 We consider the first-order language L such that the predicates (indexed
with their arity) are P = {Bird1, Penguin1, Fly1, French1, Rude1} and with no
constants and the following belief base (B,R):
B = {(∀x.(Penguin(x) → Bird(x)), 0.8); (∀x.(Bird(x) → ¬French(x)), 1)},
R = {(Bird(x)⇝ Fly(x), 0.9, 0), (Penguin(x)⇝ ¬Fly(x), 0.99, 0), (French(x)⇝
Rude(x), 0.7, 0.5)}.

First, we fix a finite domain of interpretation D, then we translate B into LCL over
the variables Prop = {Bird(d), Penguin(d), Fly(d), French(d), Rude(d) | d ∈ D}.
From this, we build the set M of valuations satisfying the formulas of the belief base
B. Now we translate R (we drop the anchoring for the moment) into LCL. First,
notice that Bird(x) ⇝ Fly(x) is less specific than Penguin(x) ⇝ ¬Fly(x) since
∀x, (Penguin(x) → Bird(x)). We get RCL = ∆1 ∪∆2 with

∆1 = {Penguin(d)⇝ ¬Fly(d) | d ∈ D},
∆2 = {Bird(d)⇝ Fly(d) | d ∈ D} ∪ {French(d)⇝ Rude(d) | d ∈ D}.

3In this paper, the indices of the strata are considered in reversed order compared to system Z.
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Consider D = {a, b, c} and v1, v2 ∈ M such that v1(Penguin(a)) = v1(Bird(b)) =
v1(French(c)) = v1(Fly(b)) = v1(Rude(c)) = 1, v1(Fly(a)) = 0, and v2(Penguin(a))
= v2(Bird(b)) = v2(French(c)) = v2(Fly(b)) = 1, v2(Fly(a)) = v2(Rude(c)) = 0.
Then, we get v1 ≻∆ v2, since
|str(∆1) ∩ [v1]| = |{¬Penguin(x) ∨ ¬Fly(x)}x∈{a,b,c}| = 3
|str(∆2) ∩ [v1]| = |{¬Bird(x) ∨ Fly(x)}x∈{b,c} ∪ {¬French(x) ∨ Rude(x)}x∈{a,b,c}}| = 5
|str(∆1) ∩ [v2]| = |{¬Penguin(x) ∨ ¬Fly(x)}x∈a,b,c}| = 3
|str(∆2) ∩ [v2]| = |{¬Bird(x) ∨ Fly(x)}x∈{b,c} ∪ {¬French(x) ∨ Rude(x)}x∈{a,b}}| = 4.

In [9], an algorithm is proposed to translate a set of uncertain default rules U∆ of the
form (φ ⇝ ψ, ρ) into a set of classic formulas associated with weights representing
a lower bound of the necessity of the rule. Since default rules enable us to reason
by assuming a non-exceptional situation, first each rule is rewritten into a formula
(φ∧

∧
i∈[1,k] ¬ei → ψ, ρ) where e1, . . . , ek are exceptions to this rule. For computing

exceptions, the algorithm starts from the second most specific stratum U∆2 (since the
rules of U∆1 have no exception). At stratum U∆s each rule can only admit exceptions
in strata lower than s. Adapted to our context where we consider also a belief base
B, exceptions to a rule (φ ⇝ ψ, ρ) are rules (ei ⇝ ψi, ρi) ∈ U∆ with compatible
premises but incompatible conclusions (i.e., B∪Ts−1∪{(φ∧ei,min(ρ, ρi))} ⊬>Inc ⊥
and B ∪ Ts−1 ∪ {(ψ ∧ ψi,min(ρ, ρi)} ⊢>Inc ⊥4), where Ts−1 is the set of strict rules
with explicit exceptions (and with certainty levels) coming from the translation of the
rules of all the previous strata U∆1 ∪ . . . ∪ U∆s−1. In addition to the translation of a
rule, (φ ⇝ ψ, ρ), k formulas of the form φ → ¬ei are added in order to impose that
when nothing says the contrary, the situation is not exceptional. [9] showed that each
new formula φ → ¬ei can be attributed a degree equal to min(ρ, ρi). Let tr(B,U∆)
be the translation of a set of uncertain rules U∆ given a possibilistic base B. In our
setting, rules have also an anchorage, we transfer the anchorage to the new formulas
in the same way that the degree is transferred, more precisions are given in the next
section.

Example 5 (Exemple 4 continued) For the moment we forget the anchoring degrees

B =

{
(Penguin(x) → Bird(x), 0.8)
(Bird(x) → ¬French(x), 1)

}
, R =


(Penguin(x)⇝ ¬Fly(x), 0.99) U∆1

(Bird(x)⇝ Fly(x), 0.9)
(French(x)⇝ Rude(x), 0.7) U∆2


In order to rewrite R it is enough to consider the two rules of U∆2 and find their excep-
tions, here only Bird(x) ⇝ Fly(x) admits exceptions (in stratum U∆1) which gives:

tr(B,R) =

{
(Penguin(x) → ¬Fly(x), 0.99, 0) (Bird(x) ∧ ¬Penguin(x) → Fly(x), 0.9, 0)
(French(x) → Rude(x), 0.7, 0.5) (Bird(x) → ¬Penguin(x), 0.9, 0)

Note that here, forgetting anchoring, B ∪ tr(B,R) is consistent: Inc(B ∪ tr(B,R)) = 0.

3 Arrival of a new piece of information
In this section, we propose a strategy for considering the arrival of a new piece of
information ϕ ∈ LC with a certainty degree γ. Since the anchorage reinforces the

4Or equivalently Inc({(φ ∧ ei,min(ρ, ρi))} ∪ B ∪ Ts−1) = Inc(B ∪ Ts−1) and Inc({(ψ ∧
ψi,min(ρ, ρi))} ∪ B ∪ Ts−1) > Inc(B ∪ Ts−1)
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certainty of a rule, when ϕ is incompatible with a rule, we compare its certainty level
γ with the aggregation of the level of certainty and the anchorage of this rule and
react accordingly either to reject ϕ or to modify the rule. This aggregation, denoted
⊕, can be a simple addition or a more sophisticated operation. We leave its study for
further research. Let us introduce the transformation tra of the belief base (B,R) into
a possibilistic base {(ϕi, γi)}i ∈ [1,m] by aggregating certainty and anchorage levels:

tra(B,R) =

{
(ϕi, γi) ∈ L × [0, 1]

∣∣∣∣ (ϕi, γi) ∈ B or
(ϕi, ρi, αi) ∈ tr(B,R) and γi = ρi ⊕ αi

}
Given a belief base (B,R), compute B′ = tra(B,R)

1. If ϕ is inconsistent with the 1-cut of B′, B′
1, i.e., sk(B′

1) ∪ {ϕ} ⊢ ⊥, then ϕ is
not integrated

2. If (ϕ, γ) is compatible with (B,∆), in other words, if the level of inconsistency
do not increase when adding (ϕ, γ), i.e., Inc(B′ ∪ {(ϕ, γ)}) = Inc(B′) then
(ϕ, γ) is added to B′ giving (B′ ∪ (ϕ, γ),R)

3. Otherwise (when the new information is more certain than some contradicting
formula of (B,∆)), let us consider the rule (i.e., the formula of B′ that comes
from a rule (φi ⇝ ψi, ρi, αi) ∈ R) with a maximum certainty in B′, violated by
ϕ i.e, B′ ⊢>Inc ϕ→ (φi ∧ ¬ψi) 5 and ρi ⊕ αi is maximum among such rules

(a) if γ < ρi ⊕ αi the piece of information ϕ is rejected (but the anchoring of
the rule can be decreased φi ⇝ ψi, because even rejected information may
influence the reasoner)

(b) otherwise a rule (φi∧ϕ⇝ ¬ψi, γ, 0) is added encoding this exception. The
certainty and anchorage of φi ⇝ ψi are lowered yielding (φi ⇝ ψi, ρ

′
i, α

′
i)

such that (ρ′i ⊕ α′
i < ρi ⊕ αi). The same exception adding and degree

lowering is done for all the remaining rules violated by ϕ.

This strategy proposes a way to take anchorage into account when revising a belief
base. In our opinion, anchorage must reinforce the barrier to the addition of an excep-
tion. Hence, to determine whether to add an exception or not, we must compare the
certainty level (γ) of the new information with the certainty of the intern rule combined
with its anchorage (ρ⊕α). In the case where the information is stronger, the anchorage
must decrease and the exception be added. The operator ⊕ should translate an effect of
reinforcing certainty (thus preventing a rational reasoning which would possibly allow
for a revision). As soon as a rule dismantles the information then it is discarded, hence
it is not necessary to look at less important rules violated by this information.

Example 6 (Example 4 continued) Assume that we take ⊕ = max, then the rewrit-
ing of the belief base gives a new possibilistic base B′ = tra(B,R) which contains:
(Bird(x) → ¬French(x), 1) (Bird(x) → ¬Penguin(x), 0.9)
(Penguin(x) → ¬Fly(x), 0.99) (Penguin(x) → Bird(x), 0.8)
(Bird(x) ∧ ¬Penguin(x) → Fly(x), 0.9) (French(x) → Rude(x), 0.7)

5When sk(B′) is consistent, it amounts to check whether M |= ϕ→ (φi ∧ ¬ψi).
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We first consider the piece of information French(Jeanne)∧Bird(Jeanne) mean-
ing that we have an individual Jeanne that is both a human (who is French) and a bird.
Then this information is not integrated (case 1) because it is contradictory to the only
formula of certainty 1. Now, assume that ϕ0 = (Rude(x) → RudeUS(x) ∧ RudeF(x)
with certainty 1 arrives, meaning that any rude person is rude for everyone, i.e, she
is rude for French people and for US citizens. This formula being consistent with
all the formulas of B′, thus Inc(B′ ∪ (ϕ0, 1)) = Inc(B′) = 0. Assume now, that
the user learns that Jeanne is French and not considered rude by French people:
ϕ1 = French(Jeanne) ∧ ¬RudeF (Jeanne) with a certainty degree of 0.8. Then
we apply the case 3b, ϕ1 violates the rule (French(x) ⇝ Rude(x), 0.7, 0.4) and
0.8 > 0.7 = 0.7⊕0.4 this leads us to add the rule (French(x) ∧ French(Jeanne) ∧
¬RudeF (Jeanne)⇝¬Rude(x), 0.8, 0), i.e., (French(Jeanne)∧¬RudeF (Jeanne)
⇝ ¬Rude(Jeanne), 0.8, 0), namely, Jeanne who is not considered rude in France is
not rude at all (here, we propose to consider the anchorage as null due to the novelty
of this information). Additionally we have to reduce the certainty and anchorage of the
initial rule. We could get for instance (French(x)⇝ Rude(x), 0.65, 0.3) in such a
way that 0.65⊕ 0.4 < 0.7⊕ 0.4 (witch holds when ⊕ = max).

Note that this is a preliminary example, to explain what we have planned, but for
the moment we have only considered the decrease in anchorage and not its increase,
since this amounts to studying the initial creation of prejudice, which is a complex,
social phenomenon that we are leaving aside for the moment.

4 Concluding remark
This article explores the way to encompass the handling of stereotypes in a logical
framework. We showed that disposing of a framework where we can express both
defeasibility, certainty and anchorage strength would be suitable for this purpose. The
possibilistic setting seems suitable for dealing with these three notions. A lot of work
remains to be done in order to consolidate the foundations of this new line of research.
Two crucial points are the study of the different ways of defining the aggregation of
certainty and anchorage, and the management of the reduction of these degrees.
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