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Abstract

We present a new scheme for storing shortest path information for a polyhedron. This
scheme is obtained by applying the constant storage scheme of Han and Saxena [4] on the
outward layout of Sharir and Schorr [8]. We achieve constant storage and O(logn+k) time
for computing the shortest path from the source point to a query point on the polyhedron,
where k is the number of polyhedron edges this shortest path passes through. This improves
the result of Chen and Han [3] which uses O(nlogn/d) storage and O(dlogn/logd + k)
time, where d is an adjustable parameter.

1 Introduction

The single source shortest path problem on the surface of a polyhedron has been studied by
a number of researchers [2, 5, 6, 7, 8]. Initially Sharir and Schorr solved this problem for a
convex polyhedron [8], their solution can be stored in O(n?) space such that, for a query point
p = (f, ¢), where f is the face point p lies on and c is the position of p on f, the shortest distance
from the source to p can be computed in O(logn) time and the edge sequences of the shortest
path can be computed in O(logn + k) time, where k is the number of edges of the polyhedron
the shortest path passes through. Followed by this Mount achieved a result of O(nlogn) storage
and O(logn+k) time for computing the shortest path from the source point to a query point [7].
Mount showed that the problem of storing shortest path information can be treated separately
from the problem of computing the shortest paths. What Mount observed is that the edges of
the polyhedron, after certain processing, form a total order according to their “distance” from
the source. Later Chen and Han showed that shortest path information for a polyhedron can
be stored in O(nlogn/logd) space which supports the computing of shortest path distance in
O(dlogn/logd) time and shortest paths in O(dlogn/logd+ k) time, where k is the number of
polyhedron edges the shortest path passes through and 1 < d < n is an adjustable integer [3].
Sharir and Schorr [8] and Mount [6, 7] only studied algorithms for convex polyhedron. Chen
and Han’s algorithm [3] works for nonconvex polyhedron as well.
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In this paper we show an algorithm that uses constant storage for computing the shortest
path distance in O(logn) time and shortest path in O(logn + k) time. We use the constant
storage algorithm of Han and Saxena [4] and apply to the outward layout of Sharir and Schorr

The rest of the paper is organized as follows. In Section 2 we explain the two layouts of a
convex polyhedron, one is due to Sharir and Schorr [8] which is called the outward layout [2, 3],
the other is due to Chen and Han which is called the inward layout [2]. Note that Agarwal et
al. discovered this inward layout independently [1] and called it star unfolding.

In Section 3 we present our main result, namely the scheme of storing the shortest path
information in constant storage for computing the shortest path distance in O(logn) time and
the shortest path in O(logn + k) time.

2 Inward and Outward Layouts

The planar layout of the surface of a convex polyhedron due to Sharir and Schorr is obtained
by cutting all the ridge lines [8]. It is called the outward layout [2]. Ridge lines are the loci
of ridge points while a ridge point is a point for which there are more than one shortest paths
from the source point. After cutting the ridge lines the surface of the polyhedron can be laid
out on a plane. This layout is a star shaped polygon with the edges consisting of ridge lines.
The vertices of the layout polygon are either vertices of the polyhedron or the Voronoi vertices
on the ridge lines after being transformed into the layout plane. If two ridge lines intersect each
other at a vertex, they form a notch. An example of such a layout is illustrated in Figure 1.

There is another layout of the surface of a polyhedron due to Chen and Han [2]. This layout
is called the inward layout [2]. This layout is obtained by cutting the shortest paths from the
source point to the vertices of the polyhedron. This layout is also a star shaped polygon with
edges consisting of the shortest paths from the source point to vertices of the polyhedron. The
vertices of the polygon are either the vertices of the polyhedron (after being transformed into
the plane) or the images of the source point (there are O(n) points which are images of the
source point). Note that when a vertex of the polyhedron is also a ridge point, the shortest
paths to this vertex form closed curves. A notch is formed in the layout when a shortest path
to a vertex is cut. An example of such a layout is shown in Figure 2.

The layout due to Sharir and Schorr is called the outward layout [2] (for shortest paths
emanate from the center, i.e., the source point, outwards toward the destinations) and the
layout due to Chen and Han is called the inward layout [2] (where a shortest path from the
source to a destination going inward into the interior of the layout polygon).

In a layout the vertices of the polyhedron except the images of the source point (which can
be a vertex of the polyhedron as well) can be arranged in a circular order. In the outward
layout this circular order has been shown by Sharir and Schorr [8] and Mount [6]. The same
circular order used in the outward layout can be used in the inward layout to order the vertices
of the polyhedron. This is because if we cut along the shortest paths to the vertices of the
layout polygon in the outward layout (all these shortest paths are contained within the layout
polygon) and then coalesce along the ridge lines of the layout polygon we obtain the inward
layout. Observe that if we assume that the circular order in the outward layout is counter-
clockwise then the circular order in the inward layout is clockwise.

Suppose we connect the adjacent vertices in the circular order by a straight line segment in
the layouts (in case of a nonconvex polyhedron, they could be hyperbolas). These line segments
form a closed curve. This closed curve decomposes each layout polygon into two parts, one
contains the source (we shall call it the arctic) while the other does not contain the source
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(we shall call it the antarctic). We shall call this closed curve the equator of the polyhedron
with respect to the source point. Note that the equator is determined by the polyhedron and
the source point. This equator can be used to devise a scheme for storing the shortest path
information for a polyhedron as shown by Chen and Han [3].

The words arctic, antarctic and equator were used in [2, 3]. Chen and Han recalled that
the use of words arctic and equator was not started from their papers [2, 3]. At the time they
wrote papers [2, 3] they got the words arctic and equator from other researchers’ paper(s) for
describing the outward layout and then used these words in their papers [2, 3]. Because this
information was neglected in [2, 3] and thus we note it here. We have tried to identify the
paper(s) that introduced words arctic and equator but have not solved this issue yet before the
deadline for us to uploading the final version of this paper to CATA’2024. We will solve this
issue before we submit this paper for journal publication.

Chen and Han are basically sure that the word antarctic was added by them for describing
the inward layout [2, 3] in addition to the words arctic and equator used before their papers for
describing the outward layout.

The words outward layout and inward layout are from Chen and Han and were first used in
[2, 3].

The vertices of the outward layout polygon are vertices of the polyhedron and the vertices
of the Voronoi diagram. There are a total of O(n) vertices. We connect each of these vertices
with the source by the shortest paths to the source. We thus obtain O(n) ordered “triangles”
by the circular order as shown in Figure 3.

3 Storing Shortest Path Information in Constant Storage
for Computing Shortest Paths

We now make use of the outward layout by Sharir and Schor as in Figure 1 to present the scheme
for reducing storage usage for shortest path information. Han and Saxena [4] showed that n
real numbers can be stored in 5 real numbers, and each original real number can be fetched in
O(logn) time. Once we obtained the outward layout[8] with triangulation. We initially store
the angles made by these O(n) triangle edges emanating from the source point in order. They
would take O(n) storage and we pack them into 5 real numbers as in [4]. These angles would
be stored in the form of a tree compacted into 5 real numbers. When we compute the shortest
distance for a query point p, we find the triangle of the subdivision p lies in by using binary
search of the angle of the ray from the source point to p against the angles of the edges of
triangles emanating from the source point. Thus, this takes O(logn) time. Because the angles
of the edges of the triangles are sorted and arranged at the leaves of a binary tree and then
packed into 5 real numbers [4] and thus we can decompose the 5 real numbers at the root of the
binary tree and downwards along a tree path from the root to a leaf and thus find the triangle
T the query point p locates in O(logn) time.

The edge segments of the polyhedron intersects T' was sorted by the distance of the end
point of these edge segments on one edge of the T that emanates from the source point and then
arranged at the leaves of a binary tree E, and then packed into 5 real numbers [4]. Then these
information of triangles are packed into 5 real numbers as shown in the previous paragraph.

We first use O(logn) time to identify triangle T' where the query point p locates. We then
find the value of k which is the number edge segments of the polyhedron the shortest path from
the source to the query point passes through. This can be done using binary search on E and
it takes O(logn) time.
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We only need to decompose out the first k edge segments that the shortest path from the
source point to the query point passes through from E. These k edge segments are at the left-
most of leaves of E. We first identify the lowest common ancestor A of these k edge segments
in E. If the number of leaves of the subtree rooted at A is L then k > L/2. Thus we decompose
all the leaves of the subtree rooted at A and this should take O(logn + k) time. Thereafter we
find the intersections of the shortest path from the source point to the query point with these
k edges in O(k) time.

Main Theorem: A polyhedron with n points can be stored in constant storage to support
O(log n) time for computing the shortest distance from the source to a query point and O(log n+
k) time for computing the shortest path from the source to this query point.

4 Conclusions

We have presented a new scheme for storing shortest paths information for a polyhedron in
constant storage to support O(logn) time for computing the shortest distance from the source
to a query point p and O(logn + k) time for computing the shortest path from the source to
p, where k is the number of edges of the polyhedron the shortest path passes through. We are
studying whether the logn factor in the time can be reduced further but it looks like it is not
trivial.

References

[1] P. Agarwal, B. Aronov, J. O’'Rourke, and C. Schevon. Star unfolding of a polytope with applications.
SIAM Journal on Computing, Vol. 26, No. 6, pp. 1689 - 1713, 1997.

[2] J. Chen and Y. Han. Shortest paths on a polyhedron. Proc. of 1990 ACM Symposium on Computa-
tional Geometry, 360-369. This paper was later published on International Journal of Computational
Geometry and Applications as:

J. Chen and Y. Han. Shortest paths on a polyhedron, Part I: Computing shortest paths. Inter-
national Journal of Computational Geometry and Applications, Vol. 6, No. 2, pp. 127-144, June
1996.

[3] J. Chen and Y. Han. Storing shortest paths for a polyhedron. Proceedings 1991 International
Conference on Computing and Information, May 1991). Lecture Notes in Computer Science 497,
169-180.

[4] Y. Han and S. Saxena. Storage in computational geometry. arXiv:2302.11821, 2023.

[5] D. M. Mount J. S. B. Mitchell and C. H. Papadimitriou. The discrete geodesic problem. SIAM J.
Comput., Vol. 16, No. 4,647-668, Aug. 1987.

[6] D. M. Mount. On finding shortest paths on convex polyhedra. Tech. Report 1496, Dept. of Computer
Sci.,Univ. of Maryland, Baltimore, MD, 1985.

[7] D. M. Mount. Storing the subdivision of a polyhedral surface. Proc. 2rd ACM Symposium on
Computational Geometry, Yorktown Heights, NY, June 2-4, 1986.

[8] M. Sharir and A. Schorr. On shortest paths in polyhedral spaces. STAM J. Comput., 15(1986), pp.
193-215., 1986.

99



Constant Storage for Computing Shortest Paths for a Polyhedron

equator

source *

notch

Figure 1: A polygon and its outward layout
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Figure 2: A polygon and its inward layout
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Figure 3: Triangulation and the circular order
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