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Abstract 

In this work a new phenomenon called polaractivation is introduced. Polaractivation is 
based on quantum polar encoding and the result is similar to the superactivation effect — 
positive capacity can be achieved with zero-capacity quantum channels. However, 
polaractivation has many advantages over the superactivation: it is limited neither by any 
preliminary conditions on the quantum channel nor on the maps of other channels involved 
in the joint channel structure. We prove that the polaractivation works for arbitrary zero 
private-capacity quantum channels and we demonstrate, that the symmetric private classical 
capacity of arbitrary zero private-capacity quantum channels is polaractive. An immediate 
practical application of the proposed effect is to private quantum communications, quantum 
repeater networks and long-distance quantum communications. 

1   Introduction 

In this work a new phenomenon called polaractivation is introduced. The result of our effect is similar to 
the superactivation effect. The superactivation (Smith and Yard, 2008) is an extreme violation of additivity 
(Hastings, 2009) of quantum channel capacities and enables the use of zero-capacity quantum channels for 
communication (Brandao et al, 2011). The superactivation effect was discovered by Smith and Yard in 
2008 (Smith and Yard, 2008), (Smith et al., 2011), and they have shown this effect works for the quantum 
capacity. Later, these results were extended to the classical zero-error capacity (Cubitt et al., 2009), (Duan, 
2009) and to the quantum zero-error capacity (Cubitt and Smith, 2009). An important difference between 
superactivation and the polaractivation that polaractivation is limited neither by any preliminary conditions 
on the initial private capacity of the channel nor on the maps of other channels involved to the joint channel 
structure (Gyongyosi and Imre, 2012a), (Gyongyosi and Imre, 2012b), (Gyongyosi and Imre, 2012c). We 
present that the proposed polaractivation requires only the quantum polar encoding scheme to activate the 
symmetric private classical capacity of any quantum channel.  

The polar coding technique was developed for classical systems to achieve the symmetric capacity of a 
classical noisy communication channel. The symmetric capacity is the highest rate at which the channel can 
be used for communication if the probability of the input letters is equal (Arikan, 2006), (Arikan, 2009), 
(Arikan, 2010), (Arikan, 2010a), (Arikan and Telatar, 2009), (Hussami et al, 2009), (Korada et al, 2010), 
(Mahdavifar and Vardy, 2010), (Mori and Tanaka, 2009), (Sasoglu et al.,2009). The channel polarization 
scheme introduced by Arikan (Arikan, 2009) for classical channels is a revolutionary encoding and 
decoding scheme, which makes possible the construction of codewords to achieve the symmetric capacity. 
Recently, in the quantum setting, the polar coding scheme was studied by Wilde and Guha (Wilde and 
Guha, 2011), by Renes et al. (Renes et al., 2011), by Wilde and Renes (Wilde and Renes, 2012), (Wilde and 
Renes, 2012a). As was shown in (Renes et al., 2011) and (Wilde and Renes, 2012) an efficient scheme also 
can be constructed for the quantum communication channels; however. Here, we show that the quantum 

 



polar coding using the results of (Wilde and Guha, 2011) and (Renes et al., 2011) can be used for the 
polaractivation of private classical capacity.  
In this paper we present that the polar coding scheme can be used to transmit classical information privately 
over noisy quantum channels; however, initially, these channels are so noisy that they cannot transmit any 
classical information privately. We demonstrate that quantum polar coding can be used for the 
polaractivation of private classical capacity of any quantum channels i.e. the private classical capacity is 
polaractive. Furthermore, due to the proposed polaractivation any quantum channel that had zero private 
classical capacity initially, can be used for private communication. 

This paper is organized as follows: In Section 2, we review the basic definitions of delivering private 
classical communication over a quantum channel. Section 3 introduces the polar encoding scheme. In 
Section 4, we interpret our theorems and the proofs regarding the proposed quantum polar codeword 
construction scheme and the security of the proposed encoding. Finally, in Section 5, we conclude the 
results.  

2   The Symmetric Private Classical Capacity of Quantum 
Channels 

In this section we overview the basic definitions and formulas related to the private classical 
communication over noisy quantum channels. 

2.1   The Classical Capacity 

The classical capacity  of a quantum channel  describes the maximum amount of classical 

information that can be transmitted through the channel. The Holevo-Schumacher-Westmoreland (HSW) 
theorem (Holevo, 1998), (Schumacher and Westmoreland, 1997) defines this quantity for product state 
input (i.e. entanglement is not allowed between input quantum bits) and single channel use as 
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where     logTr   S  is the von Neumann entropy, and   is called the Holevo quantity and the 

maximum is taken over all  ,i ip   ensembles of input quantum states (Gyongyosi and Imre, 2012), (Imre 

and Gyongyosi, 2012). The HSW theorem is a generalization of Shannon’s the classical noisy channel-
coding theorem. However, the HSW theorem raised a lot of questions regarding the transmission of 
classical information over general quantum channels (Hayashi and Nagaoka, 2003), (Imre and Balazs, 
2005), (Imre and Gyongyosi, 2012a), (Gyongyosi and Imre, 2012c), (Gyongyosi and Imre, 2012d). 
Hastings showed that the entangled inputs can increase the amount of received classical information 
(Hastings, 2009), and defined as   
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where  denotes the n uses of the quantum channel .  n 

 



2.2   The Private Classical Capacity 

The private classical capacity  of quantum channel  describes the maximum rate at which the 

channel is able to send classical information through the channel between Alice (A) and Bob (B) in secure 
way i.e. without any information leaked about the plain text message to an malicious eavesdropper Eve (E) 
(Devetak, 2005), (Lloyd, 1997), (Shor, 2002).  

 P  

The block diagram of a generic private quantum communication system is depicted in Fig. 1. The first 
output of the channel belongs to Bob and denoted by  B A    while the second “receiver” is the 

environment (i.e., the eavesdropper) E, with state  E AE  . In Fig. 1, we also depict the encoding 

scheme. Alice encodes her classical information into the phases of quantum bits using the X basis and than 
into their amplitudes using the Z basis. The phase carries the data and the amplitude is the key for the 
encryption i.e., Alice first encodes the phase (data) and then the amplitude (key). Bob applies it in the 
reverse order using his successive and coherent decoder, as was shown by Boileau and Renes in (Boileau 
and Renes, 2009) and (Renes et al., 2011): he first decodes the amplitude (key) information in the Z basis. 
Then Bob continues the decoding with the phase information, in the X basis.  
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Fig. 1. Private communication of Alice and Bob over a quantum channel in presence of an eavesdropper Eve. The quantum 
channel has positive private classical capacity if it can send both phase and amplitude. 

 
Based on this model the single-use private classical capacity can be expressed as the maximum of the 
difference between  which measures the classical information transmitted between Alice and Bob, 

and  that represents the information leaked to the eavesdropper (Devetak, 2005) 
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The optimization has to be taken over all possible source distributions and encoding schemes  ,i ip   of 

Alice  A i  . 

The corresponding information diagram can be seen in Fig. 2, where conditional entropies are denoted by 

 H    and H is the Shannon entropy (Brandao and Oppenheim, 2010). 
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The private capacity can be rewritten using the Holevo quantity as
and Westmoreland, 2000):  

 follows (Devetak, 2005), (Schumacher 
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and  
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 n-lengt

In case of asymptotic capacity Alice’s encoding transformation is amended with 

 : 0,1
l n                                                      (8) 

which takes the l-length input M, and from this message it constructs an h classical message before 
feeding transformation X and Z. Next, the produced A

 0,1

  quantum codeword having n qubit of length is 

transmitted over the noisy quantum channel by the n channel uses.  

2.3   The Symmetric Private Classical Capacity 

In our scheme, the recursive channel construction is the key ingredient to ieving the polarization effect, 
which splits the channels into two easily separable sets—one that ca

ach
nnot achieve the symmetric private 

capacity   (i.e., these channels will have   symP  0symP  ) and a second set, in whic

 perfectly can achieve the symm e capacity

h the channels almost 

completely and etric privat   symP  . The symmetric classical 

 of the quantum channel is defined for uniform input distribution. For the symmetric private 
classical capacity the same condition holds, and it can be expressed as follows (Smith et al., 2011):  
capacity
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where  is the quantum mutual information function between Alice and Eve.  

According to our encoding scheme, the 
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capacities are defined as the sum of the phase and amplitude channels 
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where  d E B  is the degradation channel,  is the channel concatenation, while y and z denote Bob’s 

, then her channel 



able  Eve E Aand Eve’s output.  If Eve’s channel is degrad  can be expressed as the 

cascade of Bob’s channel  Bob B A  and the prefix degradation channel  d E B . For the error 

probabilities of the degraded quantum channel Eve , the relation Eve Bobp p  holds. For a non-degraded 

quantum channel Eve , Eve Bobp p . In the proposed scheme it is assumed that Eve’s channel is 

symmetric; however, if Eve’s channel is not symmetric, a prefix channel can be used to have this property 
(Koyluoglu and El Gamal, 2010).  

3   Quantum Polar Coding 

Polar codes belong to the group of error-correcting codes (Arikan, 2009). They introduce no redundancy 
erate on co rds bit o e  ach
l discrete m le nels ( e  the

by m
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The difference between the two channels is the knowledge of input 1u  on Bob’s side. For the ‘bad’ channel 

  the input 1u  is unknown. The recursion can be repeated over k levels, with 2n k  channel uses. The two 

independent   chann ls are combined into a higher-level channel, denoted by . The ‘bad’ and ‘good’ 2 e
channels from are defined as follows: 
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Private classical communication over these structures means the following: in her message A, Alice sends 
her encoded private message M only over channels  ,  , while the remaining parts of A are transmitted 

via  ,  . Moreover, after the channels are being polarized, the fraction of  ,   and  ,   

will be equal to the symmetric private classical capacity  symP  . In our case, the input quantum channels 
n�  are insecure, i.e., they cannot transmit the amplitude and phase information simultaneously; however, 

using polar encoding, the parties will be able send both the amplitude and the phase over n� .  

4   The Polaractivator En ing Scheme  

The proposed polar coding scheme assumes the use of noisy quantum channels with amplitude and phase 
coding, similar to the scheme of Renes et al. (Renes et al., 2011). The parties can use either the amplitude 
or the phase to encode classical information; however, the trans is ion of private classical information 
requires both amplitude and phase coding simultaneously. If Alice wants to send Bob classical (i.e., not 
private) information, the code her information either into the amplitude or phase using the Z an  
X bases. It is possible for quantum channels, since for these channels the pola
amplitude and phase (Renes et al., 2011). On the other hand, if she wants to send 

cod
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her classical information 
privately, then she has to encode her information simultaneously in the amplitude (in the Z basis) and in the 

istandl and Winter (Christandl and Winter, 2005), if Alice can send 
lso send entanglement to Bob.  

phase (in the X basis). As shown by Chr
both amplitude and phase, then she can a

The successful decoding of the amplitude information (key) is a necessary but not sufficient condition 
for the positive private classical capacity 0P  ; the  symP   symmetric private capacity is calculated only 

fr  the symmetric classical capacity  .
phase

symC  , which canom  be achieved by the phase information. The 

input quantum channels are so noisy that they cannot transmit the amplitude and phase information 
simultaneously; however, they can send the amplitude or the phase, but not both of them at the same time 
(i.e., these channels have some symmetric classical capacity   0symC  , but have no symmetric private 

classical capacity, i.e.,   0symP  ). First we show that with the help of the polarization effect, the symP  

symmetric private classical capacity of these noisy channels can be polaractivated. 

 



4.1   Theorems and Proofs 

In this section we present the theorems and the proofs regarding the polaractivation of private classical 
capacity of zero private-capacity quantum channels. 

 
Theorem 1. The polaractivation of the symmetric private classical capacity 
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     
 

  .                               (31)  

 

 

From this result, for the set  , ,in amp phaseS       : 

1

1
in EveS n p

n     ,    

and 

                                   (32) 

     

1
.in EveS n p

n 

, ,

1

amp phaseH M  

   

Using 

    

                                          (33) 

inS e capacity can be, it follows that the following privat  achieved between Alice and Bob, 

assuming n channel uses:  
1

sym BobP C
n   ,                                     (34) 

and, as shown by Arikan (Arikan, 2009), this result is g
ing conditions are sat r the l valuable bits from the g

uaranteed by those codewords for which the 
follow isfied. Fo iven codeword ins  selected from inS , a 

 ,  i n
n Bobseq C e for i n



    sequen  ce is generated using the initial condition 1
1 Eveseq p :  

        

 

2 1   

 .

i i i
l

    

2

2

2
2

2

2 ,

,  

l l

i i
l l

seq seq l

seq seq

seq for i

for i l

   


                                       (35) 

For this sequence, as n    

   H M E H M   

s a corollary, (32) and (33) are trivially satisfied, which concludes the proof on the achievability of  
codeword 

                                     (36) 

and, a

ins  from the set . The sets  and  are disjoint, thus inS  1 2

1 2 1 2      ,                                        (37) 

if Eve’s channel is assumed to be degraded thus since 

2

1
lim 0
n n

                                    

 and 

                                 (38) 

 2 , 0amp      with    , ,amp amp  0     , which follows from the fact that 

 2 ,amp    , where      , \ ,  amp ampn      and 2 0inS     along with 

 1 2 ,amp      . For the proposed scheme,  1 ,amp    , which proves that the defined 

codewords sets 1  and 2  are pairwise disjoint, since  

     1 2

1 1
lim , lim \ 1amp
n n

n
n n


 

      ,                                        (39) 

with  

     
   1 2

, , ,amp amp phase

\n n

        
                       (40) 

   

and  

         
    

,

, ,

amp phase

amp phase

1 2\n , 

 



 

   

   

  
                                  (41) 

 



are satisfied, i.e., the empty set of private input codewords is transformed into a non-empty set 

   , ,in amp phaseS                             

which proves that if there exists a non-empty set , then the polaractivation of private classical capacity 

s can be achiev
■ 

The proposed results on the achievable rate of secret private communicatio
channel 

                               (42) 

inS

of arbitrary quantum channel ed which concludes the proof.  

n assuming a degraded quantum 

Eve  between Alice and Bob are summarized in Theorem 2. 

Theorem 2.
 

 The symmetric private classical capacity of d
polaractivated. 

of. Assuming a degraded quantum channel 

egraded quantum channels can be 

Pro Eve , the following symP  symmetric private classical 

capacity can be achieved over the quantum channel Bob :  

 

   

1
lim max

lim max , ,

sym in

amp phase
n

P S

n

1

n n

. 
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

    

                            (43) 

First, we give the proof of symP , then for the rate symR .  Assuming 0.5  ,  

   1 2                                      (44) 
1

lim maxn
Eve

n
C

n



    .             

s result with (38), we get  Combing thi

   1

1
lim maxn

Eve
n

C
n




                                                             (45) 

and  

   
 1

1

1

n n

1 lim max .

Bob EveC C   

         

n n
  

                                                        (46) 

te s follows: The result obtained in (46) can be rewrit n a

     2

1 1
lim max lim max .n

Bob in in
n n

C S
n n



 
     S                              (47) 

ur polar coding scheme, for the B  Bhattacharya parameter, the input codewords in 1 : According to o

 1

1
: 2n n

ii n B ,   
n

                                     (48) 
 

    

where 0.5  , and 

 2

1
: 2 .n n

in iS i n B
n

      


                             (49) 


            

d (49),  codewords, we have the 
lar enco

From the definition of (48) an for the Bhattacharya parameters of these
following relation. From the po ding scheme, it follows that  

 2

1
2 n

inB S
n

  ,                                         (50)  

and for the Bhattacharya parameters of 1 : 

 1

1
1 2 2 nB

n

   .                                         (51) 

Since  

 



 1 2inS    ,                                     (52)  

the constructed codeword sets , and are disjoint sets with relatio inS , 1 , 2   n 1 2inS n    . Since 

Eve’s channel is degraded,  
1

lim 0,
n n

                                 (53) 

which concludes our proof on    for a degraded eavesdropper channel: symP 

1  lim max .sym in
n

P S
n

                                        

The rate

     (54) 

symR  can be rewritten as follows:  

   

    1
lim max , , .

n n

amp phase
n

2 2

1 1
lim max lim maxsym in inR S S    

 

n n

n
 

 


    

                                    (55) 

If Eve  is a degraded quantum channel, then achievable codewords are  

   , ,amp phase     ,                                            (56) 

s conclude that for the non-empty sets from which the proof of (43) is concluded. These result inS  the 

private classical capacity will be positive which concludes the proof on the polaractivation.  
■ 

 
The results on the achievable rate of secret private communication assuming a non-degraded quantum 
channel can be derived in similar way. From the proposed encoding scheme follows, that for the positive 

symP  symmetric capacity there exits the codeword set inS   , and the theorem is proven for any non-

degraded quantum channels. 

4.2   Polaractivated Private Capacity 

The symmetric private classical capacity of arbitrary on-degraded quantu degraded and n m channels is 
proven. The polaractivation will result in the non-empty set inS   , and the channel will be able to 

transmit classical information privately. 
symmetric channel capacities of arbitrary quantum channels requires only the 
heme and the multiple uses of the same quantum channel. The polaractivation 

works for any channel capacities, here we demonstrate the results for polaractivation of the 

The polaractivation of any 
proposed polar encoding sc

symP  symmetric 

private classical capacity of quantum channels and prove that the polaractivation of arbitrary quantum 
channels can be achieved by the proposed polar encoding scheme. The quantum channel   has some 
positive symmetric capacity 0symC  , while it has zero private classical capacity, 0symP  . We prove that 

using quantum polar encoding and the same quantum channel   with n  times, the private classical 
capacity can be polaractivated, i.e., the transformation 0 0sym symP P    can be achieved.  

 



5   Conclusions 

The polar coding is a revolutionary channel coding technique, which makes it possible to achieve the 
symmetric capacity of a noisy communication channel by the restructuring of the initial error probabilities. 
In the case of a quantum system, the problem is more complicated, since the error characteristic of a 
quantum communication channel significantly differs from the characteristic of quantum communication 

oduced the term polaractivation. The result of polaractivation is similar to 
ffect without the necessary preliminary conditions on the quantum channels or on the 
 proposed polaractivation is limited neither by any preliminary conditions on the 

quantu
onl
have 
of 
cann

A
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MP

R
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C

D

Duan, R. (2009), Superactivation of zero-error capacity of noisy quantum channels.arXiv:0906.2527. 

channels. In this paper, we intr
the superactivation e
joint structure. The

m channel nor on the maps of other channels involved in the joint channel structure and requires 
y the proposed quantum polar encoding scheme and the multiple uses of the given quantum channel. We 

shown that quantum polar coding can help to achieve the polaractivation of private classical capacity 
noisy quantum channels in the asymptotic setting, where individually, each channel is so noisy that it 

ot transmit any classical information privately.  
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