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Abstract

We tackle the problem of simultaneous transformations of networks represented as
graphs. Roughly speaking, one may distinguish two kinds of simultaneous or parallel
rewrite relations over complex structures such as graphs: (i) those which transform disjoint
subgraphs in parallel and hence can be simulated by successive mere sequential and local
transformations and (ii) those which transform overlapping subgraphs simultaneously. In
the latter situations, parallel transformations cannot be simulated in general by means
of successive local rewrite steps. We investigate this last problem in the framework of
overlapping graph transformation systems. As parallel transformation of a graph does not
produce a graph in general, we propose first some sufficient conditions that ensure the
closure of graphs by parallel rewrite relations. Then we mainly introduce and discuss two
parallel rewrite relations over graphs. One relation is functional and thus deterministic,
the other one is not functional for which we propose sufficient conditions which ensure its
confluence.

1 Introduction

Graph structures are fundamental tools that help modeling complex systems. In this paper,
we are interested in the evolution of such structures whenever the dynamics is described by
means of systems of rewrite rules. Roughly speaking, a rewrite rule can be defined as a
pair l → r where the left-hand and the right-hand sides are of the same structure. A rewrite
system, consisting of a set of rewrite rules, induces a rewrite relation (→) over the considered
structures. The rewrite relation corresponds to a sequential application of the rules, that is to
say, a structure G rewrites into a structure G′ if there exits a rule l → r such that l occurs in
G. Then G′ is obtained from G by replacing l by r.

Besides this classical rewrite relation, one may think of a parallel rewrite relation which
rewrites a structure G into a structure G′ by firing, simultaneously, some rules whose left-hand
sides occur in G. Simultaneous or parallel rewriting of a structure G into G′ can be used as a
means to speed up the computations performed by rewrite systems and, in such a case, parallel
rewriting can be simulated by successive sequential rewrite steps. However, there are situations
where parallel rewrite steps cannot be simulated by sequential steps as in formal grammars [8],
cellular automata (CA) [18] or L-systems [14]. This latter problem is of interest in this paper
in the case where structures are graphs.
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Graph rewriting is a very active area where one may distinguish two main stream approaches,
namely (i) the algorithmic approaches where transformations are defined by means of the actual
actions one has to perform in order to transform a graph, and (ii) the algebraic approaches where
graph transformations are defined in an abstract level using tools borrowed from category theory
such as pushouts, pullbacks etc. [15]. In this paper, we introduce a new class of graph rewrite
systems following an algorithmic approach where rewrite rules may overlap. That is to say, in
the process of graph transformation, it may happen that some occurrences of left-hand sides of
different rules can share parts of the graph to be rewritten. This overlapping of the left-hand
sides, which can be very appealing in some cases, turns out to be a source of difficulty to define
rigorously the notion of parallel rewrite steps. In order to deal with such a difficulty we follow
the rewriting modulo approach (see, e.g. [13]) where a rewrite step can be composed with an
equivalence relation. Another complication comes from the fact that a graph can be reduced
in parallel in a structure which is not always a graph but rather a structure we call pregraph.
Thus, we propose sufficient conditions under which graphs are closed under parallel rewriting.
The rewrite systems we obtain generalize some known models of computation such as CA,
L-systems and more generally substitution systems [18].

The paper is organized as follows. The next section introduces the notions of pregraphs and
graphs in addition to some preliminary definitions. In Section 3, a class of rewrite systems, called
environment sensitive rewrite systems is introduced together with a parallel rewrite relation.
We show that graphs are not closed under such rewrite relation and propose sufficient conditions
under which the outcome of a rewrite step is always a graph. Then, in Section 4, we define two
particular parallel rewrite relations, one performs full parallel rewrite steps whereas the second
one uses the possible symmetries that may occur in the rules and considers only matches up
to automorphisms of the left-hand sides. Section 5 illustrates our framework through some
examples. Concluding remarks and related work are given in Section 6. Due to lack of space,
the missing proofs are provided in [4].

2 Pregraphs and Graphs

In this section we first fix some notations and give preliminary definitions and properties. 2A

denotes the power set of A. A ] B stands for the disjoint union of two sets A and B. In the
following, we introduce the notion of (attributed) pregraphs, which denotes a class of structures
we use to define parallel graph transformations. Elements of a pregraph may be attributed via
a function λ which assigns, to elements of a pregraph, attributes in some sets which underly a
considered attributes’ structure A. For instance A may be a Σ-algebra [16] or merely a set.

Definition 1 (Pregraph).
A pregraph H is a tuple H = (NH ,PH ,PNH ,PPH ,AH , λH) such that :

• NH is a finite set of nodes and PH is a finite set of ports,

• PNH is a relation PNH ⊆ PH ×NH ,

• PPH is a symmetric binary relation on ports, PPH ⊆ PH × PH ,

• AH is a structure of attributes,

• λH is a function λH : PH ]NH → 2AH such that ∀x ∈ NH ] PH , card(λH(x)) is finite.

An element (p, n) in PNH means that port p is associated to node n. An element (p1, p2)
in PPH means that port p is linked to port p2. In a pregraph, a port can be associated (resp.
linked) to several nodes (resp. ports).
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Figure 1: Example of a pregraph H such that: AH = N, NH = {n1, n2, n3, n4, n5},
PH = {p1, p2, p3}, PNH = {(p1, n1), (p1, n2), (p2, n5), (p3, n3), (p3, n4)}, PPH =
{(p1, p2), (p2, p3), (p2, p1), (p3, p2)}. PPH could be reduced to its non symmetric port-port con-
nection {(p1, p2), (p2, p3)}. λH(ni) = {1} for i ∈ {1, 2, 4, 5}, λH(n3) = {2}. λH(pj) = ∅, for
j ∈ {1, 2, 3}. Port attributes (∅) have not been displayed on the figure.

Figure 2: Example of a pregraph H such that: AH = (Q[x, y]; +, /), NH = {n1, n2, n3}, PH =
{p2, p3, q1, q2}, PNH = {(q1, n1), (p2, n2), (q2, n2), (p3, n3)}, PPH reduced to its non symmetric
port-port connection is PPH = {(p2, q1), (p3, q2)}. λH(n1) = {x}, λH(n2) = {(x + y)/2},
λH(n3) = {y}, λH(p2) = λH(p3) = ∅, λH(q1) = λH(q2) = ∅.

Example 1. Figure 1 shows an example of a pregraph where the node attributes are natural
numbers and Figure 2 shows an example where attributes could be expressions such as x+y

2 .

Below we introduce the definition of graphs used in this paper. In order to encode classical
graph edges between nodes, restrictions over port associations are introduced. Intuitively, an
edge e between two nodes n1 and n2 will be encoded as two semi-edges (n1, p1) and (n2, p2)
with p1 and p2 being ports which are linked via an association (p1, p2).

Definition 2 (Graph). A graph, G, is a pregraph G = (N ,P,PN ,PP,A, λ) such that :

(i) PN is a relation ⊆ P × N which associates at most one node to every port1. That is to
say, ∀p ∈ P,∀n1, n2 ∈ N , ((p, n1) ∈ PN and (p, n2) ∈ PN ) =⇒ n1 = n2.

(ii) PP is a symmetric binary relation2 on ports, PP ⊆ P × P, such that ∀p1, p2, p3 ∈
P, ((p1, p2) ∈ PP and (p1, p3) ∈ PP) =⇒ p2 = p3 and ∀p ∈ P, (p, p) 6∈ PP.

The main idea of our proposal is based on the use of equivalence relations over nodes and
ports (merging certain nodes and ports under some conditions) in order to perform parallel
graph rewriting in presence of overlapping rules. Thus, to a given pregraph H, we associate
two equivalence relations on ports, ≡P , and on nodes, ≡N , as defined below.

Definition 3 (≡P , ≡N ). Let H = (NH ,PH ,PNH ,PPH ,AH , λH) be a pregraph. We define two
relations ≡P and ≡N respectively on ports (PH) and nodes (NH) of H as follows:

1The relation PN could be seen as a partial function PN : P → N which associates to a given port p, a node
n, PN (p) = n ; thus building a semi-edge “port-node”.

2The relation PP could also be seen as an injective (partial) function from ports to ports such that ∀p ∈
P,PP(p) 6= p and ∀p1, p2 ∈ P,PP(p1) = p2 iff PP(p2) = p1.
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• ≡P is defined as (PPH • PPH)∗

• ≡N is defined as (PN−H• ≡P •PN )∗

where • denotes relation composition, − the converse of a relation and ∗ the reflexive-transitive
closure of a relation. We write [n] (respectively, [p]) the equivalence class of node n (respectively,
port p).

Roughly speaking, relation ≡P is the closure of the first part of condition (ii) in Definition 2.
The base case says that if two ports p1 and p2 are linked to a same port p, then p1 and p2 are
considered to be equivalent. ≡N is almost the closure of condition (i) in Definition 2. That
is, two nodes n1 and n2, which are associated to a same port (or two equivalent ports), are
considered as equivalent nodes.

Proposition 1. The relations ≡P and ≡N are equivalence relations.

Remark 1. The relations ≡P and ≡N can be computed incrementally as follows:
Base cases: ≡P0 = {(x, x) | x ∈ PH} and ≡N0 = {(x, x) | x ∈ NH}
Inductive steps:
Rule I: if q, q′ ∈ PH such that, q ≡Pi q′, (q, p1) ∈ PPH and (q′, p2) ∈ PPH then p1 ≡Pi+1 p2.
Rule II: if p1 ∈ PH , p2 ∈ PH , (p1, n1) ∈ PNH , (p2, n2) ∈ PNH and p1 ≡Pi p2 then n1 ≡Ni+1 n2.
Rule III: If n1 ≡Ni n′ and n′ ≡Ni n2 then n1 ≡Ni+1 n2.

Proposition 2. The limits of the series (≡Pi )i≥0 and (≡Ni )i≥0 are respectively ≡P and ≡N .

The equivalence relations ≡P and ≡N are used to introduce the notion of quotient pregraph
as defined below.

Definition 4 (Quotient Pregraph). Let H = (NH ,PH ,PNH ,PPH ,AH , λH) be a pregraph
and ≡P and ≡N be respectively the two equivalence relations over ports and nodes as intro-
duced in Definition 3. We write H the pregraph H = (NH ,PH ,PNH ,PPH ,AH , λH) where
NH = {[n] | n ∈ NH}, PH = {[p] | p ∈ PH}, PNH = {([p], [n]) | (p, n) ∈ PNH}, PPH =
{([p], [q]) | (p, q) ∈ PPH}, AH = AH and λH([x]) = ∪x′∈[x]λH(x′) where [x] ∈ NH ] PH
Example 2. Figure 3 illustrates two computations of quotient pregraphs.

Remark 2. If H is a graph, H and H are isomorphic. Indeed, in a graph, a port can be
associated (resp. linked) to at most one node (resp. one port).

Below, we define the notion of homomorphisms of pregraphs and graphs. This notion
assumes the existence of homomorphisms over attributes [3].

Definition 5 (Pregraph and Graph Homomorphism). Let L = (NL,PL,PNL,PPL,AL, λL)
and G = (NG,PG,PNG,PPG,AG, λG) be two pregraphs. Let a : AL → AG be a homomorphism
over attributes. A pregraph homomorphism, ha : L→ G, between L and G, built over attribute
homomorphism a, is defined by two functions haN : NL → NG and haP : PL → PG such that (i)
∀(p1, n1) ∈ PNL, (haP (p1), haN (n1)) ∈ PNG, (ii) ∀(p1, p2) ∈ PPL, (haP (p1), haP (p2)) ∈ PPG, (iii)
∀n1 ∈ NL, a(λL(n1)) ⊆ λG(haN (n1)) and (iv) ∀p1 ∈ PL, a(λL(p1)) ⊆ λG(haP (p1)).

A graph homomorphism is a pregraph homomorphism between two graphs.

Notation: Let E be a set of attributes, we denote by a(E) the set a(E) = {a(e) | e ∈ E}.
Proposition 3. Let H and H ′ be two isomorphic pregraphs. Then H and H ′ are isomorphic.

We end this section by defining an equivalence relation over pregraphs.

Definition 6 (Pregraph equivalence). Let G1 and G2 be two pregraphs. We say that G1 and
G2 are equivalent and write G1 ≡ G2 iff the quotient pregraphs G1 and G2 are isomorphic.
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Figure 3: (a) A pregraph H2 and its corresponding quotient pregraph H2 which is a graph. (b)
A pregraph H3 and its corresponding quotient pregraph H3 which is not a graph.

3 Graph Rewrite Systems

In this section, we define the considered rewrite systems and provide sufficient conditions en-
suring the closure of graph structures under the defined rewriting process.

Definition 7 (Rewrite Rule, Rewrite System, Variant). A rewrite rule is a pair l → r where
l and r are graphs over the same sets of attributes. A rewrite system R is a set of rules. A
variant of a rule l → r is a rule l′ → r′ where nodes, ports as well as the variables of the
attributes are renamed with fresh names.

Let l′ → r′ be a variant of a rule l → r. Then there is a renaming mapping ha, built over
an attribute renaming a : Al → Al′ , and consisting of two maps haN and haP over nodes and
ports respectively : haN : Nl ∪ Nr → Nl′ ∪ Nr′ and haP : Pl ∪ Pr → Pl′ ∪ Pr′ such that, the
elements in Nl′ and Pr′ are new and the restrictions of ha to l → l′ (respectively r → r′) are
graph isomorphisms.

In general, parts of a left-hand side of a rule remain unchanged in the rewriting process. This
feature is taken into account in the definition below which refines the above notion of rules by
decomposing the left-hand sides into an environmental part, intended to stay unchanged, and a
cut part which is intended to be removed. As for the right-hand sides, they are partitioned into
a new part consisting of added items and an environmental part (a subpart of the left-hand
side) which is used to specify how the new part is connected to the environment.

Definition 8 (Environment Sensitive Rewrite Rule, Environment Sensitive Rewrite System).
An environment sensitive rewrite rule is a rewrite rule (ESRR for short) l → r where l and r
are graphs over the same attributes A such that:

- l = (Nl,Pl,PN l,PP l,A, λl) where
Nl = N cut

l ] N env
l ,Pl = Pcutl ]Penvl ,PN l = PN cut

l ]PN
env
l ,PP l = PPcutl ]PP

env
l and λl = λcutl ]3

λenvl with some additional constraints :

(1) on PN l : ∀(p, n) ∈ PN l, (n ∈ N cut
l or p ∈ Pcutl )⇒ (p, n) ∈ PN cut

l .

(2) on PP l : ∀(p, p′) ∈ PP l, p ∈ Pcutl ⇒ (p, p′) ∈ PPcutl and

∀(p, p′) ∈ PP l, (p, p′) ∈ PPcutl ⇔ (p′, p) ∈ PPcutl

(3) on λl : ∀n ∈ N cut
l , (n, λl(n)) ∈ λcutl and ∀p ∈ Pcutl , (p, λl(p)) ∈ λcutl .

3Here, the function λl is considered as a set of pairs (x, λl(x)), i.e. the graph of λl.
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- r = (Nr,Pr,PN r,PPr,A, λr) where

Nr = Nnew
r ] N env

r ,Pr = Pnewr ] Penvr ,PN r = PNnew
r ] PN env

r ,PPr = PPnewr ] PPenvr , λr =
λnewr ] λenvr such that N env

r ⊆ N env
l , Penvr ⊆ Penvl , Nnew

r ∩ N env
l = ∅ and Pnewr ∩ Penvl = ∅

with some additional constraints :

(4) on PN r : ∀(p, n) ∈ PN r, (p, n) ∈ PN env
r iff (p ∈ Penvr and n ∈ N env

r and (p, n) ∈ PN env
l ).

(5) on PPr : ∀(p, p′) ∈ PPr, (p, p′) ∈ PPenvr iff (p ∈ Penvr and p′ ∈ Penvr and (p, p′) ∈ PPenvl ).

(6) on λr : ∀n ∈ N env
r , (∃y, (n, y) ∈ λenvr ) iff (λenvr (n) = λenvl (n)) ;

∀p ∈ Penvr , (∃y, (p, y) ∈ λenvr ) iff (λenvr (p) = λenvl (p)).

An environment sensitive rewrite system (ESRS for short) is a set of environment sensitive
rewrite rules.

Roughly speaking, constraints (1) and (2) ensure that if an item (node or port) is to be
removed (belonging to a “cut” component), links involving that item should be removed too
along with its attributes (constraint (3)). This is compatible with the rewriting process defined
in the forthcoming Definition 12, which removes all links involving cut items, and thus prevent-
ing dangling items. Constraints (4) and (5) ensure that links, considered as new (belonging to
“new” components), of a given right-hand side of a rule, should not appear in the left-hand
side. Constraint (6) ensures that an item (node or port) is newly attributed in the right-hand
side iff it is a new item or it was assigned by λcutl in the left-hand side.

Proposition 4. Let l → r be a an ESRR such that l = (Nl = N cut
l ] N env

l ,Pl = Pcutl ]
Penvl ,PN l = PN cut

l ] PN env
l ,PP l = PPcutl ] PPenvl ,A, λl = λcutl ] λenvl ) and r = (Nr = Nnew

r ]
N env
r ,Pr = Pnewr ] Penvr ,PN r = PNnew

r ] PN env
r ,PPr = PPnewr ] PPenvr ,A, λr = λnewr ] λenvr ).

Then the following properties hold:

• For all (p, n) ∈ PN r, (p, n) ∈ PNnew
r iff p ∈ Pnewr or n ∈ Nnew

r or (p ∈ Penvr and
n ∈ N env

r and (p, n) 6∈ PN env
l )

• For all (p, p′) ∈ PPr, (p, p′) ∈ PPnewr iff p ∈ Pnewr or p′ ∈ Pnewr or (p ∈ Penvr and
p′ ∈ Penvr and (p, p′) 6∈ PPenvl (p))

• For all x ∈ Nr ∪ Pr, (x, λr(x)) ∈ λnewr iff x ∈ Nnew
r ∪ Pnewr or (x, λl(x)) ∈ λcutl

Example 3. Let us consider a rule RT : l → r which specifies a way to transform a tri-
angle into four triangle graphs. Figure 4 depicts the rule. Black parts should be understood
as members of the cut component of the left-hand side, yellow items are in the environ-
ment parts. The red items are new in the right-hand side. More precisely, lenv consists of
N env
l = {α, β, γ}, Penvl = {α1, α2, β1, β2, γ1, γ2}, PN env

l = {(α1, α), (α2, α), (β1, β), (β2, β),
(γ1, γ), (γ2, γ)}, and PPenvl = ∅. The cut component of the left-hand side consists of three port-
port connections and their corresponding symmetric connections which will not be written :
PPcutl = {(α2, β1), (β2, γ1), (γ2, α1)}. The environment component in the right-hand side allows
to reconnect the newly introduced items. renv consists of the ports Penvr = {α1, α2, β1, β2, γ1, γ2}.
rnew consists of Nnew

r = {U, V,W}, Pnewr = {u1, u2, u3, u4, v1, v2, v3, v4, w1, w2, w3, w4},
PNnew

r = {(u1, U), (u2, U), (u3, U), (u4, U), (v1, V ), (v2, V ), (v3, V ), (v4, V ), (w1,W ), (w2,W ),
(w3,W ), (w4,W )} and PPnewr = {(α1, w2), (α2, u1), (β1, u2), (β2, v1), (γ1, v2), (γ2, w1), (u3, w3),
(u4, v4), (w4, v3)}. The sets of attributes are empty in this example.
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Figure 4: Rule RT

Figure 5: (a) A graph L. (b) A graph G.

Remark 3. From the definition of an environment sensitive rule, the environment components
renv = (N env

r ,Penvr ,PN env
r ,PPenvr ,A, λenvr ) and lenv = (N env

l ,Penvl ,PN env
l ,PPenvl ,A, λenvl ) are

graphs. However, since PPcutl may include ports in Penvl and PN cut
l may include nodes in N env

l

or ports in Penvl , the cut component lcut = (N cut
l ,Pcutl ,PN cut

l ,PPcutl ,A, λcutl ) is in general
neither a graph nor a pregraph. For the same reasons rnew = (Nnew

r ,Pnewr ,PNnew
r ,PPnewr ,

A, λnewr ) is in general neither a graph nor a pregraph.

Finding an occurrence of a left-hand side of a rule within a graph to be transformed consists
in finding a match. This notion is defined below.

Definition 9 (Match). Let L and G be two graphs. A match ma : L → G is defined as
an injective graph homomorphism with a : AL → AG being an injective homomorphism over
attributes.

Example 4. Figure 5 gives a graph L and a graph G. Because of ports attributes, only two
matches, mid

1 and mid
2 can be defined from L to G:

• mid
1 : mid

1 (α) = E;mid
1 (β) = B; mid

1 (γ) = C; mid
1 (α1) = e1;mid

1 (α2) = e2;mid
1 (β1) =

b1;mid
1 (β2) = b2; mid

1 (γ1) = c1; mid
1 (γ2) = c2.

• mid
2 : mid

2 (α) = C;mid
2 (β) = D; mid

2 (γ) = F ; mid
2 (α1) = c3;mid

2 (α2) = c4;mid
2 (β1) =

d1;mid
2 (β2) = d2; mid

2 (γ1) = f1; mid
2 (γ2) = f2.

Notice that the occurrences in G of mid
1 (L) and mid

2 (L) overlap on node C.

In order to define the notion of parallel rewrite step, we have to restrict a bit the class of
the considered rewrite systems. Indeed, let l1 → r1 and l2 → r2 be two ESRR. Applying these

306



Parallel Graph Rewriting R. Echahed and A. Maignan

two rules in parallel on a graph G is possible only if there is “no conflict” while firing the two
rules simultaneously. A conflict may occur if some element of the environment of renv1 is part
of lcut2 and vice versa. To ensure conflict free rewriting, we introduce the notion of conflict free
ESRS. Let us first define the notion of compatible rules.

Definition 10 (compatible rules). Two ESRR’s l1 → r1 and l2 → r2 are said to be compatible
iff for all graphs G and matches ma1

1 : l1 → G and ma2
2 : l2 → G, (i) no element of ma1

1 (renv1 )
is in ma2

2 (lcut2 ) and (ii) no element of ma2
2 (renv2 ) is in ma1

1 (lcut1 ).

Conditions (i) and (ii) ensure that the constructions defined by ma1
1 (r1) (respectively by

ma2
2 (r2)) can actually be performed ; i.e, no element used in ma1

1 (r1) (respectively by ma2
2 (r2))

is missing because of its inclusion in ma2
2 (lcut2 ) (respectively in ma1

1 (lcut1 )). For instance, the
reader can easily verify that two variants of the rule

are not compatible. Verifying that two given rules are compatible is decidable and can be
checked on a finite number, less than max(size(l1), size(l2)), of graphs where the size of a
graph stands for its number of nodes and ports.

Proposition 5. The problem of the verification of compatibility of two rules is decidable.

Definition 11. A conflict free ESRS is an ESRS consisting of pairwise compatible rules.

Definition 12 (parallel rewrite step). Let R be a conflict free ESRS R = {Li → Ri | i =
1 . . . n}. Let G be a graph. Let I be a set of variants of rules in R, I = {li → ri | i = 1 . . . k}
and M a set of matches M = {mai

i : li → G | i = 1 . . . k}. We say that graph G rewrites into a
pregraph G′ using the rules in I and matches in M , written G ⇒I,M G′, G ⇒M G′ or simply
G⇒ G′ if G′ is obtained following the two steps below:
First step: A pregraph H = (NH ,PH ,PNH ,PPH ,AH , λH) is computed using the different
matches and rules as follows.

• NH = (NG − ∪ki=1N cut
m
ai
i (li)

) ] ∪ki=1Nnew
ri

• PH = (PG − ∪ki=1Pcutm
ai
i (li)

) ] ∪ki=1Pnewri

• PNH = ((PNG ∩ (PH ×NH))− ∪ki=1PN
cut
m
ai
i (li)

) ] ∪ki=1PN
new
m
ai
i (ri)

• PPH = ((PPG ∩ (PH × PH))− ∪ki=1PP
cut
m
ai
i (li)

) ] ∪ki=1PP
new
m
ai
i (ri)

• AH = AG and λH = (λG − ∪ki=1λ
cut
m
ai
i (li)

) ∪ ∪ni=1λ
new
m
ai
i (ri)

Second step: G′ = H

Notation: Let p, p′ be ports and n a node, in notation ma(r) above, ma(p, p′) = (ma(p),ma(p′)),
ma(p, n) = (ma(p),ma(n)), ma(p) = p if p ∈ Pnewr and ma(n) = n if n ∈ Nnew

r .
Notice that a parallel rewrite step, as defined above, cannot be achieved by a sequence of

single rewrites since, in general, the application of one rule can destroy other rule’s matching.

Example 5. Consider the graph G below and matches m1 and m2 of the rule RT (cf. Figure 4).
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G H H = G′

Figure 6: A parallel rewrite step with overlapping between two triangles. Notice that two
variants of RT with fresh new variables have been provided in order to produce the pregraph
H. In the quotient graph H = G′, [S] = {S, Y }, [s1] = {s1, y1}, [s2] = {s2, y2}.

• m1 : m1(α) = E;m1(β) = B; m1(γ) =
C; m1(α1) = e1;m1(α2) = e2;m1(β1) =
b1;m1(β2) = b2; m1(γ1) = c1; m1(γ2) =

c2. The isomorphism of the port-node
and port-port connections are easily de-
duced.

• m2 : m2(α) = B;m2(β) = D; m2(γ) =
C; m2(α1) = b2;m2(α2) = b3;m2(β1) =
d2;m2(β2) = d1; m2(γ1) = c3; m2(γ2) =
c1.

The two matches overlap.

Figure 6 shows the different steps of the application of two matches of the rule defined in
Figure 4. The pregraph, H, in the middle is obtained after the first step of Definition 12. Its
quotient pregraph, G′, is the graph on the right. G′ has been obtained by merging the nodes
S and Y and the ports s1 and y1 as well as ports s2 and y2. These mergings are depicted by
the quotient sets [S], [s1] and [s2]. For sake of readability, the brackets have been omitted for
quotient sets reduced to one element.

As a quotient pregraph is not necessarily a graph (see Figure 3), the above definition of
parallel rewrite step does not guarantee, in general, the production of graphs only. Hence, we
propose hereafter a sufficient condition, which could be verified syntactically, that ensures that
the outcome of a parallel rewrite step is still a graph.

Theorem 1. Let R be a conflict free ESRS R = {Li → Ri | i = 1 . . . n}. Let G be a graph.
Let I be a set of variants of rules in R, I = {li → ri | i = 1 . . . k} and M a set of matches
M = {mai

i : li → G | i = 1 . . . k}. Let G′ be the pregraph such that G⇒I,M G′. If ∀p, p′ ∈ Penvli
,

(p, p′) /∈ PPnewri , then G′ is a graph.

4 Two Parallel Rewrite Relations

The set of matches, M , in Definition 12 is not constrained and thus the induced parallel rewrite
relation is nondeterministic since at each step one may choose several sets of matches leading
to different rewrite outcomes. In this section, we are rather interested in two confluent parallel
rewrite relations which are realistic and can be good candidates for implementations. The first
one performs all possible reductions (up to node and port renaming) whereas the second relation
is more involved and performs reductions up to left-hand sides’ automorphisms.
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4.1 Full Parallel Rewrite Relation

We start by a technical definition of an equivalence relation, ≈, over matches.

Definition 13 (≈). Let L → R be a rule and G a graph. Let l1 → r1 and l2 → r2 be two
variants of the rule L → R. We denote by ha11 (respect. ha22 ) the (node, port and attribute)
renaming mapping such that the restriction of ha11 (respectively, ha22 ) to L → l1 (respectively
L→ l2) is a graph isomorphism. Let mb1

1 : l1 → G and mb2
2 : l2 → G be two matches. We say

that mb1
1 and mb2

2 are equivalent and write mb1
1 ≈ mb2

2 iff for all elements x (in PL, NL, PPL
or PNL) of L, mb1

1 (ha11 (x)) = mb2
2 (ha22 (x)) and for all x in AL, b1(a1(x)) = b2(a2(x)) .

The relation ≈ is clearly an equivalence relation. Intuitively, two matches mb1
1 : l1 → G

and mb2
2 : l2 → G are equivalent, mb1

1 ≈ mb2
2 , whenever (i) l1 and l2 are left-hand sides of two

variants of a same rule, say L→ R, and (ii) mb1
1 and mb2

2 coincide on each element x of L.

Definition 14 (full parallel matches). Let R be a graph rewrite system and G a graph. Let
MR(G) = {mai

i : li → G | mai
i is a match and li → ri is a variant of a rule in R}. A set, M ,

of full parallel matches, with respect to a graph rewrite system R and a graph G, is a maximal
set such that (i) M ⊂MR(G) and (ii) ∀ma1

1 ,m
a2
2 ∈M,ma1

1 6≈ m
a2
2 .

A set of full parallel matches M is not unique because any rule in R may have infinitely
many variants. However the number of non equivalent matches could be easily proven to be
finite.

Definition 15 (full parallel rewriting). Let R be a conflict free ESRS and G a graph. Let M
be a set of full parallel matches with respect to R and G. We define the full parallel rewrite
relation and write G⇒M G′ or simply G⇒ G′, as the parallel rewrite step G⇒M G′.

Proposition 6. Let R be a conflict free ESRS. The rewrite relation ⇒ is deterministic. That
is to say, for all graphs G, (G⇒ G1 and G⇒ G2) implies that G1 and G2 are isomorphic.

Example 6.

Let us consider the rule RT defined in Fig-
ure 4 and the subgraph S depicted on the side.
The reader can verify that there are six differ-
ent matches, m1 . . .m6, between the left-hand
side of RT and graph S.

These matches are sketched below. Variants of RT have been omitted for sake of readability.

• m1 : m1(α) = E;m1(β) = B; m1(γ) = C; m1(α1) = e1;m1(α2) = e2;m1(β1) =
b1;m1(β2) = b2; m1(γ1) = c1; m1(γ2) = c2.

• m2 : m2(α) = E;m2(β) = C; m2(γ) = B; m2(α1) = e2;m2(α2) = e1;m2(β1) =
c2;m2(β2) = c1; m2(γ1) = b2; m2(γ2) = b1.

• m3 : m3(α) = B;m3(β) = E; m3(γ) = C; m3(α1) = b2;m3(α2) = b1;m3(β1) =
e2;m3(β2) = e1; m3(γ1) = c2; m3(γ2) = c1.

• m4 : m4(α) = B;m4(β) = C; m4(γ) = E; m4(α1) = b1;m4(α2) = b2;m4(β1) =
c1;m4(β2) = c2; m3(γ1) = e1; m4(γ2) = e2.
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Figure 7: (a) Subgraph S with distinguishing attributes on ports. The attributes are {1, 2, 3}.
(b) Rule RT with distinguishing attributes.

• m5 : m5(α) = C;m5(β) = B; m5(γ) = E; m5(α1) = c2;m5(α2) = c1;m5(β1) =
b2;m5(β2) = b1; m5(γ1) = e2; m5(γ2) = e1.

• m6 : m5(α) = C;m5(β) = E; m5(γ) = B; m5(α1) = c1;m5(α2) = c2;m5(β1) =
e1;m5(β2) = e2; m5(γ1) = b1; m5(γ2) = b2.

Here, the homomorphisms over attributes are always the identity, that is why they have been
omitted. Thanks to the six matches and the rule RT , the reader may check that the subgraph
S can be rewritten, by using six different variants of rule RT , into a pregraph containing 3× 6
new nodes and 12 × 6 new ports. The quotient pregraph has only 3 new nodes but has 42 new
ports. Each pair of new nodes has 6 connections.

This example shows that the full parallel rewriting has to be used carefully since it may
produce non intended results due to overmatching the same subgraphs. To overcome this
issue, one may use attributes in order to lower the possible matches. We call such attributes
distinguishing attributes. In order to consider only one match of the subgraph S considered in
Example 6 by the rule RT , one option is to apply full parallel rewrite relation with distinguishing
attributes on the subgraph depicted in Figure 7 (a) and rule RT with distinguishing attributes
given in Figure 7 (b), leading to a pregraph whose quotient is a graph with 3 new nodes and
12 new ports. This graph is the expected one.

Another way to mitigate the problems of overmatching subgraphs, in addition to the use
of distinguishing attributes, consists in taking advantage of the symmetries that appear in
the graphs of rewrite rules. This leads us to define a new rewrite relation which gets rid of
multiple matches of the same left-hand-side of a fixed rule. We call this relation parallel up to
automorphisms and is defined below.

4.2 Parallel Rewrite Relation up to Automorphisms

Let us consider a graph G which rewrites into G1 and G2 using an ESRR l → r. This means
that there exist two matches µβii : l → G with i ∈ {1, 2} such that G ⇒

l→r,µβii
Gi. One may

wonder whether G1 and G2 are the same (up to isomorphism) whenever matches µβ1

1 and µβ2

2

are linked by means of an automorphism of l. That is to say, when there exists an automorphism
ha : l → l with µβ1

1 = µβ2

2 ◦ ha. Intuitively, matches µβ1

1 and µβ2

2 could be considered as the
same up to a permutation of nodes. We show below that G1 and G2 are actually isomorphic
but under some syntactic condition we call symmetry condition.
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Notation: Let G be a graph with attributes in A. We write H(G) to denote the set of
automorphisms of G, i.e. H(G) is the set of isomorphisms ha : G → G, with a being an
isomorphism on the attributes of G, a : A → A.

Proposition 7. Let l → r be an ESRR. let l1 → r1 and l2 → r2 be two variants of the rule
l → r. Let vc11 , v′c11 , vc22 , v′c22 be the isomorphisms reflecting the variant status of these two
rules with vc11 : l → l1, v′c11 : r → r1, vc22 : l → l2, v′c22 : r → r2, li = vcii (l), ri = v′cii (r)
and vcii (renvi ) = v′cii (renvi ) for i ∈ {1, 2}. Let G be a graph and G′1 and G′2 be two pregraphs.
Let G ⇒

l1→r1,m
b1
1
G′1 and G ⇒

l2→r2,m
b2
2
G′2 be two rewrite steps such that there exist two

automorphisms ha : l→ l and h′a : r → r such that (i) with mb1
1 = mb2

2 ◦ v
c2
2 ◦ ha ◦ (vc11 )−1 and

(ii) for all elements x of renv, h′a(x) = ha(x). Then, G′1 and G′2 are isomorphic.

Sketch. The sketch of the proof is depicted in Figure 8. The attributes structures used in the
rule l→ r (respectively, l1 → r1 and l2 → r2) are denoted A (respectively, A1 and A2) whereas
the attibutes structure of the transfomed graph G is denoted B. From the hypotheses, we
can easily infer the exitence of two isomorphisms hcvv : l1 → l2 and h′cvv : r1 → r2 such that
hcvv = vc22 ◦ ha ◦ (vc11 )−1 and h′cvv = v′cv2 ◦ h′a ◦ (v′c11 )−1. And we have cv = c2 ◦ a ◦ c−11 .

Let G⇒
l1→r1,m

b1
1
G′1 and G⇒

l2→r2,m
b2
2
G′2 such that mb1

1 (l1) = mb2
2 (l2). By definition of a

rewrite step, there exist a pregraphG1 (respect. a pregraphG2) and an injective homomorphism
m′b11 : r1 → G1 (respect. m′b22 : r2 → G2) such that G′1 = G1 (respect. G′2 = G2). Moreover,
since, by definition, renv is included in lenv for any ESRR l→ r, we have m′b11 (renv1 ) = mb1

1 (renv1 )
(respect. m′b22 (renv2 ) = mb2

2 (renv2 )), where m′bii , for i ∈ {1, 2}, are defined as follows: for

n ∈ Nri ,m′
bi
i (n) =

{
mbi
i (n) if n ∈ N env

ri
n otherwise

for p ∈ Pri ,m′
bi
i (p) =

{
mbi
i (p) if p ∈ Penvri

p otherwise

Now, let us define the isomorphism h′′d : G1 → G2 with d(x) = if x ∈ b1(A1) then b2 ◦
cv ◦ b−11 (x) else x. Let us consider x such that x is an element of renv (port or node). We
have mb1

1 (vc11 (x)) = mb2
2 (vc22 (ha(x))) is an element of G. Moreover m′b11 (v′c11 (x)) ∈ G1 and

m′b22 (v′c22 (h′
a
(x)) ∈ G2. Let us denote y = mb1

1 (vc11 (x)). By construction m′b11 (v′c11 (x)) =
mb1

1 (vc11 (x)) = y because x ∈ renv. From the hypothesis we have ha(x) = h′
a
(x). Thus

m′b22 (v′c22 (h′
a
(x)) = m′b22 (v′c22 (ha(x)) and then we have m′b22 (v′c22 (h′

a
(x)) = mb2

2 (vc22 (ha(x)) = y.
Then, for all elements z of the non-modified part of G which is G−mb1

1 (vc11 (l)) (z can be a port
or a node if y is not a node) such that (z, y) ∈ G, we have that (z, y) ∈ G1 and (z, y) ∈ G2 and

h′′
d

= Idd on G1 −m′b11 (v′c11 (r)). Finally the definition of h′′d is :

For y ∈ NG1
∪ PG1

, h′′d(y) =

{
m′b22 (h′cvv ((m′b11 )−1(y))) if y ∈ m′b11 (r1)
y otherwise

For all types of existing connections (y, z) of G1 where y and z in NG1
∪ PG1

, h′′d(y, z) =
(h′′d(y), h′′d(z)) is in G2. By construction, the homomorphism conditions on attributes are
fulfilled by h′′d. Thus, h′′d : G1 → G2 is a pregraph homomorphism. In addition, h′′d is bijective
by construction. From h′′d and Proposition 3, we infer the isomorphism h(3)d : G′1 → G′2.

Definition 16 (Symmetry Condition). An ESRR l → r verifies the symmetry condition iff
∀ha ∈ H(l), ∃ h′a ∈ H(r), such that ∀x ∈ renv, ha(x) = h′a(x)

The reader can check that the rule RT verifies the symmetry condition.

Definition 17 (Matches up to automorphism, ∼l). Let l → r be an ESRR satisfying the
symmetry condition. Let l1 → r1 and l2 → r2 be two different variants of the rule l → r. Let
vc11 : l → l1 and vc22 : l → l2 be the isomorphisms that reflect the variant status of l1 and l2 of
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Figure 8: Sketch of the proof of Proposition 7

l. Let mb1
1 : l1 → g and mb2

2 : l2 → g be two matches such that mb1
1 (l1) = mb2

2 (l2). We say that
matches mb1

1 and mb2
2 are equal up to (l-)automorphism and write mb1

1 ∼l m
b2
2 iff there exists

an automorphism ha : l→ l such that mb1
1 = mb2

2 ◦ v
c2
2 ◦ ha ◦ v

c1
1
−1.

Definition 18 (Rewriting up to automorphisms). Let R be a conflict free ESRS whose rules sat-
isfy the symmetry condition and G a graph. Let M(R, G)auto = {mai

i : li → G | li is the lhs side
of a variant of a rule l → r in R and mai

i is a match up to automorphism}. We define the
rewrite relation ⇒auto which rewrites graph G by considering only matches up to automor-
phisms. I.e., the set of matches M of Definition 12 is M(R, G)auto.

Theorem 2. Let R be a conflict free ESRS whose rules satisfy the symmetry condition. Then
⇒auto is deterministic. That is, for all graphs G, (G ⇒auto G

′
1 and G ⇒auto G

′
2) implies that

G′1 and G′2 are isomorphic.

5 Examples

We illustrate the proposed framework through three examples borrowed from different fields.
We particularly provide simple confluent rewrite systems encoding cellular automata, the koch
snowflake and the mesh refinement.

5.1 Cellular automata (CA)

A cellular automaton is based on a fixed grid composed of cells. Each cell computes its new
state synchronously. At instant t+1, the value of a state k, denoted xk(t+1) may depend on the
valuations at instant t of the state k itself, xk(t), and the states xn(t) such that n is a neighbor
of k. Such a formula is of the following shape, where f is a given function and ν(k) is the set
of the neighbors of cell k: xk(t + 1) = f(xk(t), xn(t), n ∈ ν(k)) In the case of a graph G, the
neighbors of a cell (node) k, ν(k), is defined by : l ∈ ν(k) iff ∃p1,∃p2, (p1, k) ∈ PNG ∧ (p2, l) ∈
PNG ∧ (p1, p2) ∈ PPG. Usually, the grid is oriented such that any cell of ν(k) has a unique
relative position with respect to the cell k. This orientation is easily modeled by distinguishing
attributes on ports. For instance, one can consider Moore’s neighborhood [6] on a 2-dimensional
grid. This neighborhood of radius 1 is composed of 8 neighbors. The distinguishing attributes
on ports belong to the set {e, w, n, s, ne, se, nw, sw} which defines the 8 directions where e =
east, w = west, n = north, s = south etc.

The grid is defined by a graph G = (NG,PG,PNG,PPG,AG, λG) such that :
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• NG = {mi,j}i∈I,j∈J , where intervals I and J are defined as I = [−N,N ] ∩ Z and J =
[−N ′, N ′] ∩ Z for some natural numbers N and N ′.

• PG = {ei,j , wi,j , si,j , ni,j , nei,j , nwi,j , sei,j , swi,j | i ∈ I, j ∈ J},

• PNG = {(ei,j ,mi,j), (wi,j ,mi,j), (si,j ,mi,j), (ni,j ,mi,j), (nei,j ,mi,j), (nwi,j ,mi,j),
(sei,j ,mi,j), (swi,j ,mi,j)|i ∈ I, j ∈ J},

• PPG = {(ei,j , wi,j+1), (wi,j , ei,j−1), (ni,j , si−1,j), (si,j , ni+1,j), (nei,j , swi−1,j+1), (sei,j ,
nwi+1,j+1), (nwi,j , sei−1,j−1), (swi,j , nei+1,j−1)| i ∈ I, j ∈ J},

• ∀i ∈ I, ∀j ∈ J , λG(mi,j) ⊆ AG,

• ∀i ∈ I, ∀j ∈ J , λG(ei,j) = {e}, λG(wi,j) = {w},λG(si,j) = {s}, λG(ni,j) = {n},
λG(nei,j) = {ne}, λG(nwi,j) = {nw}, λG(sei,j) = {se}, λG(swi,j) = {sw}.

The attributes of the nodes correspond to states of the cells. They belong to a set AG. To
implement the dynamics of the automaton one needs only one rewrite rule {ρ = l → r} which
corresponds to the function f . The rule does not modify the structure of the grid but modifies
the attributes of nodes. Thus a left-hand side has a structure of a star with one central node
(see Figure 9), for which the rule at hand expresses its dynamics, surrounded by its neighbors.
Nodes, ports and edges of the left-hand side belong to the environment part of the rule. Only
the attribute of the central node belongs to the cut part since this attribute is modified by the
rule. In the left-hand-side, the attributes of nodes are variables to which values are assigned
during the matches. The right-hand-side is reduced to a single node named i. Its attribute
corresponds to the new part of the right-hand side.

Figure 9 illustrates such rules by implementing the well known game of life. It is defined
using Moore’s neighborhood and the dynamics of the game is defined on a graph G such that
attributes of nodes are in {0, 1} and

xi(t+ 1) = ((
∑
l∈ν(i) xl(t)) =? = 3) + ((xi(t) =? = 1) ×(

∑
l∈σ(i) xl(t)) =? = 2))

where (x =? = y)⇔
{

1 if x = y
0 otherwise

The neighborhood of a node i and its dynamics verify the symmetry condition, thus there
is no need to define attributes on ports. The rewriting relation ⇒auto is applied on the rewrite
system R = {ρ = l → r} reduced to one rule depicted in Figure 9. More precisely the graphs
of the rule as defined as follows:

l = (Nl,Pl,PN l,PP l,Al, λl) with

• Nl = N env
l = {i, a, b, c, d, e, f, g, h},

• Pl = Penvl = {i1, i2, i3, i4, i5, i6, i7, i8, a1, b1, c1, d1, e1, f1, g1, h1},

• PN l = PN env
l = {(a1, a), (b1, b), (c1, c), (d1, d), (e1, e), (f1, f), (g1, g), (h1, h), (i1, i)(i2, i),

(i3, i), (i4, i), (i5, i), (i6, i), (i7, i), (i8, i)},

• PP l = PPenvl = {(i1, a1)(i2, b1), (i3, c1), (i4, d1), (i5, e1), (i6, f1), (i7, g1), (i8, h1)}.

• Al = {0, 1, xi} ∪ {yq | q ∈ {a, b, c, d, e, f, g, h}} and λl = λenvl ∪ λcutl with λcutl : {i} → Al
such that λcutl (i) = {xi} ; and λenvl : {a, b, c, d, e, f, g, h} → Al such that λenvl (q) = {yq}

r = (Nr,Pr,PN r,PPr,Ar, λr) with

• Nr = N env
r = {i},
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Figure 9: game of life rule

{0} {0} {0} {0}
{0} {1} {1} {0}
{0} {0, 1} {1} {0}
{0} {0} {0} {0}

{0} {0} {0} {0}
{0} {1} {1} {0}
{0} {1} {1} {0}
{0} {0} {0} {0}

(a) (b)

Figure 10: (a) initial grid; (b) fixed point

• Pr = ∅, PN r = ∅, PPr = ∅.

• Ar = Al

• Moreover, on nodes, λr = λnewr (λenvr being empty) with λnewr : {i} → Attr and λnewr (i) =
{((ya + yb + yc + yd + ye + yf + yg + yh) =? = 3) + ((xi =? = 1)× ((ya + yb + yc + yd + ye
+ yf + yg + yh) =? = 2))}.

In the classical formulation of cellular automata, a cell contains one and only one value.
The model we propose can deal with cells with one or several values. For instance, the initial
state of the game of life can be a grid containing {0}’s except for 4 cells describing a square
(see Figure 10(a)).

In this configuration one cell have 2 values which means, on the example, that the cell is
dead or alive or we don’t have any information on the state of the cell. The behavior of all
possible trajectories is computed in parallel and the fixed point is reached. The initial state
Figure 11(a) yields Figure 11(b) as a fixed point. Here we observe that the indeterminacy
concerns at most 4 cells over time.

5.2 The Koch snowflake

The well-known Koch snowflake is based on segment divisions (variants exist on surfaces, both
can be modeled by our formalism). Each segment is recursively divided into three segments of
equal length as described in the following picture :

Let us consider the following triangle G as an initial state.
G = (NG,PG,PNG,PPG,AG, λG) with NG = {1, 2, 3} , PG = {p1, q1, p2, q2, p3, q3}, PNG =

{(p1, 1), (q1, 1), (p2, 2), (q2, 2), (p3, 3), (q3, 3)} , PPG = {(p1, q2), (p2, q3), (p3, q1)}.
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{0} {0} {0} {0}
{0} {1} {0} {0}
{0} {0, 1} {1} {0}
{0} {0} {0} {0}

{0} {0} {0} {0}
{0} {0, 1} {0, 1} {0}
{0} {0, 1} {0, 1} {0}
{0} {0} {0} {0}

(a) (b)

Figure 11: (a) initial grid; (b) fixed point

Figure 12: Koch Snowflake rule l → r with the node attribute computation λr(i) = 2
3λl(a) +

1
3λl(b), λr(j) = 1

2 (λl(a) + λl(b)) +
√
3
6 (−λl(a)T + λl(b)

T ) , λr(k) = 1
3λl(a) + 2

3λl(b)

λG(1) =

(
−1
0

)
, λG(2) =

(
0√
2

)
, λG(3) =

(
1
0

)
, λG(p1) = λG(p2) = λG(p3) = {−},

λG(q1) = λG(q2) = λG(q3) = {+}.
The attributes of ports are distinguishing attributes. The attributes of nodes are the R2

positions of the nodes. Every node got one attribute in R2, thus by abuse of notation, we get
rid of the set notation of attributes and use a functional one. The implementation of both
relations ⇒ and ⇒auto using the rule depicted in Figure 12 provide the expected pictures of
flakes as in Figures 13.

Let us denote λl(a) =

(
xa
ya

)
and λl(b) =

(
xb
yb

)
. In this example, the attributes of

nodes i, j and k are defined as follows: λr(i) = 2
3λl(a) + 1

3 λl(b) =

(
2
3xa + 1

3xb
2
3ya + 1

3yb

)
,

λr(j) = 1
2 (λl(a) + λl(b)) +

√
3
6 (λl(a)T + λl(b)

T ) =

(
1
2 (xa + xb) +

√
3
6 (ya − yb)

1
2 (ya + yb) +

√
3
6 (−xa + xb)

)
, and

λr(k) = 1
3λl(a) + 2

3λl(b) =

(
1
3xa + 2

3xb
1
3ya + 2

3yb

)

5.3 Mesh refinement

Mesh refinement consists in creating iteratively new partitions of the considered space. The
initial mesh G we consider is depicted Figure 15. Distinguishing attributes are given on ports.
Attributes on nodes are omitted but we can easily consider coordinates. Triangle refinements
are given in Figure 14. The three rules verify the symmetry condition and we apply the ⇒auto

relation on G to obtain the graph G′ described in Figure 15. Iteratively, the rewrite system can
be applied again on G′ and so forth.

6 Conclusion and Related Work

Parallel rewriting technique is a tough issue when it has to deal with overlapping reducible
expressions. In this paper, we have proposed a framework, based on the notion of rewriting
modulo, to deal with graph transformation where parallel reductions may overlap some parts
of the transformed graph. In general, these transformations do no lead to graphs but to a
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Figure 13: Flake results : flake at the different time steps 1,2,3 and 4

Figure 14: The rules R′T , RU , RV are refinement rules defined e.g. in [1]

structure we call pregraphs. We proposed sufficient conditions which ensure that graphs are
closed under parallel transformations. We also defined two parallel transformations: (i) one
that fires all possible rules in parallel (full parallel) and (ii) a second rewrite relation which
takes advantage of the possible symmetries that may occur in the rules by reducing the possible
number of matches that one has to consider. The two proposed parallel rewrite relations are
confluent (up to isomorphisms).

Our proposal subsumes some existing formalisms where simultaneous transformations are
required such as cellular automata [18] or (extensions of) L-systems [14]. Indeed, one can
easily write graph rewriting systems which define classical cellular automata, with possibly
evolving structures (grids) and where the content of a cell, say C, may depend on cells not
necessary adjacent to C. As for L-systems, they could be seen as formal (context sensitive)
grammars which fire their productions in parallel over a string. Our approach here generalizes
L-systems at least in two directions: first by considering graphs instead of strings and second by
considering overlapping graph rewrite rules instead of context sensitive (or often context free)
rewrite rules. Some graph transformation approaches could also be considered as extension
of L-systems such as star-grammars [12] or hyperedge replacement [7]. These approaches do
not consider overlapping matches but act as context free grammars. Other parallel graph
transformations have been proposed in the literature where parallel transformations can be
achieved on independent graphs gathered in multi-sets such as in [9] or by using a pullback
approach [2]. However, in [5] parallel graph grammars with overlapping matches have been
considered. In that work, overlapping subgraphs remain unchanged after reductions, contrary
to our framework which does not require such restrictions. The idea behind parallel graph
grammars has been lifted to general replacement systems in [17]. Amalgamation, see e.g.[10],
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Figure 15: G⇒auto G
′

aims at investigating how the parallel application of two rules can be decomposed into a common
part followed by the remainder of the two considered parallel rules. Amalgamation does not
consider full parallel rewriting as investigated in this paper. Another approach based on complex
transformation has been introduced in [11]. This approach can handle overlapping matches but
requires from the user to specify the transformation of these common parts. This requires to
provide detailed rules. For instance, the two first cases of the triangle mesh refinement example
requires about sixteen rules including local transformations and inclusions, instead of two rules
in our framework.

The strength of our approach lies in using an equivalence relation on the resulting pregraph.
This equivalence plays an important role in making graphs closed under rewriting. Other
relations may also be candidate to equate pregraphs into graphs. we plan to investigate such
kind of relations in order to widen the class of rewrite systems that may be applied in parallel
on graph structures in presence of overlaps. We also plan to investigate other issues such as
stochastic rewriting and conditional rewriting which would be a plus in modeling some natural
phenomena. Analysis of the proposed systems remains to be investigated further.
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