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Abstract

We implemented a Mathematica module for conformal geometric algebra (CGA) which includes

functions to represent CGA elements and compute operations on the elements. In particular, we can

draw a figure in 3D space corresponding to a CGA element. The proposed drawing function uses

a Gröbner basis for simplifying the corresponding equations. This function can visualize any CGA

element. One motivation of the present study is to realize a 3D origami system using our own CGA

library. This 3D system is based on the 2D computational origami system E-Origami-System developed

by Ida et al. and simple fold operations were formulated in 3D using CGA points and motions. We

then prove geometric theorems concerning 3D origami properties using the proposed module.

1 Introduction

Complex numbers can be used to describe a point on a plane. The addition of complex numbers
can be considered to be a translation of a point on a plane, while their multiplication can
be considered to be a magnification, reduction, and rotation transformation of a point on
a plane. Quaternions are a number system which is an extension of the complex numbers
introduced by W.R. Hamilton in 1843. We can use the quaternion numbers to describe a
point in a three-dimensional (3D) space. Calculation of a quaternion involves a rotation of a
point in 3D space. Since it is easy to manipulate a computation using its algebraic properties,
quaternions are used in applied mathematics, e.g., in 3D computer graphics and computer
vision [10, 7, 11]. Conformal geometric algebra (CGA) is an extension of algebraic number
systems which can involve space points, rotations, magnifications, reductions, and translations
of higher-dimensional spaces [1, 12, 9].

In the present paper, we investigate CGA to consider figures in R3 and their transformations.
We herein consider a CGA as a 32-dimension linear space. Transformations of figures in R3

can be described using a 4 × 4 affine transformation matrix, and a point in a figure can be
described using a vector in R3. Our motivation for using CGA is to describe both points and
transformations in a single algebraic framework in order to manipulate the computation and to
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easily verify its properties. One of our research goals is to find a useful algorithm for visualizing
the basic geometric entities used in computer graphics through the concepts in CGA.

We implemented a Mathematica module which includes functions to represent CGA elements
and to compute operations in CGA, such as the geometric product, the inner product, and
the outer product. Furthermore, we can draw the figure in R3 which corresponds to a CGA
element. Our drawing function uses a Gröbner basis for simplifying equations corresponding to
figures. Moreover, our drawing function can also be used for multi-dimensional figures. We also
implemented a function to check the equality of two figures which are represented by different
CGA elements [8].

Some origami are made in 2D, as shown in Figure 1. Some of these origami, such as the
crane origami, can be extended to 3D after all folding operations, but these are closed in 2D
during folding. Since all fold operations are π folding, 2D origami calculation is closed in 2D.
However, there are some origami which cannot be obtained by π folding alone. For example, in
order to construct a piano, as shown in Figure 2, we need to use π

2 folding. We then consider
an application of CGA to the 3D origami formalization and investigate its properties.

Figure 1: 2D Origami Figure 2: 3D Origami

Ida et al. formalized 2D origami development using the system Eos and verified a number
of origami properties [3, 6, 5, 2]. In 2014, Ida introduced the concept of extending Eos to 3D
origami [4]. Our goal is to realize a 3D origami system using our own CGA library. Based
on the Eos 2D computational origami system, simple fold operations in 3D were formulated
using CGA points and motions. We then proved a simple geometric theorem for 3D origami
properties by calculating CGA equation formulas.

2 Conformal geometric algebra

Let A be the finite set {0, 1, 2, 3,∞}. We define sets of variables W = {wS |S ⊂ A} and
E = {eS |S ⊂ A}. A geometric algebra G has six operators, Product (∗ : G × G → G), Sum
(+ : G × G → G), Minus (− : G → G), Outer product (∧ : G × G → G), Inner product
(· : G × G → G), and Scalar product (· : R × G → G). In order to describe an element of the
geometric algebra G as a polynomial in R[E] or R[W ], we define some computing functions on
R[E] and R[W ]. We assume that w{a} = e{a} (a ∈ A), and

e{i} · e{j} =


1 (i = j ∧ (1 ≤ i, j ≤ 3))

0 (i 6= j ∧ (1 ≤ i, j ≤ 3)) ∨ (i = j = 0) ∨ (i = j =∞)

−1 ((i = 0 ∧ j =∞) ∨ (i =∞∧ j = 0)).
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In order to compute a product of two polynomials in R[E], we define

eS ∗ eφ = eφ ∗ eS = eS ,

e{0} ∗ eS =

{
e{0}∪S (0 6∈ S)

0 (0 ∈ S),

e{a} ∗ eS =

{
(−1)|{s∈S|s<a}| e{a}∪S (a ∈ {1, 2, 3} ∧ a 6∈ S)

(−1)|{s∈S|s<a}| eS−{a} (a ∈ {1, 2, 3} ∧ a ∈ S),

e{∞} ∗ eS =


(−1)|S| e{∞}∪S (0 6∈ S ∧∞ 6∈ S)

0 (0 6∈ S ∧∞ ∈ S)

−e{0} ∗ (e{∞} ∗ eS−{0})− 2eS−{0} (0 ∈ S),

eT∪{a} ∗ eS = eT ∗ (e{a} ∗ eS) (∀t ∈ T, t < a).

For computing a product of two polynomials in R[W ], we use the following transformation and
computations in R[E].

wS =

{
eS (0 6∈ S ∨∞ 6∈ S)

eS + (−1)|S|eS−{0,∞} (0 ∈ S ∧∞ ∈ S).

We define the function grade : R[W ] → N by grade(awS) = |S| (a ∈ R) and grade(f + g) =
max(grade(f), grade(g)) (f, g ∈ R[W ]). For k ∈ N, the function pickupk : R[W ] → R[W ]
identifies terms which have grade(f) = k (f ∈ R[W ]). That is, pickup2(w0+w01+w012+w12) =
w01 + w12. Note that wφ, w{0}, w{0,1}, and w{0,1,2} are denoted by 1, w0, w01, and w012,
respectively. In order to compute an outer product(∧) and an inner product(·) in R[W ], we
define

wS ∧ wT = pickup|grade(wS)+grade(wT )|(wS ∗ wT ), and

wS · wT = pickup|grade(wS)−grade(wT )|(wS ∗ wT ).

Note that x ∗ y = x · y + x ∧ y for any elements x, y ∈ R[W ]. In Tables 1 and 2, we list the
operation tables of the product and the outer product, respectively.

Table 1: Product operation table

∗ e0 e1 e2 e3 e∞

e0 0 e01 e02 e03 e0∞
e1 −e01 1 e12 e13 e1∞
e2 −e02 −e12 1 e23 e2∞
e3 −e03 −e13 −e23 1 e3∞
e∞ −2− e0∞ −e1∞ −e2∞ −e3∞ 0

∗ w0 w1 w2 w3 w∞

w0 0 w01 w02 w03 −1 + w0∞

w1 −w01 1 w12 w13 w1∞

w2 −w02 −w12 1 w23 w2∞

w3 −w03 −w13 −w23 1 w3∞

w∞ −1− w0∞ −w1∞ −w2∞ −w3∞ 0

A function exp on a CGA is defined by a formal power series exp(x) =

∞∑
k=0

1

k!
xk where we

abbreviate a product operator symbol ∗. We note that exp(x) ∈ R[W ] for any x ∈ R[W ].
There are known relationships between CGA elements and figures in R3. A point (x, y, z) ∈

R3 is represented by a CGA element P(x,y,z) = w0 + xw1 + yw2 + zw3 + 1
2

(
x2 + y2 + z2

)
w∞.
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Table 2: OuterProduct operation table

∧ e0 e1 e2 e3 e∞

e0 0 e01 e02 e03 1 + e0∞
e1 −e01 0 e12 e13 e1∞
e2 −e02 −e12 0 e23 e2∞
e3 −e03 −e13 −e23 0 e3∞
e∞ −1− e0∞ −e1∞ −e2∞ −e3∞ 0

∧ w0 w1 w2 w3 w∞

w0 0 w01 w02 w03 w0∞

w1 −w01 0 w12 w13 w1∞

w2 −w02 −w12 0 w23 w2∞

w3 −w03 −w13 −w23 0 w3∞

w∞ −w0∞ −w1∞ −w2∞ −w3∞ 0

A circle passing through three points a, b, and c is Pa ∧ Pb ∧ Pc. A sphere passing through
four points a, b, c, and d is Pa ∧ Pb ∧ Pc ∧ Pd. A line passing through two points a and b
is Pa ∧ Pb ∧ w∞. A plane passing through three points a, b, and c is Pa ∧ Pb ∧ Pc ∧ w∞. A
translator is defined by exp(−d2w∞)P exp(d2w∞) where d = αw1 + βw2 + γw3, (α, β, γ ∈ R). A

rotor is defined by exp(− θ2B)P exp( θ2B), where θ ∈ R is an angle of rotation, B = b1 ∧ b2, and

bi = αiw1+βiw2+γiw3, (αi, βi, γi ∈ R, i = 1, 2). A dilator is exp(−λ2w0∧w∞)P exp(λ2w0∧w∞),
where λ ∈ R is a scaling factor.

Example 1. In the following, we show some simple computations of elements in W :

w01 = w0 ∧ w1 = −w1 ∧ w0,

w∞ ∗ w0 = −1− w0∞,

w0∞ ∗ w123 = −w023∞,

w12 ∗ w3∞ = w123∞,

w3∞ ∗ w3∞ = (w3∞)2 = 0,

w0∞ ∗ w0∞ = (w0∞)2 = 0,

w12 ∗ w12 = (w12)2 = −1,

w12 = e12, and

w01∞ = e01∞ − e1.

The following examples are computations of the exp function. Since (w3∞)2 = 0, (w12)2 =
−1 and (w0∞)2 = 1, we have

exp(
w3

2
w∞) = 1 +

1

2
w3∞ +

1

2!
(
1

2
w3∞)2 + · · ·

= 1 +
1

2
w3∞,

exp(
θ

2
w12) = 1 +

θ

2
w12 +

1

2!
(
θ

2
w12)2 +

1

3!
(
θ

2
w12)3 + · · ·

= {1− 1

2!
(
θ

2
)2 + · · · }+ {θ

2
− 1

3!
(
θ

2
)3 + · · · }w12

= cos
θ

2
+ w12 sin

θ

2
, and

exp(
λ

2
(1 + w∞w0)) = exp(−λ

2
w0∞)

= 1 +
λ

2
w0∞ +

1

2!
(
λ

2
w0∞)2 +

1

3!
(
λ

2
w0∞)3 + · · ·
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= {1 +
1

2!
(
λ

2
)2 + · · · }+ {λ

2
+

1

3!
(
λ

2
)3 + · · · }w0∞

= cosh
λ

2
− w0∞ sinh

λ

2
.

3 Mathematica module for CGA

The proposed Mathematica module has various functions. For example, CGAProduct, Out-
erProduct and InnerProduct are functions for computing products (∗, ∧ and ·) of two CGA
elements. Moreover, Pnt, Cir, Trs, etc. are functions for creating a CGA element which rep-
resents a point, a circle, a translator, etc. The figure correspoinding to a CGA element X
is a subset Fig(X) := {(x, y, z) ∈ R3 |X ∧ P(x,y,z) = 0} of R3. We implemented a function
CGAOutput3D for drawing the corresponding figure in R3 for a given CGA element. CGAEqua-
tionCheck is a function for checking the equality of figures represented by two CGA elements.

Let X =
∑
S⊂A

aSwS (aS ∈ R). Then we have X ∧ P(x,y,z) =
∑
S⊂A

pSwS , where pS are poly-

nomials in R[x, y, z] and Fig(X) = {(x, y, z) | pS = 0 (S ⊂ A)}. We list complete equations for
Fig(X) in Appendix. We compute a Gröbner basis of those equations. We note that there
remains at most one degree 2 equation in the Gröbner basis for this case. So we can detect the
dimension of a figure by the number of elements in the Gröbner basis. That is the dimension is
3 minus the number of elements. If the number is three, then the figure is a finite set of points.
If the number is two, then we can draw the figure using ParametricPlot3D function with one
variable. If the number is one, then we use ContourPlot3D function with two variables. Our
CGAOutput3D function automatically choose an appropriate draw function in Mathematica.

We show two examples. First, we consider the intersection of a sphere and a plane. Let
S1 be the sphere passing through four points (3, 0, 0), (0, 3, 1), (0, 2, 3), and (−3, 3, 2), H1 the
plane which passes through three points (3, 0, 1), (0, 3, 1), and (0, 2, 1). That is, S1 = P(3,0,0)

∧P(0,3,1) ∧P(0,2,3) ∧P(−3,3,2) = 3w012∞ − 33w013∞ + 37w023∞ + 192w123∞ − 18w0123 and H1

= P(3,0,1) ∧P(0,3,1) ∧P(0,2,1) ∧w∞ = 3w012∞+3w123∞. The intersection of S1 and H1 is a CGA
element S1 ·H∗1 = −99w01∞ + 111w02∞ + 567w12∞ + 99w13∞ − 111w23∞ + 54w012 + 54w123,
where H∗1 is the dual of H1 i.e. H∗1 = H1 ∗ (−w0123∞) (cf. [12]). Figure 3 represents the
intersection of plane H1 and sphere S1.

Fig(S1 ·H∗1 ) = {(x, y, z) ∈ R3 | − 1 + z = 0,−180 + 37x+ 9x2 + 33y + 9y2 = 0}

= {(x,−11

6
± 1

6

√
841− 148x− 36x2, 1) ∈ R3 |x ∈ R ∧ 841− 148x− 36x2 > 0}.

Since the number of elements in the Gröbner basis is two, an element in the set is expressed
with one variable. In this example, we can draw a circle using the Mathematica function
ParametricP lot3D.

Next, we consider the intersection of a circle and a plane. Let C1 be the circle which passes
through three points (3, 0, 2), (0, 3, 1), and (0, 3, 0), that is C1 = P(3,0,2) ∧P(0,3,1) ∧P(0,3,0)

= 3
2w01∞ − 3

2w02∞ − w03∞ − 9
2w12∞ + 27

2 w13∞ − 33
2 w23∞ + 3w013 − 3w023 − 9w123. The

intersection of plane H1 and circle C1 is a CGA element C1 ·H∗1 = −3w0∞+ 45w1∞−54w2∞−
3w3∞ − 9w01 + 9w02 + 27w12 + 9w13 − 9w23.

Fig(C1 ·H∗1 ) = {(x, y, z) ∈ R3 | − 1 + z = 0,−3− 8y + 3y2 = 0,−3 + x+ y = 0}

= {(5 +
√

7

3
,

4−
√

7

3
, 1), (

5−
√

7

3
,

4 +
√

7

3
, 1)}.
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Since the number of elements in the Gröbner basis is three, we can completely solve the equa-
tions. Therefore, we draw these points using the Mathematica function ListPointP lot3D.
Figure 4 represents the intersection of plane H1 and circle C1.

Figure 3: Sphere and Plane Figure 4: Plane and Circle

We also implemented a function to check whether the figures of two CGA elements are equal.
Let X1 = w0∞ −6w1∞ −5w2∞ −4w3∞ +w01∞ +w02∞ +w03∞ +6w12∞ +5w13∞ +6w23∞
+w012∞ +w013∞ +w023∞ −5w123∞ +w0123∞ +w01 +w02 +w03 −w12 −2w13 −w23 +w012

+w013 +w023 +2w123 +w0123 and X2 = w0 +w1 +2w2 +3w3 +7w∞. The appearances of
X1 and X2 are different, but the figures of X1 and X2 are same and it is {(1, 2, 3)}. Our
implemented function CGAEquationCheck can check the equality of figures for any two CGA
elements using Gröbner bases and the PolynomialMod function in Mathematica.

4 Two-dimensional origami folding

We follow the formulations introduced by Ida et al. [6, 13, 5, 2]. First, we use a data structure
called origami graph O = (Π,∼,�), where Π is a set of faces, ∼ is an adjacency relation of
faces, and � is a superposition relation (cf. [13, 5]).

Our Mathematica module has various functions. Ori is the function that folds origami
and automatically updates the origami graph O. Arguments of Ori[O,m,F, θ] are a current
origami graph O = (Π,∼,�), a fold line m, a faces set F for folding and an angle of rotation
θ ∈ {π,−π, 0}, where F may be a part of faces for folding and θ indicates a valley fold or a
mountain fold. We use θ = 0 for an operation which does not fold but just divide faces using
a given fold line and a face set. To determine a folding line from given points and lines, we
follow the Huzita-Hattori axioms and we implemented Mathematica functions Ori1 to Ori7.
We recall the Huzita-Hatori axioms using our functions as follows[2]:

Axiom 1: Given two points p1 and p2, there is a unique fold line (Ori1[p1, p2]) that passes
through both points (Figure 5).

Axiom 2: Given two points p1 and p2, there is a unique fold line (Ori2[p1, p2]) that places p1
onto p2 (Figure 6).

Axiom 3: Given two lines L1 and L2, there are at most two fold lines (Ori3[L1, L2, f lag])
that place L1 onto L2. There are at most two choices of folding line. We use “flag”
to indicate a folding line(Figure 7).
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Axiom 4: Given a point p1 and a line L1, there is a unique fold line (Ori4[p1, L1]) that passes
through point p1 and is perpendicular to L1 (Figure 8).

Axiom 5: Given two points p1 and p2 and a line L1, there are at most two fold lines
(Ori5[p1, p2, L1, f lag]) that place p2 onto L1 and pass through p1. There are at
most two choices of folding line. We use “flag” to indicate a folding line (Figure 9).

Axiom 6: Given two points p1 and p2 and two lines L1 and L2, there are at most three fold
lines (Ori6[p1, L1, p2, L2, f lag]) that place p1 onto L1 and p2 onto L2. There are at
most three choices of folding line. We use “flag” to indicate a folding line (Figure 10).

Axiom 7: Given one point p and two lines L1 and L2, there is a unique fold line
(Ori7[p1, L1, L2]) that places p onto L2 and is perpendicular to L1 (Figure 11).

p1 p2

Figure 5:
Ori1[p1, p2]

p1

p2

Figure 6:
Ori2[p2, p2]

L1

L2

flag=1

flag=2

Figure 7:
Ori3[L1, L2, f lag]

L1

p1

Figure 8:
Ori4[p1, L1]

p1 p2

L1

flag=1

flag=2

Figure 9:
Ori5[p1, p2, L1, f lag]

p1

p2
L1

L2
flag=1

flag=2

flag=3

Figure 10:
Ori6[p1, L1, p2, L2, f lag]

L1

L2

p1

Figure 11:
Ori7[p1, L1, L2]

Example 2. We can make any origami by successive applications of origami functions. The
following is a sequence of origami functions for making Kabuto. Intermediate results are dis-
played in Figures 12 to 15.
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We first define coordinates of vertices (P1, P2, P3, P4) of Origami.

P1 = {0, 0}; P2 = {0, 10}; P3 = {10, 10}; P4 = {10, 0};
O0 = FirstO; · · · (Figure 12).

O1 = Ori[O0,Ori2[P3, P1], {1}, π];

O2 = Ori[O1,Ori2[P4, P3], {3}, π];

O3 = Ori[O2,Ori2[P1, P4], {5},−π];

In this example, we explicitly define points P5, P6, and P7, but these points are automatically
defined after folding operations as the coordinate of a vertex of some folded face.

P5 =
P1 + P3

2
; P6 =

P1 + P2

2
; P7 =

P1 + P4

2
;

O4 = Ori[O3,Ori2[P5, P1], {4, 10}, π]; · · · (Figure 13).

O5 = Ori[O4,Ori2[P6, P5], {13}, 0];

O6 = Ori[O5,Ori2[P7, P5], {29}, 0];

P8 =
P1 + P5

2
; P9 =

P5 + P6

2
; P10 =

P5 + P7

2
;

O7 = Ori[O6,Ori3[p2line[P8, P5],p2line[P9, P8], 2], {27}, π];

O8 = Ori[O7,Ori3[p2line[P8, P5],p2line[P10, P8], 2], {59}, π];

The P11 is a user defined point. In this example, we define P11 as a midpoint of P8 and P5.

P11 =
P8 + P5

2
;

O9 = Ori[O8,Ori2[P11, P1], {15}, π]; · · · (Figure 14).

O10 = Ori[O9,Ori1[P7, P6], {31}, π];

O11 = Ori[O10,Ori2[P7, P6], {11},−π]; · · · (Figure 15).

P1

P2 P3

P4

Figure 12:
GOutput2D(O0)

P1

P5P6

P7

P8

Figure 13:
GOutput2D(O4)

P1

P5P6

P7

P8

P9

P10

P11

Figure 14:
GOutput2D(O9)

P1

P5P6

P7

P8

P9

P10

P11

Figure 15:
GOutput2D(O11)

GOutput2D is the function to draw an origami graph O, as viewed from the top and in a tab
layer display in a 2D space (Figure 16). GOutput3D is the function to draw an origami graph
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O by layer display in a 3D space (Figure 17). OriBack is the function to open folded origami,
that is , the converse operation of Ori. This function can create a development view.

Figure 16: GOutput2D Figure 17: GOutput3D

5 Three-dimensional origami folding

When we transform a point x to a point y, there are various types of representations that can
be used to express a transformation. We often use a vector-matrix representation. We express
operation M as a 3× 3 matrix and point x, y as a 3× 1 vector. A transform is represented as
an equation Mx = y. This representation requires the definition of two data structures (matrix
and vector). We should calculate the act operators and product operator between two data
types. Therefore, this is sometimes difficult to verify formally. However, CGA representation
requires defining only one data structure (a set of CGA elements). In CGA representation, we
can express both operation R and point x, y as a CGA element. Moreover, the transformation of
point x to point y is represented as an algebraic equation R∗x∗R−1 = y (R∗R−1 = R−1∗R = 1).
Therefore, all calculations can be achieved simply by symbolic computation of the product
operation ∗, making the operation easy to formalize and verify. This is the reason why we use
our CGA representation.

We express the method by which to calculate a CGA operation R from given fold operation
as fold line m and angle θ ∈ R. We consider fold line m, which is a directed line, as a pair of
vectors (v1, v2), and the direction is given by the vector v = v2−v1

‖v2−v1‖ . A fold operation can be

represented as the rotor on fold line m. As such, we define the rotor around the origin Rot and
translator T as follows:

Rot = cos
θ

2
−B sin

θ

2
(bivector B = v ∗ (−w123) which is the plane of the rotation),

T = 1− v1
2
w∞.

Since Rot is a rotor around the origin, we should rewrite the equation as a rotor around v1.
This can be achieved by using a translation defined by T and T−1. We define R = T ∗Rot∗T−1,
where R corresponds to the fold operation. This is the rotor of the left-hand direction on fold
line m.

Example 3. We present an example of the calculation of CGA operation R. Let the fold
operation be a π

3 folding on fold line m = (v1, v2), (v1 = 6w1, v2 = 4w1 + 10w2) (Figure 18).
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R−→

Figure 18: π
3 folding

v =
4w1 + 10w2 − 6w1

‖4w1 + 10w2 − 6w1‖
= − w1√

26
+

5w2√
26

B = v ∗ (−w123) =
5w13√

26
+
w23√

26

Rot = cos
π

6
−B sin

π

6
=

√
3

2
− 5w13

2
√

26
− w23

2
√

26

T = 1− 3w1∞, T
−1 = 1 + 3w1∞

R = T ∗Rot ∗ T−1 =

√
3

2
− 5w13

2
√

26
− w23

2
√

26
+

15w3∞√
26

6 Simple proof using CGA equations

Various figures can be obtained by folding an origami. We can prove their geometric properties
by calculating CGA equations. For example, when we fold a quadratic prism from rectangular
origami (Figure 19), we show that points P1 and P2 are in the same position.

Let P1, P2, P3, and P4, which are the vertices of the rectangular origami, be the CGA points

P1 = P(0,0,0) = w0, P2 = P(A,0,0) = w0 + Aw1 + A2

2 w∞, P3 = P(A,B,0) = w0 + Aw1 + Bw2 +
A2+B2

2 w∞ and P4 = P(0,B,0) = w0 + Bw2 + B2

2 w∞ (A > 0 ∧ B > 0). We can express fold
operations R1, R2, and R3 in CGA and the CGA operation R as a combination of R1, R2, and
R3, as follows: R1 = 1√

2
+ w13√

2
− A

4
√
2
w3∞, R2 = 1√

2
+ w13√

2
− A

2
√
2
w3∞, R3 = 1√

2
+ w13√

2
− 3A

4
√
2
w3∞,

R = R3 ∗R2 ∗R1 = 1√
2

+ w13√
2

+ A
2
√
2
w1,∞ − A

2
√
2
w3∞.

We can calculate the CGA equation using the function in our Mathematica module

R ∗ P1 ∗R−1 = w0 +Aw1 +
A2

2
w∞ = P2.

This equation confirms that points P1 and P2 are located at the same position.
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R1−−→ R2−−→ R3−−→

Figure 19: Folding the quadratic prism

7 Conclusion

We implemented functions that realize CGA operations using symbolic computations in Math-
ematica 1. Our module includes functions for the geometric product, the inner product, and
the outer product of a CGA which is an extension of R3 with e0 and e∞. We also implemented
a drawing function for figures in R3 which correspond to CGA elements. Furthermore, we
implemented a function to check whether two figures of CGA elements are equal. Next, we
considered an application of our CGA module to 3D origami folding. Following the formulation
of 2D origami folding introduced by Ida et al., we extended the folding function. Using our
module, we can study 3D origami folding, in particular the properties of a sequence of folding
procedures. Finally, we presented a simple proof of the 3D origami property using a symbolic
computation of the CGA equations. Future research include a precise implementation of 3D
origami folding functions. We intend to implement a function for judging the collision of faces
in 3D origami folding. Hopefully, we will be able to introduce various useful 3D origami motions
described by CGA operations.
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Appendix

Let X =
∑
S⊂A

aSwS , (aS ∈ R). Equations for X ∧ P(x,y,z) = 0 are listed as follows:

X ∧ P(x,y,z) = 0

⇔



aφ = 0

aφx = 0

aφy = 0

aφz = 0

aφ
x2+y2+z2

2
= 0

a{0}x− a{1} = 0

a{0}y − a{2} = 0

a{0}z − a{3} = 0

a{0}
x2+y2+z2

2
− a{∞} = 0

a{1}y − a{2}x = 0

a{1}z − a{3}x = 0

a{1}
x2+y2+z2

2
− a{∞}x = 0

a{2}z − a{3}y = 0

a{2}
x2+y2+z2

2
− a{∞}y = 0

a{3}
x2+y2+z2

2
− a{∞}z = 0

−a{0,2}x + a{0,1}y + a{1,2} = 0

−a{0,3}x + a{0,1}z + a{1,3} = 0

a{0,1}
x2+y2+z2

2
− a{0,∞}x + a{1,∞} = 0

−a{0,3}y + a{0,2}z + a{2,3} = 0

a{0,2}
x2+y2+z2

2
− a{0,∞}y + a{2,∞} = 0

a{0,3}
x2+y2+z2

2
− a{0,∞}z + a{3,∞} = 0

a{2,3}x− a{1,3}y + a{1,2}z = 0

a{1,2}
x2+y2+z2

2
+ a{2,∞}x− a{1,∞}y = 0

a{1,3}
x2+y2+z2

2
+ a{3,∞}x− a{1,∞}z = 0

a{2,3}
x2+y2+z2

2
+ a{3,∞}y − a{2,∞}z = 0

a{0,2,3}x− a{0,1,3}y + a{0,1,2}z − a{1,2,3} = 0

a{0,1,2}
x2+y2+z2

2
+ a{0,2,∞}x− a{0,1,∞}y − a{1,2,∞} = 0

a{0,1,3}
x2+y2+z2

2
+ a{0,3,∞}x− a{0,1,∞}z − a{1,3,∞} = 0

a{0,2,3}
x2+y2+z2

2
+ a{0,3,∞}y − a{0,2,∞}z − a{2,3,∞} = 0

a{1,2,3}
x2+y2+z2

2
− a{2,3,∞}x + a{1,3,∞}y − a{1,2,∞}z = 0

a{0,1,2,3}
x2+y2+z2

2
− a{0,2,3,∞}x + a{0,1,3,∞}y − a{0,1,2,∞}z + a{1,2,3,∞} = 0.

80


	Introduction
	Conformal geometric algebra
	Mathematica module for CGA
	Two-dimensional origami folding
	Three-dimensional origami folding
	Simple proof using CGA equations
	Conclusion

